Fixed Point Theory, 25(2024), No. 1, 111-114 DOI: 10.24193/fpt-ro.2024.1.07 http://www.math.ubbcluj.ro/~nodeacj/sfptcj.html

FURTHER COMMENTS ON A FIXED POINT THEOREM IN THE FRACTAL SPACE

NGUYEN VAN DUNG* AND WUTIPHOL SINTUNAVARAT**

*Faculty of Mathematics Teacher Education, Dong Thap University, Cao Lanh City, Dong Thap Province, Vietnam E-mail: nvdung@dthu.edu.vn

**Department of Mathematics and Statistics, Faculty of Science and Technology, Thammasat University Rangsit Center, Pathum Thani 12120, Thailand E-mail: wutiphol@mathstat.sci.tu.ac.th (Corresponding author)

Abstract. In this paper, we give some further comments to the counterexample and the results of Bisht in [R.K. Bisht, *Comment on: A new fixed point theorem in the fractal space*, Indagationes Mathematicae, **29**(2018), no.2, 819-823.].

Key Words and Phrases: Fixed point, fractal space, orbitally complete. **2020** Mathematics Subject Classification: 47H10, 54H25.

For being convenient, we use the same terminology and the notations as have been utilized in [3]. In [3], Ri utilized the following lemma to prove Theorem 2, which is the main result of [3].

Lemma 1 ([3], Lemma 2.2). Assume that the following conditions hold:

- (1) (X, d) is a complete metric space;
- (2) $\varphi : [0,\infty) \to [0,\infty)$ is a function with $\varphi(0) = 0$, $\varphi(t) < t$ for all t > 0, $\limsup \varphi(s) < t$ for all t > 0;
- (3) $f: X \to X$ is a map such that for all $x, y \in X$,

$$d(f(x), f(y)) \le \varphi(d(x, y)). \tag{1}$$

Then for each $x \in X$, the sequence $\{f^n(x)\}$ is a Cauchy sequence.

Theorem 2 ([3], Theorem 2.1). Assume that all conditions in Lemma 1 hold. Then f has a unique fixed point.

For the applications to the fractal, Ri [3] obtained the fixed point theorem of some generalized contraction in the fractal space. In 2018, Bisht [1] gave a counterexample without giving proper justification to Lemma 1 as follows:

Example 3 ([1], Example 1.2). Let $X = \left\{ \sum_{k=1}^{n} \frac{1}{k} : n = 1, 2, 3, \ldots \right\}$ and d be the usual metric on X. Define $\varphi : [0, \infty) \to [0, \infty)$ and $f : X \to X$ by $\varphi(t) = \frac{t}{1+t}$ for all $t \in [0, \infty)$ and

$$f\left(\sum_{k=1}^{n} \frac{1}{k}\right) = \sum_{k=1}^{n+1} \frac{1}{k}$$

for all n = 1, 2, 3, ... Then we have the following assertions:

(1) f and φ satisfy all the conditions of Lemma 1;

(2) the sequence $\{f^n(x)\}$ is not a Cauchy sequence with x = 1.

Unfortunately, we find that for x = 1 and $y = 1 + \frac{1}{2} + \frac{1}{3}$,

$$d(f(x), f(y)) = d\left(1 + \frac{1}{2}, 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4}\right) = \frac{1}{3} + \frac{1}{4} = \frac{7}{12},$$
$$(d(x, y)) = \varphi\left(d\left(1, 1 + \frac{1}{2} + \frac{1}{3}\right)\right) = \varphi\left(\frac{1}{2} + \frac{1}{3}\right) = \varphi\left(\frac{5}{6}\right) = \frac{\frac{5}{6}}{1 + \frac{5}{6}} = \frac{5}{11}.$$

Then $d(f(x), f(y)) = \frac{7}{12} > \frac{5}{11} = \varphi(d(x, y))$. This proves that the condition (1) of Lemma 1 does not hold. In this case, it is important to note that Condition (1) holds for y = fx only. Then Example 3 is not correct. However, Theorem 2 still holds.

Bisht [1] also improved the result of Ri [3] by employing a proper setting as follows:

Theorem 4 ([1], Theorem 2.1). Let (X, d) be a metric space and $f : X \to X$ be a map. Assume that the following conditions hold:

- (1) (X, d) is an f-orbitally complete metric space;
- (2) there exist $x_0 \in X$ and a function $\varphi_{x_0} : (0, \infty) \to (0, \infty)$ with $\varphi_{x_0}(t) < t$ and $\limsup_{s \to t^+} \varphi_{x_0}(s) < t \text{ for all } t > 0;$
- (3) for all $x, y \in \overline{O(x_0, f)}$ with $x \neq y$,

$$d(f(x), f(y)) \leq \varphi_{x_0} \Big(\max\{d(x, y), ad(x, f(x)) + (1 - a)d(y, f(y)), (1 - a)d(x, f(x)) + ad(y, f(y)) \} \Big),$$
(2)

where $\overline{O(x_0, f)}$ is the closure of

$$O(x_0, f) := \{x_0, fx_0, f^2x_0, f^3x_0, \ldots\}$$

and 0 < a < 1.

