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Abstract. In this paper, we first revise some results and proofs on θ-metric spaces. Next, we

construct an explicit metric to metrize a given θ-metric that gives an affirmative answer to an open

question on the metrization of θ-metric spaces. After that, we use the obtained result to calculate
such metric of known θ-metrics, and reprove a fixed point theorem in θ-metric spaces.
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1. Introduction and preliminaries

There have been many generalized metric spaces to be used in the fixed point
theory [13], [15]. One of the approaches to study such spaces is to metrize the given
generalized metrics [5], [12], [6], [7], [9], [12], [18]. In [19], Som et al. studied the
metrization of certain generalized metric spaces including b-metric spaces, F-metric
spaces, and θ-metric spaces. The author improved upon the metrization results of
An et al. [2] for b-metric spaces, provided two shorter proofs of the metrization of
F-metric spaces [18], and answered partially to Question 1.1 below regarding the
openness of F-open balls in F-metric spaces.

Question 1.1 ([3], Open problem 2.6). Is every open ball an F-open set in F-metric
spaces?

Actually, Question 1.1 was answered negatively in [10, Examples 5-6]. Moreover,
there is a closed ball in an F-metric space that is not F-closed in [10, Example 5].

The authors also posed the following question.

Question 1.2 ([19], Open question on page 271). (1) Can an explicit metric be
constructed with respect to which the given b-metric space with coefficient κ
is metrizable?

(2) Can an explicit metric be constructed with respect to which the given θ-metric
space is metrizable?
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100 NGUYEN VAN DUNG

Also, Question 1.2.(1) was answered affirmatively so that there has been an explicit
metric to metrize the b-metric spaces, for example see [1, Theorem I] and [16, Propo-
sition on page 4308]. One shows that the class of b-metrics and that of θ-metrics are
distinct. There also exists a b-metric that is not an F-metric [11, Proposition 2.1],
and there exists an F-metric that is not a b-metric [11, Remark 2.2].

In [14, Definition 15], the authors defined the open ball B(x, r) in the θ-metric space
with r ∈ Imθ. The assumption r ∈ Imθ has been used to prove [14, Lemma 16] that
each open ball is an open set in the θ-metric space. However, with this assumption,
the open ball B(x, 1

n ) does not exist if 1
n 6∈ Imθ. So [14, Lemma 18] which states that

the family {B(x, 1
n ) : n ∈ N} is a countably local base at x needs to be revised.

Note that every B-action θ is only assumed to be continuous in each variable, see
Definition 1.3.(2) below. However, in the proof of [14, Theorem 26], the authors used
the continuity of θ at (0, 0) to prove the inequality (21) therein. Also, in the proof
of [19, Theorem 3.8], the authors confirmed that the B-action θ is continuous at the
point (0, 0) by using the unproved claim lim

n→∞
θ(sn, tn) = 0 as lim

n→∞
(sn, tn) = (0, 0). It

implies that we have to prove again the continuity of the B-action θ at (0, 0).
In this paper, we first prove a revision for [14, Lemma 16] and prove that every

B-action θ is continuous at (0, 0). Next, motivated by Frink’s technique [8], we
construct an explicit metric from a given θ-metric that gives an affirmative answer
to Question 1.2.(2) above. After that, we use the obtained result to calculate such
metrics for known θ-metrics, and reprove a fixed point theorem in θ-metric spaces.

Now, we recall the notions and properties which will be useful later.

Definition 1.3 ([14], Definition 4). Let θ : [0,∞) × [0,∞) → [0,∞) be a function
such that for all s, t, u, v ∈ [0,∞),

(1) θ is continuous with respect to each variable.
(2) θ(0, 0) = 0.
(3) θ(s, t) = θ(t, s).
(4) θ(u, v) < θ(s, t) if either u ≤ s and v < t or u < s and v ≤ t.
(5) For each m ∈ Imθ and each t ∈ [0,m], there exists s ∈ [0,m] such that

θ(s, t) = m, where Imθ = {θ(s, t) : s, t ≥ 0}.
(6) θ(s, 0) ≤ s for all s > 0.

Then θ is called a B-action.

