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Abstract. In this research study, we formulate two generalized nonlinear multi-order fractional
boundary value problems with the help of quantum difference operators. To investigate the exis-
tence property for possible solutions of these g-difference FBVPs, we apply two separate methods
motivated by some notions in relation to the measure of noncompactness and end-point technique.
The condensing functions and multifunctions having the (AE)-property play an important role in
our study. As well as, two examples corresponding to both techniques are provided to ensure the
compatibility of the findings numerically.
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1. INTRODUCTION

Because of the quick extensions in fractional calculus, many mathematicians turned
to the theory of g-calculus which is an equivalent of traditional calculus without defin-
ing the concept of limit and also ¢ refers to quantum. This theory was originally de-
veloped by [20, 19] and it includes many practical aspects in areas of hyper-geometric
series, the theory of relativity, particle physics, discrete mathematics, quantum me-
chanics, combinatorics and complex analysis. For a fundamental introduction of the
primitive notions of g-calculus, one can refer to [4, 12, 22]. In the early years, for
finding positive solutions of given g-difference equations in the non-linear settings, we
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lead you to study a work published by both El-Shahed and Al-Askar [11] and also a
manuscript by Graef and Kong [17].

So later, various mathematical g-difference fractional models of IVPs and BVPs
have been abstracted out such as [1, 15, 5, 8, 9, 28, 21, 25, 26, 27, 14, 32, 31] in which
different approaches like as the lower-upper solutions technique, fixed-point results
and iterative methods have been implemented. Here, we apply another technique to
discuss the existence property of solutions for given ¢-difference FBVP depending on
the condensing operators and measure of noncompactness.

In 2014, Ahmad, Nieto, Alsaedi and Al-Hutami [3] turned to a g-sequential equation
in the nonlinear case via four-point g-integral conditions displayed as

€O (CD% +0)u(r) = Tu(r, u(r)), (re€0,1], ¢ € (0,1)),

1(0) = et BITT u(¢r), (1) = 2357 u(Co)
so that ¢1,6 € (0,1), (1,( € (0,1), 0 > 2 and 0,¢1,¢5 € R. As well as, T, : [0,1] x
R — R is continuous and qugj ! indicates the ¢-RL-integral. These mathematicians
extracted different qualitative aspects of solutions for abive ¢-FBVP by means of the
classical approaches which are available in the fixed-point theory. In 2015, Etemad
et al. [13] focused on the new four-point three-term g¢-difference FBVP

(G5 m)(r) = E(r, u(r), D5 p(r)), 0< g <1,

— (B-1)
a1s(0) + G DY 1(0) = er B35, (&) = Cl/ (&q(v))

0

/J/(’U)dq?)’

3 _ (B-1)
oanl1) + G4 1) = 23 nl) = [ LTIty

where 0 < r < 1,1 <¢ <2 Be€(0,2], ar,a2,(1,(,c1,c2 € R and &,& € (0,1)
via & < &. In 2019, two mathematicians named Ntouyas and Samei [24] devoted
their attention to investigating the existence property of solutions for a multi-term
g-integro-difference FBVP

DG ulr) = S, p(r), () (r), (ap) (r), GG, p(r), GO plr), - -, DG p(r))

1(0) + crp(1) = 0, p'(0) + cop/(1) =0,
where r € [0,1], ¢ € (0,1), 1 <¢ < 2,5; € (0,1) with j =1,2,...,k, c1,c0 # —1, ¢,
are formulated as (Ynp)(r) = [ zn(r,v)p(v) dgu forn = 1,2 and T : [0, 1] xRFF3 — R
is continuous with respect to all variables [24].
In 2020, Phuong, Sakar, Etemad and Rezapour [29] formulated a novel extended
configuration of the Caputo g-multi-integro-difference equation via two nonlinearity
via g-multi-order-integrals conditions

(€95 — €+ DRI = (6 +2)74303 ) u(r) = et 0L Ta(r, u(r)) + 2333 Ta(r, u(r))

p(0) =0, ¢354 n(1) + (¢ + 1303 u(1) + (¢ +2)5,355 u(1) = 0,
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in which r € [07 1]7 S € (1v 2)7 517 627'71372 € (Oa 1)7 01,02,03,§,¢ > 0and ¢, ¢2 € R29.

In this paper, stimulated by aforesaid ¢-FBVPs, we discuss a structure of the Ca-
puto quantum difference FBVP (or Cap-¢-difference FBVP) in the nonlinear settings
via 3-point-sum g¢-integro-difference conditions

CO5, pu(r) = Tulr,ulr)), (s €(2,3), ¢ €(0,1)),
ZO‘J Join(1), (o € R70),

D5 1(0) + D8, (¢ Zﬂﬁqﬁom » (B; €R??),

©0, 4(0) + S0 1(0) = 3" 2[R (D), oy € B,

where r € O =[0,1], ¢ € (0,1), p € (1,2), and for j = 1,2,...,k, 0; > 0. As the same

way, the operators CqCDgl qugl display the Cap-g-derivative and the RL-g-integral.

The mapping T, : O x R — R is continuous. Besides above problem, we consider
the nonlinear Cap-g-difference inclusion FBVP with the same 3-point-sum-g-integro-
difference conditions

D5 n(r) € Tulr,u(r)), (< € (2,3), g €(0,1)),
Z a] o+/~L , (aj € R>O)7
D5 (0) + D5 p Zﬂg R, (8; e R7O),

€02, u(0) + 02, 1(C) Z%R””’ [CDEu(1)], (v; € R7Y),

so that r € O = [0,1], ¢ € (0,1), 0 € (1,2), and for j = 1,2,...,k, 0; > 0 and
multi-valued mapping T, : O x R — P(R) is regarded to be arbitrary via some
required specifications. These two ¢-difference FBVPs (1.1) and (1.2) have general
formulations with generalized boundary conditions which involve some simple cases
studied before by other researchers. Indeed, it is an evident fact that if we take k =1
andoy == =a,b == =Bn=""=w=70=""=0,=0
and ¢ — 1, then the aforesaid Cap-g-difference FBVP (1.1) is transformed into the
usual Caputo FBVP in the following format
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D5 u(r) = Tu(r, p(r), (s € (2,3)),
1(0) + u(¢) = a3, u(1), (o € R7O),
D8, 1(0) + D8, u(C) = BRIG (1), (B € R>Y),