Then we have the following assertions:

- (1) the sequence $\{f^n(x_0)\}$ is a Cauchy sequence in X and $\lim_{n \to \infty} f^n(x_0) = z \in X;$
- (2) if f is orbitally continuous at z, then z is a fixed point of f;
- (3) z is the unique fixed point of f in $\overline{O(x_0, f)}$.

Theorem 5 ([1], Theorem 2.3). Theorem 4 is still true if we replace Inequality (2) by the following condition:

$$d(f(x), f(y)) \leq \varphi_{x_0} (\max\{d(x, y), d(x, f(x)), d(y, f(y))\})$$
(3)

φ

for all $x, y \in \overline{O(x_0, f)}$ with $x \neq y$.

We have some comments on Theorem 4 and Theorem 5 as follows.

- (1) Theorem 2 assumes the condition for the complete metric space X while Theorem 4 and Theorem 5 assume the condition for the complete metric space $\overline{O(x_0, f)}$. The calculations are the same. This idea first appeared in [2].
- (2) The function φ is from $[0, \infty)$ to $[0, \infty)$ in Theorem 2 and the function φ_{x_0} is from $(0, \infty)$ to $(0, \infty)$ in Theorem 4 and Theorem 5. Then Inequality (2) and Inequality (3) are for $x \neq y$ to satisfy that φ_{x_0} is not defined at 0.
- (3) The assumption of orbital continuity at z of f in Theorem 4 is redundant. Indeed, from Inequality (2) and $\varphi_{x_0}(t) < t$ for all t > 0, we have

$$\begin{aligned} d(f(x), f(y)) &\leq & \max\{d(x, y), ad(x, f(x)) + (1 - a)d(y, f(y)), \\ & (1 - a)d(x, f(x)) + ad(y, f(y))\} \end{aligned}$$

for all $x, y \in \overline{O(x_0, f)}$. Note that $z \in \overline{O(x_0, f)}$. So we have

$$d(f^{n+1}(x_0), f(z)) \leq \max\{d(f^n(x_0), z), \\ ad(f^n(x_0), f^{n+1}(x_0)) + (1-a)d(z, f(z)), \\ (1-a)d(f^n(x_0), f^{n+1}(x_0)) + ad(z, f(z))\}.$$
(4)

Letting $n \to \infty$ in (4) and using $\lim_{n \to \infty} f^n(x_0) = z$, we have

$$d(z, f(z)) \leq \max\{(1-a)d(z, f(z)), ad(z, d(z))\} \\ = \max\{(1-a), a\}d(z, f(z)).$$
(5)

Note that 0 < a < 1. From (5), we get d(z, f(z)) = 0, that is, z is a fixed point of f.

(4) The assumption of orbital continuity at z of f in Theorem 5 is also redundant. Indeed, if there exists n_0 such that $f^n(x_0) = z$ for all $n \ge n_0$, then z is a fixed point of f. Otherwise, there exists a subsequence $\{f^{k_n}(x_0)\}$ of $\{f^n(x_0)\}$ such that $f^{k_n}(x_0) \ne z$ for all k_n . Moreover, the subsequence can be chosen such that the sequence $\{d(f^{k_n}(x_0), z)\}$ is decreasing to 0. Then, from (3) and $z \in \overline{O(x_0, f)}$, we have

$$d(f^{k_n+1}(x_0), f(z)) \le \varphi_{x_0} \big(\max\{d(f^{k_n}(x_0), z), d(f^{k_n}(x_0), f^{k_n+1}(x_0)), d(z, f(z))\} \big).$$
(6)

Note that the sequence

$$\{\max\{d(f^{k_n}(x_0), z), d(f^{k_n}(x_0), f^{k_n+1}(x_0)), d(z, f(z))\}\}$$

is decreasing to d(z, f(z)). Suppose to the contrary that d(z, f(z)) > 0. Then letting $n \to \infty$ in (6) and using $\limsup_{s \to t^+} \varphi_{x_0}(s) < t$ for all t > 0, we have

$$d(z, f(z)) \le \limsup_{n \to \infty} \varphi_{x_0} \left(\max\{d(f^{k_n}(x_0), z), d(f^{k_n}(x_0), f^{k_n+1}(x_0)), d(z, f(z))\} \right) < d(z, f(z)).$$

This is a contradiction. Therefore, d(z, f(z)) = 0, that is, z is a fixed point of f.

Acknowledgement. This project is funded by National Research Council of Thailand (NRCT) N41A640092.

References

- R.K. Bisht, Comment on: A new fixed point theorem in the fractal space, Indagationes Mathematicae, 29(2018), no. 2, 819-823.
- [2] L.B. Cirić, A generalization of Banach's contraction principle, Proceedings of the American Mathematical Society, 29(1974), 267-273.
- S.I. Ri, A new fixed point theorem in the fractal space, Indagationes Mathematicae, 27(2016), no. 1, 85-93.

Received: May 14, 2022; Accepted: July 20, 2022.