Definition 1.4 ([14], Definition 11). Let X be a non-empty set and the function
d : X ×X → [0,∞) and the B-action θ satisfying the following for all x, y, z ∈ X,

(1) d(x, y) = 0 if and only if x = y.
(2) d(x, y) = d(y, x).
(3) d(x, z) ≤ θ(d(x, y), d(y, z)).

Then d is called a θ-metric on X with respect to the B-action θ and (X, d, θ) is called
a θ-metric space.

For other notions and properties of θ-metric spaces, the reader may refer to [4],
[14], [17] and the references therein.
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2. Main results

First, we prove a revision for [14, Lemma 18] as follows.

Proposition 2.1. Suppose that (X, d, θ) is a θ-metric space. Then for every x ∈ X,
the family {B(x, θ(0, 1

n )) : n ∈ N} is a local base at x, and the topological space
(X, d, θ) is first countable.

Proof. Let r ∈ Imθ and r > 0. Then there exists n such that 1
n ≤ r. It follows

from Definition 1.3.(5) that there exists sn ∈ [0, r] such that θ(sn,
1
n ) = r. By Defini-

tion 1.3.(4) we have

θ

(
0,

1

n

)
< θ

(
sn,

1

n

)
= r.

This proves that B(x, θ(0, 1
n )) ⊂ B(x, r). So the family {B(x, θ(0, 1

n )) : n ∈ N} is a
local base at x. Since this family is countable, the topological space (X, d, θ) is first
countable. �

Next, we prove that every B-action is continuous at (0, 0).

Proposition 2.2. Suppose that θ is a B-action. Then θ is continuous at (0, 0).

Proof. Let lim
n→∞

(sn, tn) = (0, 0) in [0,∞) × [0,∞). If there exists n0 ∈ N such that

sn = 0 for all n ≥ n0, then, for all n ≥ n0,

0 ≤ θ(sn, tn) = θ(0, tn) ≤ tn.

It implies that lim
n→∞

θ(sn, tn) = 0 = θ(0, 0).

Similarly, if there exists n0 ∈ N such that tn = 0 for all n ≥ n0, then we also have

lim
n→∞

θ(sn, tn) = 0 = θ(0, 0).

Now, we can suppose that both of sets {n ∈ N : sn > 0} and {n ∈ N : tn > 0} are
infinite. Let ε > 0. Then θ(0, ε) > θ(0, 0) > 0. Since lim

n→∞
tn = 0, there exists n0 such

that 0 < tn0
< θ(0, ε) ≤ ε. Let rn0

∈ [0, θ(0, ε)) be such that θ(rn0
, tn0

) = θ(0, ε). If
rn0

= 0, then

θ(rn0
, tn0

) = θ(0, tn0
) ≤ tn0

< θ(0, ε).

It is a contradiction. So we have rn0 > 0. Since lim
n→∞

(sn, tn) = (0, 0), there exists

n1 > n0 such that sn < rn0
and tn < tn0

for all n ≥ n1. Then

θ(rn, tn) ≤ θ(rn0 , tn0) = θ(0, ε) ≤ ε

for all n ≥ n1. This proves that lim
n→∞

θ(rn, tn) = 0 = θ(0, 0).

The above arguments show lim
n→∞

θ(sn, tn) = 0 = θ(0, 0), that is, θ is continuous

at (0, 0). �

Remark 2.3. (1) Proposition 2.1 and Proposition 2.2 ensure that [14, Theo-
rems 20, 21, 27] still hold but B(x, 1

n ) in their proofs has to be replaced by

B(x, θ(0, 1
n )).
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(2) It follows from Definition 1.3.(1) that the B-action is continuous with respect
to each variable. However, known examples of B-actions in the literature
are continuous in both variables. It still remains open that there exists a
non-continuous B-action or not.

Now, we construct an explicit metric from a given θ-metric with respect to which
the θ-metric space is metrizable. This result gives an affirmative answer to Ques-
tion 1.2.(2).