1'(0) + p"(¢) =I5 1" (1), (v € RZO),
in which all g-difference operators are reduced to the usual Caputo and RL-ones.
Despite the existence of different standard methods, we are going to get help the
measure of noncompactness (KMNC) introduced by Kuratowski for the aims of this
manuscript. For this reason, we consider a condensing operator depending on the
KMNC and then prove the existence theorem with the help of a fixed-point criterion
given by Sadovskii. The next step is devoted to discussing an inclusion formulation
of the given Cap-g¢-difference FBVP as (1.2) in which the proof is done by terms of
the approximate end-point property or (AE)-property for some special maps. Notice
that these suggested nonlinear Cap-g-difference FBVPs (1.1) and (1.2) have novel
generalized mixed g¢-integro-difference boundary conditions and so they are novel.
This manuscript is presented in such a format: In Sect. 2, some key concepts and
theorems are assembled which are required in the rest of the manuscript. In Sect. 3,
we investigate the existence property for the possible solutions of the Cap-g-difference
FBVP (1.1) by means of the fixed-point result proved by Sadovskii. Next, the Cap-
g-difference inclusion FBVP (1.2) is considered and the existence of end-points of the
operator caused by the given inclusion FBVP is established by using inequalities and
other properties of multi-valued functions which refers to the existence of solutions
for the mentioned (1.2). Two examples are given in the same section to see the
compatibility of findings in the context of the numerical views. We summarize the
findings in Sect. 4.

2. PRELIMINARIES
The primitive notions of g-calculus are collected in this part by assuming ¢ € (0, 1).
The g-analogue of (a; — a2)* is given by
k—1 '
(a1 —a2)® =1, (a1 — az)®) = H(a1 —azq’), (a1,a2 € R, keNg:={0,1,2,...})
§=0
[30]. Now, if k =¢ € R, then
= 1o ()
(a1 —a2)® = a5 [] Wv (a1 # 0).
k=0 a1
On the other side, by taking a; = 0, we have agg) = aj [30]. A g-number [a4], for
a1 € R is represented by
1—qg™

=qn 4 4g+1.
l—q

la1]q =
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Accordingly, the Gamma function in the quantum settings is displayed by

_(1=g)
Ly(r) = W,

and I'y(r + 1) = [r],[q(r) is valid [20, 30].

(re R\(Zz~ u{0})) (2.1)

Definition 2.1. [2] The ¢-difference-derivative of the supposed function p is con-
structed by

( Dor)(r) = ’“‘((f"q‘)(“ (2.2)

in which ( ¢®¢+£)(0) = lim,0( ¢Do+p)(r).

Simply, we have ( (@b p)(r) = Do+ qDISIl,u)(r) for all k¥ € N and
( ¢Dgep)(r) = p(r) [2].

Definition 2.2. [2] The ¢-integral of the supposed function p € C([0,m3],R) is
displayed as

( To+p)(r) = /OT p(v)dgv =r(l—q) Zu(rqﬁ‘)qi’ (2.3)

if the series is absolutely convergent.

Similarly ( (JF p)(r) = ¢To+( qjgjl,u)(r) for all k > 1 and ( 3. p)(r) = pu(r) [2].

Definition 2.3. [2] By letting a; € [0, as], the definite g-integral of the supposed
function p € C([0, az],R) is formulated as

/ nw)dgw = Jorpla) — oJorpu(ar)

- /0 " p(v) dgv — /O " p(v) dgv

oo
(1=q)) [azp(azq’) — arp(arq’)lg’
=0

if the series exists.

By considering p as a continuous function at r = 0, then ( (Jo+ ¢Do+p)(r) =
w(r) — u(0) [2]. Furthermore, ( ¢Do+ ¢Jo+p)(r) = p(r) for all r.
Definition 2.4. [16, 17] The ¢*"-RL-g-integral of ; € Cr([0, +00)) is introduced by
1 T
F()/ (r = qu)“ Vu(v)dgo, < >0,
") = 4 Tl Jo

M(T)v =0,

if integral exists.
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One can simply see that the g-semi-group property satisfies as RQITJSL (R;ITJS"; w)(r) =
quglﬁ”u(r) for ¢1,¢2 > 0 [16]. Also, for ¢ > —1, we have

‘ T,(C+1) oo ‘
R~s ¢ q C+s R ~¢ _ S
3 =4 7 d 3.1 = — 0).
uJorT T,(Cts 1)7“ and 7,05, (r) e 1)7“, (r >0)

Definition 2.5. [16, 17] Let /—1 < ¢ < /, i.e. £ = []+1. The ¢**-Caputo g-derivative
of ue CH(QZ)([O, +00)) is displayed as

‘ 1 r o
©Dgn(r) = m/o (r = qu)™Y (D p(v) dgv
q

if the integral exists.

1

Note that for ( > —1, we have
L,(e+1)
Fq(L —c+1)

Lemma 2.6. [11] Let { — 1 < < (. Then,

£— i

(%36 GO5em)(r) = p(r) = > TG+ D5 1)(0).
j=0 "1

C;’DBJFTL = ‘7% and C;@g+1(r) =0, (r>0).

=

By Lemma 2.6, the general series solution of g-difference FDE <95, u(r) = 0 is
computed as p(r) = éo+é1r+car?+---+_1rt"! viaé,...,é—1 € Rand £ = [¢]+1
[11]. In this case, we get that

(B35 D5 m)(r) = pu(r) + o + e+ Gar® 4 -+ Gy

In the sequel, we take 2 as a Banach space.

Definition 2.7. [18] Let the set O be bounded in 2. The measure of noncompactness
Q due to Kuratowski (KMNC) is presented as

k
QD) :=Inf{e>0: O = | JO; and DIAM(D;) < ¢},
j=1
where
DIAM(9;) = sup{|p — p'| : p, p" € O}
and 0 < Q(O) < DIAM(9D) € [0, 4+00).
Lemma 2.8. [18] Let 9,91,95 C A be bounded sets which belong to A. Then we
have these assertions:

(Ql) ZfDl - DQ, then Q(Dl) < Q(Dg),

(Q2) QUL+ D) < QD) and Q(LO) = [L|QDO) for all L € R;

(93) Q(Dl + Dg) S Q(Dl) + Q(DQ) and Q(Dl U 92) S max{Q(Dl), Q(DQ)},
where D1 + Doy = {,u1 + uaos 1 € Dl,,ug € DQ}.

Lemma 2.9. [23] For every bounded subset O of 2, it is found a countable set Dg of
O such that (D) < 2Q(Dy).
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Lemma 2.10. [18] If © C Cy([a,b]) is equi-continuous and bounded, then Q(O(r))
is continuous on [a,b] and Q(O) = sup,¢[,, AO(7)).

Lemma 2.11. [18] If the set O = {un}n>1 € Ca([a,b]) is countable bounded, then
Q(O(r)) is integrable on [a,b] and

o({ [ ma} ) <2 [ atm@hen .

Definition 2.12. [18] The continuous bounded mapping T, : D C A — 2 is termed
as condensing if Q(T,(9)) < Q(O) for each bounded closed set O C D.

Theorem 2.13. ([18], Sadovskii’s fized-point theorem) Let © C A be conver bounded
closed. Then there is a fized-point in O for the condensing map T, : O — O.

Remark 2.14. We assume these notations for the convenience:

Pona(R) := {B e A Bis bounded.}, Pes(A) = {B e Bis closed.},

Pemp(2) := {B € A| B is compact.}, Peye(A) := {B € A| B is convex. }.

Definition 2.15. [10] The Pompeiu-Hausdorff metric Hy, : P(A) x P(A) — RU{o0}
is presented by

Hgy (B, B2) = Max{Supy, ¢, da (b1, B2), Supy, e 5, dau (B, b2) }
so that dg(B1,b2) = Infy, e, da (b1, b2) and dy (b, B2) = Infy, e, da (b, ba).

Definition 2.16. [10] The multifunction T, : 2 — P(2) is upper semi-continuous
(u.s.c) if for each p € A, T, () € Pus(A) and for every open set U with T, (u) C U,
a neighborhood of p like G exists such that T.(Gg) C U.

We display all selections of T, at point x € Cg([0,1]) by
St = {9 € L&([0,1]) : N(r) € Tu(r, p(r))}, (a-e)r € O =[0,1].

As well as, St , # 0 if DIM(A) < oo in which DIM refers to the dimension of 2
[7, 10].

Definition 2.17. [6] u € 2 is termed as an end-point for T, : A — P(RA) if Ty (u) =
{n}-

Definition 2.18. [6] T. : 2 — P(2) includes an approximate end-point property or
(AE)-property if Infmeglsupmejr*(ul)dﬂ(ﬂl7 uz) = 0.

Theorem 2.19. [6] Let (A, dy) be a complete metric space, 1 : [0,00) — [0,00) be
u.s.c viap(r) < r and imInf,_, o (r—¢(r)) > 0 for allr > 0 and Q. : V = Peis pna(2A)
be such that

Hao (Topir, Tupiz) < p(da(pn, pi2))
for pi, po € A. Then it is found an end-point for T, uniquely iff T, has (AE)-property.
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3. ON THE EXISTENCE PROPERTY

Let 20 = Cr(O) be the space of all real-valued continuous functions on O = [0, 1].
Simply 2 is a Banach space subject to ||ulet = Sup,.co|u(r)| for all members p € 2.
In the first place, we present the following fundamental lemma which presents a
characterization of the configuration of possible solutions for the proposed Cap-g-
difference FBVP (1.1).

Remark 3.1. For convenience, we have nonzero constants:

k k
Q; o
Wi =2-— — Wy =(- R
2T, 71 2T, 79
ul a;(1+q)
Wa = 2 J
3=0 - F(Uj-i-?) ZF O'J—l-l
k k
Bj <2 e ]1+q
Wa= =3 o, Wo = o
;Fq(0j+2) ; Lg(oj +3)°
= (1 +q)
Wr=2(1+g¢q = Ws = WoW, — W W5,
7 ( ;anj—i—l) 8 oWy 1Ws
Wy = WsWy — W1 Wg, Wig = Wg — WolWy, Wiy = W3Wg — WoWy. (31)

Lemma 3.2. Let ¢, € A, ¢ € (2,3), 0 € (1,2), ¢ € (0,1), oj,B5,7; € R”? and
0; >0 for j =1,2,...,k. The solution of the linear Cap-q-difference FBVP

CD5u(r) = ¢u(r), (r€ O, q€(0,1)),

Z Qj ]:5130+N

(3.2)
€D, u(0) + D, 1 Z B8R 304 (1)

C:;®g+ﬂ(0) + 6;9(2) Z%R”gi 0+M(1)]

is displayed as

_ [T =gy O1(r) [ (¢ —qu)V
/j’(r) - /O Fq(g) ¢* (’U) dqv - W1W8 / Fq(g) ¢*(U) dq'U
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Oa(r) [ (C—qu)s—e D o O3(r) [ (=g
+ WS/O T,(s— o) P (v) dgv W1W7W8/ T,(c—2) ¢+(v) dgv

O,(r) <& 1 (1 — qu)(stoi—D)
P s, [

WlWSj 1 Fq(§+0])
Oa(r) /1 (1 —qu)letos—b
— | ——————————¢.(v)dyv
Ws ;B] 0 Lq(s +05) P (0] dg
(1— qv Y(stoi=3)
W1W7W8 Z / o) dgy (3.3)

where

O1(r) = rWiWy+Wig, Oa(r) = rWi —Wa, O3(r) = W Wy —rW Wy — Wi, (3.4)
and W; are characterized in (3.1).