Theorem 2.4. Suppose that (X, d, θ) is a θ-metric space. Then

(1) For each ε ≥ 0, there exists sε ∈ [0, θ(0, ε)] such that

θ(sε, θ(0, ε)) = θ(0, ε). (2.1)

(2) If for all ε ≥ 0,

ψ(ε) =

{
ε
3 if sε = 0

min{ ε3 , sε} if sε > 0

and for all x, y ∈ X,

D(x, y) = D(y, x) =


0 if x = y

1 if d(x, y) ≥ 1
1
2n if ψn−1(1) > d(x, y) ≥ ψn(1), n ∈ N

(2.2)

then the formula

δ(x, y) = inf
{ n∑
i=0

D(xi, xi+1) : x0 = x, x1, . . . , xn, xn+1 = y ∈ X,n ∈ N
}

(2.3)

defines a metric on X, and for all x, y ∈ X,

D(x, y)

4
≤ δ(x, y) ≤ D(x, y). (2.4)

(3) If D is a metric, then δ = D.
(4) The θ-metric space (X, d, θ) is metrizable by metric δ.
(5) The θ-metric space (X, d, θ) is complete if and only if the metric space (X, δ)

is complete.

Proof. (1). For each ε ≥ 0, we have θ(0, ε) ∈ Imθ. By Definition 1.3.(5), there exists
sε ∈ [0, θ(0, ε)] such that

θ(sε, θ(0, ε)) = θ(0, ε).

(2). For each ε > 0, we have 0 < ψ(ε) ≤ ε
3 <

ε
2 . Then for all n,

0 < ψn(1) = ψ(ψn−1(1)) <
ψn−1(1)

2
< · · · < ψ(1)

2n−1
<

1

2n
·

So we get
lim
n→∞

ψn(1) = 0. (2.5)

We also have

ψn+1(1) = ψ(ψn(1)) <
ψn(1)

2
< ψn(1).
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Then the sequence {ψn(1)} is strictly decreasing. It implies that the formula (2.2) is
well-defined and so the formula (2.3) is.

Let x, y, z ∈ X and ε > 0. We prove that if D(x, z) < ε and D(z, y) < ε, then
D(x, y) < 2ε. On the contrary, suppose that there exist ε0 > 0 and x0, y0, z0 ∈ X
with D(x0, z0) < ε0, D(z0, y0) < ε0 and D(x0, y0) ≥ 2ε0. Since D(x0, y0) ≤ 1, we
have ε0 ≤ 1

2 . Then there exists m0 such that 1
2m0+1 < ε0 ≤ 1

2m0
. Since D(x0, z0) < ε0

and D(y0, z0) < ε0, we have D(x0, z0) < 1
2m0

and D(y0, z0) < 1
2m0

. By using (2.2) we
get d(x0, z0) < ψm0(1) and d(y0, z0) < ψm0(1). So, by the definition of ψ, we have

d(x0, z0) < ψm0(1) = ψ(ψm0−1(1)) ≤ sψm0−1(1)

d(y0, z0) < ψm0(1) = ψ(ψm0−1(1)) ≤ sψm0−1(1).

By using Definition 1.3.(4) and (2.1) we get

d(x0, y0) ≤ θ(d(x0, z0), d(y0, z0)) < θ(sψm0−1(1), sψm0−1(1))

≤ θ(sψm0−1(1), θ(0, ψ
m0−1(1))) = θ(0, ψm0−1(1)) ≤ ψm0−1(1).

So d(x0, y0) < ψm0−1(1). By using (2.2) again we get D(x0, y0) ≤ 1
2m0

< 2ε0. It is a
contradiction.
So, if D(x, z) < ε and D(z, y) < ε, then D(x, y) < 2ε.
In particular, for x 6= y and z ∈ X, we have D(x, z) < max{D(x, z), D(y, z)} and
D(y, z) < max{D(x, z), D(y, z)}. So we get

D(x, y) < 2 max{D(x, z), D(y, z)}. (2.6)

We shall prove that

D(x, y) ≤ 2D(x, x1) + 4

n−1∑
i=1

D(xi, xi+1) + 2D(xn, y) (2.7)

for all x = x0, x1, . . . , xn, xn+1 = y ∈ X and n = 0, 1, 2, . . . , where
n−1∑
i=1

D(xi, xi+1) = 0

for the cases n = 0 and n = 1.
If x = y, then (2.7) holds. Let x 6= y. Suppose to the contrary that (2.7) is false.
Then there exist n0 and x0 = x00, x

0
1, . . . , x

0
n, x

0
n0+1 = y0 ∈ X such that

D(x0, y0) > 2D(x0, x01) + 4

n0−1∑
i=1

D(x0i , x
0
i+1) + 2D(x0n0

, y0). (2.8)