Proof. Let p satisfies the linear Cap-g-difference FBVP (3.2). Then C;@B+u(r) =

#«(r). By virtue of ¢ € (2,3) and taking ¢‘"-RL-g-integral, we reach

1 s
wulr) = 3 / (r— qv)(<_1)¢*(v) dgv + & + &1 + éor?, (3.5)
0

Ty(s)

in which ¢g, ¢1,¢2 € R are unknown coefficients that we have to explore them. It is
immediately computed that

1 " _ ~
D5 nlr) = 7 <<—5>/ (r = qv) Vg (v) dgv + &(1 + @), (3.6)
q 0
1 " 2
C o . (s—o0—1) ~ 2—p
Y 7/ r—qu 0« (v)dgv + Co =———1"7C 3.7
o+hlr) = o= 0) 0( ) (v)dg T 30 (3.7)
R () = ——— /r(r — )G, () dgy + Gy
0 Lo(s+05) Jo ! Lg(o;+1)
~ 1 _ . 1+g¢ v
. S — oj+1 + 0']+2’ 3.8
VGRS el (35
Rjoi [c ©2+M(7’)} _ ; /T(r B qv)(wajfs)(z)*(v)d v+ 62£T0
ot ba™o Lo(s+0;—2) Jo ! Lq(o;+1)
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By considering the constants Wi, ..., Wi given by (3.1) and by virtue the given
boundary conditions implemented on (3.6)-(3.9) and by some straightforward com-
putations, we get the coeflicients

(s+o;—1)

~ W2 (1—qu)
Z ﬁj / §—+CT])¢* (U) dqv

szllﬂofg Z / (1- qz I:’_l) . (v) dgv
_LZQ%/<@3€2ﬁ”¢4mdw (3.10)
+ leg};% / C (CF_qév)(;_)g) $=(v) dgv

W11 1 — qU §+UJ 3)
d
T W 4 Z / Tyt o, 2y W) dw

and

(1-— <+a7 1)
. Z%/ qv—(b*(v)dqv

o(s+0j)

W [ (C—qu)Y
Wg/ Fq(g) @x(v) dqv

Wl/ (S

MTA Fq(g—g)

W b« (v) dgv

- m (1 — qu)(stoi=1)
25]/ g—+03)¢>*(v) dgv (3.11)

Wo 6 (- a)sY
+ AT / T —2) ¢« (v) dgu

k

Wy /1 (1 —qu)tetos—?)
- ; . (v)dv
W7W8;% ) Tols 1oy ) )
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and

k
(1—qu)to? R A Dl
z; /0 1o =2 b (v) dgv — W7/0 T~ 2) ¢+ (v) dg.

(3.12)

By inserting (3.10), (3.11) and (3.12) into (3.5), we derive equation (3.3) which is the
same desired g-integral solution of the linear Cap-g-difference FBVP (3.2). O

In the first phase, we use the notion of KMNC to establish a novel criterion of
the existence property for the Cap-g-difference FBVP (1.1) by terms of the afore-
said inequalities in the previous section. Before proceeding it, consider the following
estimates:

Sup,c|01(r)| = Sup,.co ([rWiWa| + [Wio|) = [WiWy| + [Whel := ©] > 0,
Sup,.co|O2(r)| = Sup,co ([rWil + [Wal) = [Wi| 4 [Wa| := 05 > 0,
Sup,c|03(r)| = Sup,co (IrP*WiWs| + [rW1Wo| 4 [Wi1])

= |[W 1 Wg| + |[W1Wy| + |Wq1| := O3 > 0.

Theorem 3.3. Consider the following assertions on the continuous mapping defined
by T : O x A — R:

(1) p € C(O,R") exists such that
T (r ()| < p(r), (r € O, e A (3.13)
(2) fr.: O — RT emists so that
Q (T (r,0)) < f5.(NQD), (re0), (3.14)
for each bounded set D C 2.
Then, the given Cap-g-difference FBVP (1.1) includes a solution on O if

fx. (W1 W3] + ©75¢°) fz.05¢¢ fz.05¢72
[W1Ws|ly(s +1) WslTy(c—o+1)  [WilW7Wg|Ty(c — 1)

k

f$*9* Z fs* Z
|W1W8| §—|-GJ—|-1 |Ws = C—&—oy 1)

~ « k
f‘I*93 Vi 1

+ < -
|W1W7W8| (§ +o0; — 1) 4’

(3.15)

where fz. = Sup,.colfz. ()|
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Proof. Regarding to the nonlinear multi-order Cap-g-difference FBVP (1.1) and by
Lemma 3.2, we display 9B : E. — E. by

" (r—qu)sh
B(p)(r) = /0 (I’Z(Z)(S* (v,,u(v)) dgv

o) [ ) e
0

WiWs Ly(s)
Oa(r) [ (¢ —qu)s—e~V
- Wy /0 Ly(sc—0) T (o t(0) dgv

0s(1r) /< €= a)* D () dgo

C WAWr W T,(s —2)

k
1 — qv)(§+0J71)
—‘3:* , d
B Y R e CHOLE

et ¢ (1 — go)fs+oi-D
Z: / (g n O'J) Ts (U,,u(v)) dqv

(1 —qv) §+UJ 3)
d 1
W1W7W8 Z / J(s+0;—2) T g (0 (v) dgo, (3.16)

where E. := {u € A: ||ulla <&, e € Ry} is convex, closed and bounded and ©;(r)
and W; are displayed in (3.4) and (3.1). In such a situation, the supposed Cap-g-
difference FBVP (1.1) is corresponding to the fixed-point problem By = p and we
need to confirm that % includes a fixed point, because the existence of fixed-point
for B will ensures the existence of solution for the supposed Cap-g-difference FBVP
(1.1). To validate Theorem 2.13, we check the continuity of B on E.. Let {s,}n>1
be contained in E. via p,, — p for g € E.. Due to the continuity of T, on O x A, we
have nl;rrgo To(r, pn(r)) = Tu(r, u(r)). So the dominated convergence theorem due to

Lebesgue gives

" (r—qu)©
lim (Bpy,)(r) :/0 =g lim T, (v, gy (v)) dgo

n— oo
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STy g St
WiW, Wy

Ie(c—2) nlggo T (v, pin(v)) dgv

k
1 — qu (<+‘71_1) .
Wg; / iy )

k 1 — qv (§+‘7]_1)

lim %, (v, un(v)) dqv

g —+ (TJ n—00

1 — qv (<+UJ_3)
1. * ) n
W1W7W8 Z / s +o;— T,c+o,—-2) nl_)II;o‘Z (v, (V) dgv

= (Bu)(r)

for any 7 € O. Hence, lim, o0 (Bpn)(r) = (Bp)(r) and thus B € C(E.,E.). Now,
to check the uniform boundedness of B on E., let p € E.. By (3.13), we have the
estimates

T (s—1)
@i < [ g ) do
|@1 —QU)(C 2
* W1w8|/ T o eu@)]de
@ _ (< o—1)
|V2V8 I/ qu@ T (v, u(v)) | dgo
105(7) c qv )3

\W1W7W8\ q(s —2) (v, p(0)) | dgv

_1©s(r)] / (1 —qu)lstoi=s) )(staoi=
‘W1W7Wg‘ Z §+Ug |S (U N )|d v
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*Cg o
Wally(s — o+ )"

<) 4 e
ST+ 1P WiWsTy(s + 1)

p(r) + p(r)

*Cg 2 @* v Oé]
A A plr) + [W1Ws| ; Lg(c+o;+1) plr)

k

G B
|W8|ZF(§+0'J+1) () |W1W7W8|ZF §+O'J—1) ()

for all r € O. Consequently, ||Bul|la < Ap* < oo, where

(Wi Ws| + ©3¢° 05¢°° 50472

A= .
(W1 Ws|Tg (<+ 1) - [Wsllg(c — o+ 1) |W1W7W8|F (c—1)

|W1W8|ZF +0']+1 \W8|ZF +JJ )

3.17
|W1W7W8|ZF Gt (3.17)

This guarantees the uniform boundedness of B(E.) in 2. Next, we follow the proof
by establishing the equi-continuity of 8. Take r1,7 € O via r; < r9 and p € E..

Then, by letting sup, ,\coxa2 |Zu(r, )| = T, > 0, we get that

(Bu)(ra) — (Bpr)(m)] < —

- S __ S 2 _ S
|*Fq(<+1)(‘r2 il 2y =)

T,101(r2) — O1(r1)|¢¢ N T.|02(r2) — O(ry)|¢s°
[WiWs|ly(s + 1) [Ws|Tg(c —o+1)

T,|05(r2) — O3(r1)|¢ 2
|W1W7W8|Fq(§ — 1)

T,|01(r2) — O1(r1))| 3 o
(W1 Ws| = Tylc+o;+1)

k
B;
:1Fq §+U]+1)

T.|O2(ra) — Oa(r1)]
|Wsl .

T.|Os(r2) — O3(r1)]
|Wi W Ws|

3.18
':1Fq§+0.]_1) ( )

<
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We figure out that as 71 — 75, (3.18) goes to zero (not depending on p € E.) and
[(Bu)(r2) — (Bu)(r1)||la — 0 and B is equi-continuous. Accordingly, the Arzela-
Ascoli criterion gives the complete continuity of 8 and thus the compactness of it on
E..

In the following, we check that B is condensing on E.. In view of Lemma 2.9,
for each bounded set O C E., there is a countable set D¢ = {pn}n>1 C O provided
that Q(B(O)) < 2Q(B(Oy)). By virtue of Lemmas 2.8, 2.10 and 2.11, the following
inequalities are valid:

QB(O(r))) < 2UB({pn}n>1))

- 2/OT MQ (Tu(v, {pn(v) tn>1)) dgv

Ly(<)
2‘@ | (§ 1)
|W1 Wg / Q (I* (Uv {/j,n('l))}n21)) dq'U
2‘92 | (s—o-1)
|W8 / § — Q & (‘I*(’U, {““(U)}nzﬂ) dq’U
2|©3(r

_ v (c 3)
|W1W7Ws|/ q Q(‘I*(v,{un(v)}n21)) dgv

2\@ )| (1= qu)(s+oi=D)
Q * Ll n n d
|W1W8 Jz:: / q(s +0j) (Tu(v, {10 (V) }n21)) dgv

k — gv)(stoi—1)
2\@2 Z / LQ(T*(M{M(W}@Q) dgv

(§ + O’j)
2|05( v) (o3 =3)
|W1V?/7W8| Z / q(s + o; —2) Tcto =2 &k ©)}n1)) dgv

T (r— quv)s—D
< [ e ()} e

NG
|W1W8

— ’U (c 1)
)| / q Fe. ()2 ptn (v) }nz1) dgv

— qv) (c o—1)
L Ao I/ g fr. (0)Q{pn(0)}nz1) dgo

|Wsl (s —0)
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|VZIL/|16143/7W8|/ _ZU_Q f L()Q{pn(v) fn>1) dgv

4|@1 )| / (1 — qu)stoi=1)
Q{pn(v) }nx1)d
|W1W8 jzzj (s +0j) S ()Q{pn (V) }n>1) dgu

k 1 (s+o;—1)
Aot Z /()Jrfz*(U)Q({ﬂn(U)}nN)dq”

s+0j)

4|03( — qu)(stoi=3)
|W|1W3/7W8| Z / : cqi o; —2) Fe W)Q{pn (0)}nz1) dgv

Afz, (F[WiWs| + ©3¢) QD) 4fx, 03¢5 2Q(D)
- [WiWs|ly(s + 1) |Ws|Ty(s — o0+ 1)

4f5.03¢%Q(9D)
|W1W7W8|Fq(§ — 1)