It follows from (2.6) that n0 ≥ 2. We suppose that n0 is possible smallest, that is, for
all n < n0 we have

D(x, y) ≤ 2D(x, x1) + 4

n−1∑
i=1

D(xi, xi+1) + 2D(xn, y) (2.9)

For any i = 1, . . . , n0, if D(x0, y0) > 2D(x0, x0i ) and D(x0, y0) > 2D(x0i , y
0), then

from (2.6) we get

D(x0, y0) > 2 max{D(x0, x0i ), D(x0i , y
0)} ≥ D(x0, y0).
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It is a contradiction. So either

D(x0, y0) ≤ 2D(x0, x0i ) (2.10)

or

D(x0, y0) ≤ 2D(x0i , y
0). (2.11)

If i = 1 then from (2.8) we see that (2.10) does not hold. So (2.11) holds. It also
follows from(2.8) that (2.11) does not hold for i = n0. Put

i0 = max{i = 1, . . . , n0 − 1 : D(x0, y0) ≤ 2D(x0i , y
0)}.

Then i0 ≤ n0 − 1 and we have

D(x0, y0) ≤ 2D(x0i0 , y
0) (2.12)

D(x0, y0) > 2D(x0i0+1, y
0). (2.13)

It follows from (2.13) and (2.6) that

D(x0, y0) ≤ 2D(x0, x0i0+1). (2.14)

Note that i0 < n0 and n0−1− i0 < n0. By using (2.9) for n = i0 and n = n0−1− i0,
we get

D(x0, x0i0+1) ≤ 2D(x0, x01) + 4

i0−1∑
i=1

D(x0i , x
0
i+1) + 2D(x0i0 , x

0
i0+1) (2.15)

and

D(x0i0 , y
0) ≤ 2D(x0i0 , x

0
i0+1) + 4

n0−1∑
i=i0+1

D(x0i , x
0
i+1) + 2D(xn0

, y0). (2.16)

It follows from (2.12), (2.14), (2.15) and (2.16) that

D(x0, y0) ≤ 2 min{D(x0, x0i0+1), D(x0i0 , y
0)}

≤ D(x0, x0i0+1) +D(x0i0 , y
0)

≤ 2D(x0, x01) + 4

i0−1∑
i=1

D(x0i , x
0
i+1) + 2D(x0i0 , x

0
i0+1)

+2D(x0i0 , x
0
i0+1) + 4

n0−1∑
i=i0+1

D(x0i , x
0
i+1) + 2D(xn0

, y0)

= 2D(x0, x01) + 4

n0−1∑
i=1

D(x0i , x
0
i+1) + 2D(x0n0

, y0).

It is a contradiction to (2.8). So (2.7) also holds for the case x 6= y.
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Now (2.7) holds for all x = x0, x1, . . . , xn, xn+1 = y ∈ X and n = 0, 1, 2, . . . , where
n−1∑
i=1

D(xi, xi+1) = 0 for the cases n = 0 and n = 1. Then

D(x, y) ≤ 2D(x, x1) + 4

n−1∑
i=1

D(xi, xi+1) + 2D(xn, y)

≤ 4

n∑
i=0

D(xi, xi+1) (2.17)

for all x = x0, x1, . . . , xn, xn+1 = y ∈ X. This proves that

D(x, y) ≤ 4δ(x, y). (2.18)

For all x, y, z ∈ X, we have δ(x, y) ≥ 0, δ(x, y) = δ(y, x) and

δ(x, y) ≤ D(x, y). (2.19)

From (2.18) and (2.19) we get

D(x, y)

4
≤ δ(x, y) ≤ D(x, y). (2.20)

So (2.4) holds. Moreover, (2.20) also shows that δ(x, y) = 0 if and only if D(x, y) = 0,
that is, x = y.

Now, we prove that for all x, y, z ∈ X,

δ(x, y) ≤ δ(x, z) + δ(z, y). (2.21)

Indeed, for all ε > 0, it follows from (2.3) that there exist x = x0, x1, . . . , xk, xk+1 = z
and z = xk+1, xk+2, . . . , xn, xn+1 = y such that

k∑
i=0

D(xi, xi+1) < δ(x, z) +
ε

2

and
n−k−1∑
j=0

D(xk+1+j , xk+1+j+1) < δ(z, y) +
ε

2
.