4fz ©1Q(D) Xk: a; 4= 030D Zk:
(WiWs| = Ty(c + 05 +1) Wsl =Ty <+UJ+1)
k
‘W1W7W8 = Fq §+O'j - 1)
Hence,
£ W+ W- O*(S ; * FC—0 ¢ *r6—2
Q) < 4| = MWel +01C) | 5,05 VENCHS
[WiWs|Dg(c + 1) Wsllg(c —o+1)  [WiWrWs|Tg(c — 1)
k
f=. 65 f‘I*ez
|VV1VV8|Z §+O'J+1 |Wg Jz:: §+O'j )
k

QD).

f=.03 Z
|W1W7W8 ) § + O'J — 1)
Then, the condition (3.15) yields Q(B(9)) < Q(9O) and therefore B is condensing on
E.. By resorting to Theorem 2.13, it is figured out that the operator B includes a
fixed-point belonging to E. which is referred to a solution for the nonlinear multi-order
Cap-g-difference FBVP (1.1). O
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Example 3.4. Based on the supposed multi-order Cap-g-difference FBVP (1.1), con-
sider

—r

0 4©0+ p(r) = 36000 sin(p(r)),

1(0) + 12(0.01) Za] 0 4J0 (1
(3.19)
4©0+ 1(0) + < 4©0+M (0.01) Zﬂg 0. 4"§iu

04054 1(0) + G.4DF, 11(0.01) Z’Ya 0.430% (0425 n(1)],

where ¢ = 2.5, ¢ = 04, o =15, ( =001, k = 3, 01 = 0.2, 05 = 0.4, 03 = 0.6,
a; = 0.02, ap = 0.04, a3 = 0.06, 31 = 0.01, 3, = 0.03, B3 = 0.05, v1 = 0.07,
v2 =0.08, v3 = 0.09 and r € O = [0, 1]. Also,

Wy = 1.8718, Wy = —0.0946, W3 = —0.0981, W, = —0.0961,
Ws = —0.0773, Ws = 0.1421, W; = 2.44198, Wg = 0.1536,
Wy = —0.2565, Wig = 0.1446, W1, = —0.0392,

O] = 0.3244, ©; = 1.9664, O3 = 0.8068.

Define ¥, : O x R — R by

T

T (r,u(r)) = 36000 sin(u(r)).

For every p € R, we have

- -r

T (r, ()] < 55551 )] < 5555

=p(r),

—’I‘

where p € C(O,R™) is displayed by p(r) = 3000° As well as, for each pui, e € R, we

have

e (1 (7)) = T pa0)] £ o [ sinGa (7)) = sin(pa ()|

— p2(2)].

<
- 3000
Accordingly, for every bounded set 9 C R, we get

—’I‘

(T.(1,9)) < £5-9(9) = f. (VD)
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such that fg. = sup,.co | fz. ()] = 0.0003333. In view of above data, we obtain

fr(IWiWs| +07¢) | fri@5¢7e | fr e3¢
(WiWs[Ta(c+1)  [Wslly(c —e+1)  [WalW7Ws|Ty(s — 1)

fz o1 zk: ffs 03 Z
\W1W8| §+Uj+1 \Ws = §—|—0]—|—1)

A k
JEACH V;

+
‘W1W7WS‘ (§+O'] —1)

~ (0.00056634 < i
As the condition (3.15) occurs, so Theorem 3.3 is fulfilled which implies that it is
found a solution for the multi-order Cap-g-difference FBVP (3.19).

In the current position, we continue our investigation to derive the existence prop-
erty for the generalized nonlinear multi-order Cap-g-difference inclusion FBVP (1.2)
displayed by

CD5u(r) € Tu(r, u(r)), (s € (2,3), g €(0,1)),
ZO‘JRQNS-J%—,L" ) (aj € R>0)7
(3.20)
08 1(0) + D8, u(Q) Z@TOW , (B; €R™Y),

D2 1(0) + D% p(Q) Z%R“’J (D8 n(1)], (; € R™),

so that r € O = [0,1], ¢ € (0,1), o € (1,2), and for j = 1,2,...,k, o; > 0 and
T, : O xR — P(R) is a multifunction. The notions of the (AE)-property and end-
points are key tools in this step.

Definition 3.5. The function p € AC(O,R) is termed as a solution for the multi-
order Cap-g-difference inclusion FBVP (3.20) if there is 91 € £(O,R) subject to
N(r) € Tu(r, u(r)) for almost all r € O satisfying the g-boundary conditions in (3.20)
and

= qu)sY 01(r) (S (C— qu)sV
u(r) = / g - ] / P ) dyo

Oa(r) [* (¢ —gqv) eV TGO N AR ()
’ Ws /0 Ly(c—0) U)o W1W7W8/ Ly(c—2) Mv)dyv
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k 1 -1
O1( / (1 —qu)tete—t
+ : d
Wi Ws gaj 0 Ly(s+0y) v)dgv
k _ qu)(s+oi—D)
(1= gu)™™ v) dgv
- Ly(c+ay)
(1 — qu)(stoi= 3)m d
W1W7W8 Z / (s +o;—2) (v) dgv
for all r € O.
We introduce all selections of T, for each u € 2 by
St ={MN e LYO): N(r) € Tulr, u(r))}
for almost all » € O. Also consider the multifunction X : 2 — P(2A)
X(p)={reA:r(r)=2Lr)} (3.21)
in which

[ 01(r) [ (¢~ qv)s
E(r)—/o W‘ﬁ(v)dqv— /

TATA T, (v) dqv
Os(r) /< (¢ — qu)ts—eV O3(r) /< (¢ — qu)s=?

+ N — N(v)d
We Jo o Tole—o) W TR T o) ) da
01(r) o /1 (1 — qu)(stoi=1)

: d

N WiWs ; “ 0 Fq(g + UJ) U) e

O (r) L (1 — qu)tstoiD

(1—qu) (<+<f] 3)
d ’
W1W7Wg Z / G+o,-9) ———MN(v) dgv, N € St

Theorem 3.6. Let T, : O X A — Pepp(A) be a multifunction and
(€1) ¢ : [0,00) =

[0,00) be w.s.c increasing via LimInf, (7

—(r)) > 0 and
Y(r) <r for any r > 0;
(€3) T, be integrable bounded subject to Tu(-, ) : O = Pemp(A) is measurabdle for
all peA;

(€3) beC(O,[0,00)) exists so that

Hay (T (7, p1(r)), T (r, p2(r))) < b(r)p([pa(r) — pa(r)))

= —
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for allr € O and p1, p2 € A, where Sup,.co|b(r)| = ||b]| and

T — | IWaiWs| + ©i¢° O5¢°° e3¢~
(WiWs[Ta(c+1) — [WslTy(s —o+1)  [WalWzWs|Ty(s — 1)

" k
o1 a; @2 B;

+
[WAWs) ; T D W & TG h o 7T

bll; 3.22

(€4) X displayed by (3.21) involves (AE)-property.

Then a solution is found for the multi-order Cap-q-difference inclusion FBVP (3.20).

Proof. Our approach in this proof relies on the existence of end-point for the multi-
function X : 2 — P(2) introduced by (3.21). At first, we verify that X(u) is closed
for every p € 2. With due attention to (€3), r — T.(r, u(r)) is a measurable closed
multifunction for each p € 2. Accordingly, T, includes a measurable selection due to
St, u # 0. We claim that X(u) C 2 is closed for every p € . Let (pn)n>1 C X(p)
be provided that p, — p*. For all n, it is found I,, € St, ,, such that

_ [ =)D O1(r) ¢ (C—qv) D
() = / P ) dy - ) / L) dyo

Oa(r) [ (C—qu)eV s [ (g
! Ws/o g n)de W1W7W8/ Il ) () de

k
@ (1 — qu)stoi—h

E —MN,(v)d
VVl”rg = /0 Fq(§+gj) (’U) q’U

E

1 — qv)(<+‘77 _1)

Ly(s+0y)

N, (v) dgv

1 _ qv (<+o] 3)

M (v)dgv, NES
W1W7W82 / Ty(s+0;—2) (v)dgv, NE Sr.

for almost all » € 0. By the compactness of T,, we acquire a subsequence {9, }n>1
approaching to 0N € L1(0).
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We take 0 € St, ,, and thus for any r € O,

N L ot e Ou(r) [ (¢~ )<
nh—{rgo ,U,n(T) - /O Fq(§) m(v) dqv - W1WS / Fq(§) m(v) dqv

Oa(r) [ (¢—qu)seV
+ We /0 T, — o) N(v) dgv

O3(r) [ ((—gqu)
_ 3 /0 T -2 N(v) dgv

r — gu)ctoi—1)
4 91( ) ZajA (1 qu(g)—i_ Uj) ‘)“((v) dq’U

Oa(r) [P (L= gqu)teitY
_ Z Bj -/0 Ty(c+0,) N(v) dgv

]_ — q'U (§+0173)

d
W1W7W8 Z / to; -2 o Mw)dgo, NeE S,

= u(r)

So i € X and X is closed-valued. In the next phase, it is obvious that X(u) is bounded
for each p € 2 due to the compactness of T,. At last, we investigate the inequality

Hao (X(p1), X(p2)) < 9([|p1 — pal])-
Let p1, po € A and y1 € X(p2). Take My € St, ., such that

T (r —qu)sD r C (¢ —qu)sD
yl(T) :/0 ( q ) ml(v)dqv— C_')1( ) / (C q ) ml(’l})dq’l}

Ly(<) WiWs L'y(s)
O2(r) [ (C(—qu)c e 03(r) ¢ (¢—qu)¥
" /o Ty(s — 0) ml(”)dq“_wlwyws/ -2 e

WiWs — (s +0y)
@2(7’) Zﬂ /1 (1 — qv)(§+‘71 1) ( )d
— ; v) d,v
Ws ! 0 Fq(§+03> ' ?
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1 — qv (§+Uj_3)
— M (v)d
W1W7W8 Z / g(s+05—2) (v) dgv

for almost all » € O. Due to

Hag (Tu(z, p11.(r)), Tu (1, p2(r)) < 0(r) (¥ (pa(r) — p2(r)))

= —

for any r € O, there is M* € T, (r, u1(r)) provided

(9 (r) = | < b(r) (¥ (pa(r) — p2(r)))

& =

for a.e. r € O. Further, consider § : O — P(2) displayed by

={M €A M (r) — N <b(r)(W(pa(r) — pa(r))) =1}

& =

As My and w = b(Y(py — Mg))i are measurable, take My (r) € Ty (r, u1(r)) so that

[90(r) = Mo (r)] < b(r) (¥ (pa (r) — pi2(r)))

&H =

for a.e. r € O. Select yo € X(u1) such that

=)D 01(r) (€ (C— qu)V
yalr) = / () g — G / P e gy

Os(r) [¢(C—gqu)©eV O3(r)  [* (=g
' /0 Ly(c—o) Palv)dgv = /

WiW:Ws Jo
- (1 —qu)(stosb)
+ (6] —m v d v
W1W8j; j~/0 Fq(g+0j) 2( ) q

(1 —qu)tstoi—D
05, [ s

No(v) dyv
= 0 Ly(s+0y) 2(0) dg

03(r) / (1 — qu)(stoi=?)
o e (v)d
;% o Tglc+o;-2) 2(0)dov
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for a.e. 7 € O. Therefore, we reach

T (p — gu)s—D
r—qu
|y1(7")*3/2(7")|</0 (F()g)’ml (v)] dgv
A / —qv)(g Y
Mi(v) =N d
|W1W8| I'y() { 1 2(v)| ¢
|92 \/ —qv )se)
Ny(v) —N d
W] (s —0) [l 2(0)] dav
O3( —qv )(s=3)
|V'V1§V7W8| / —[9(0) =~ Ma(o)] g

(1 —qu)lstoi=t) Y(stai—
|W1W8| Z / (s +0j) |‘ﬁ1 = Ma(v)] dgv

|@2 k qu)(s+oi=D)
; / §—+(Tj)|‘ﬁ1(v) f‘ﬂg(v)|dqv

_©s(r)| / (1= qu)tstoi=3)
d
|W1W7W8| Z s +oj {ml ~ Ma(o)] dgo

< |W1W8| + ©3¢° O5¢~¢ n @§<§_2
(WiWs|ly(c+1)  [Wa|Ty(s —o+1)  [WiW:Wg|Ty(c —1)

|W1W8|Z §+GJ+1 \VV8|Z §+aj+1)

|W1W7W8| Z ; —1) Hb||‘t/1(||/~t1 M2||)E

~ 1
= Lap(||pr — Mz”)i =Y(|lp — pe2l))-
This yields llys — yall < (1 — ral) and thus

Haqo (X(p1), X(p2)) < p(llpa — p2ll); ¥ pa, 2 € A

From (€4), we know that X has the (AE)-property. By Theorem 2.19, X possesses an
end-point uniquely; that is

Jp* e Ast. X(p*)={pn"}.
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Consequently, it is found a solution like p* for the multi-order Cap-g-difference inclu-
sion FBVP (3.20). O

Example 3.7. Based on (3.20) and by using the same data given in Example 3.4,
consider

Se” "] sin(pu(r))|
(e’" + 10000)(| sin(p(r))| + 1) |

4®0+ N’( ) Oa

1(0) + 12(0.01) = Zaj L 4J0 (1

(3.23)
00.453(1)'+5M(0) + %.453(1) (0.01) Zﬂg 0. 430+M
3
%.49(2)+M(0) + 00.49(2)+M(0~01) = Z’YjR()Ajgi [00.493+M(1)]7
j=1

where ¢ = 2.5, ¢ = 0.4, o = 1.5, ( = 0.0, k = 3, 01 = 0.2, 05 = 0.4, 03 = 0.6,

= 0.02, ax = 0.04, a3 = 0.06, 57 = 0.01, B> = 0.03, B3 = 0.05, 1, = 0.07,
v2 = 0.08, 73 = 0.09 and r € O = [0,1]. Firstly, construct the Banach space 2 =
{p(r) : p(r) € Cr(0)} via ||pllae = Sup,cpl|p(r)|. Further, define T, : O x A — P(2A)

- 5e 3" sin(p(r))]
T, (r, p(r)) = [0’ 2(e” + 10000) (] sin(u(r))| + 1>}

for all € O. Next, consider the u.s.c increasing mapping % : [0,00) — [0,00) by
P(r) = g for all > 0 such that liminf, . (r —¢(r)) > 0 and ¢(r) < r for all » > 0.
Now, for any g1, e € 2, we have

56737’

Hy, (T* (T, ,ul(r)),’]T* (r, ug(r))> < m

(Isin(p1(r)) — sin(puz(r))[)

5673r

< 2(er + 10000) ([pa(r) = p2(r))

56—37‘

= md’ (Jpa(r) = p2(r)))

< b)) (i (2) — pa(2)])

)

1
L



EXISTENCE PROPERTY OF SOLUTIONS 139

where

o~ :[ W1 Ws| + ©7¢° 03¢ ¢ L S
WiWg|Cy(c+1)  [Wa|Ty(s —o+1)  [WiW:Ws|Ty(c — 1)

Bj
|W1W8|ZF <+0’g 1) |W8\ZT(<+UJ+1)

('“)* K Y

|W1W7W8| Z Fq(< +o;—1)

| bl = 0.0008478938,

5 —3r
and we explore b € C(O,[0,00)) defined by b(r) = e’“fm

evidently ||b|| = Sup,.co|b(r)| ~ 0.0004999. At last, we introduce X : A — P(2() by
X(p) = {k € A : there exists M € St, , s.t. k(r) =4(r),Vr€e O},

for every r. Thus,

where

" (r = 04v)257D ©:(r) /0-01 (0.01 — 0.40)(25-D)
=) e W doav - N(v)d
) /0 [o.4(2.5) (v) dosv 0 To.4(2.5) (v) do.av

+

0.01 _ (2.5-1.5-1)
@2(r)/ (0.01 — 0.4v) (v) do s

0.1536 To.4(2.5— 1.5)

0.01 _ (2.5-3)
O3(r) / (0.01 — 0.4v) N(v) do st

~0.70206 To.4(2.5 —2)

3
(1 —0.4v)@5Fe=1)
N(v)d
+ g / 1’\04 2 5 +O_]) (U) O.4U

w

1 —0. 4’() (2.540;—1)
F04 2 5+0'J)

m(’U) d0_41}

—0. 4’0 (2.540;-3)
N(v)d
0 70206 Z / Toa(5 10, —2) ) doav,

and
O1(r) = —0.1798r + 0.1446, O5(r) = 1.8718r + 0.0946,

O3(r) = 0.2875r% + 0.4801r + 0.0392.

Thus Theorem 3.6 is fulfilled and the multi-order Cap-g-difference inclusion FBVP
(3.23) possesses a solution.



140 S. ETEMAD, M.A. RAGUSA, S. REZAPOUR AND A. ZADA

4. CONCLUSION

In this research work, we considered two generalized structures of the nonlinear
multi-order Caputo ¢-difference FBVPs which involve some special cases as men-
tioned before. By recalling the measure of noncompactness and condensing maps,
we discussed the existence property for solutions of the given Cap-g¢-difference FBVP
(1.1). After that, we implemented a new method on the Cap-g-difference inclusion
FBVP (1.2) to prove the existence of end-points. In fact, by applying the notion of
end-points corresponding to the solutions of the fractional ¢-system (1.2), we ensured
the existence property by means of (AE)-property of the relevant multifunction. As
well as, to see the compatibility of our findings, we provided two separate examples for
both of methods. As g-calculus and existing modelings based on it are applicable in
physics and mechanics particularly, so one can extend different models and numerical
techniques by means of the generalized g-operators for various physical processes in
the next research studies.
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