Then we get

δ(x, y) ≤
n∑
i=0

D(xi, xi+1)

=

k∑
i=0

D(xi, xi+1) +

n−k−1∑
j=0

D(xk+1+j , xk+1+j+1)

< δ(x, z) +
ε

2
+ δ(z, y) +

ε

2
= δ(x, z) + δ(z, y) + ε. (2.22)

Taking the limit as ε→ 0+ in (2.22) we get

δ(x, y) ≤ δ(x, z) + δ(z, y).
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So δ defines a metric on X.
(3). If D is a metric, then

D(x, y) ≤
n∑
i=0

D(xi, xi+1)

for all x = x0, x1, . . . , xn, xn+1 = y ∈ X. It implies that D(x, y) ≤ δ(x, y). By
combining with (2.19) we get δ = D.

(4). One shows that every θ-metric space is metrizalbe [14, Theorem 26] or [19,
Theorem 3.8]. So, to prove the θ-metric space (X, d, θ) is metrizable by metric δ, we
need only to prove that:

lim
n→∞

xn = x in (X, d, θ) if and only if lim
n→∞

xn = x in (X, δ).

By using (2.4), we have
lim
n→∞

xn = x in (X, δ) if and only if lim
n→∞

xn = x in (X,D).

So we need only to prove that
lim
n→∞

xn = x in (X, d, θ) if and only if lim
n→∞

xn = x in (X,D),

that is,
lim
n→∞

d(xn, x) = 0 if and only if lim
n→∞

D(xn, x) = 0.

Indeed, let lim
n→∞

d(xn, x) = 0. For each ε > 0, there exists n1 such that 1
2n1

< ε.

Since lim
n→∞

d(xn, x) = 0, there exists n2 such that d(xn, x) < ψn1(1) for all n ≥
n2. By using (2.2) we get D(xn, x) < 1

2n1
< ε for all n ≥ n2. This proves that

lim
n→∞

D(xn, x) = 0.

Now, let lim
n→∞

D(xn, x) = 0. For each ε > 0, by using (2.5) there exists n3 such

that ψn3(1) < ε. Since lim
n→∞

D(xn, x) = 0, there exists n4 such that D(xn, x) < 1
2n3

for all n ≥ n4. By using (2.2) we get d(xn, x) < ψn3(1) < ε for all n ≥ n4. This
proves that lim

n→∞
d(xn, x) = 0. �

Now we apply Theorem 2.4 to show the explicit metrics of known θ-metrics in the
literature.

Example 2.5. For some k ∈ (0, 1], consider the B-action θ(s, t) = k(s + t) in [14,
Example 5. (θ1)]. Suppose that (X, d, θ) is a θ-metric space with such θ.

If k = 1, then the θ-metric space is exactly a metric space.
Let k ∈ (0, 1). We have

0 ≤ d(x, y) ≤ θ(d(x, y), d(y, y)) = θ(d(x, y), 0) = k.d(x, y).

So 0 ≤ d(x, y) ≤ k.d(x, y). It implies that d(x, y) = 0, that is, x = y. So the given
θ-metric space is trivial in the sense that it has only one point.

Example 2.6. For some k ∈ (0, 1], consider the B-action θ(s, t) = k(s + t + st) in
[14, Example 5. (θ2)]. Suppose that (X, d, θ) is a θ-metric space with such θ.

If k ∈ (0, 1), then similar to Example 2.5 we see that the given θ-metric space is
also trivial.
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Let k = 1. Then θ(s, t) = s+ t+ st. For each ε ≥ 0, we have θ(0, ε) = ε. It follows
from (2.1) that

θ(sε, ε) = θ(sε, θ(0, ε)) = θ(0, ε).

Then, by using Definition 1.3.(4), we get sε = 0. It implies that ψ(ε) = ε
3 , and

D(x, y) = D(y, x) =


0 if x = y

1 if d(x, y) ≥ 1
1
2n if 1

3n−1 > d(x, y) ≥ 1
3n , n ∈ N.

So the metric δ defined by (2.3) is explicit.

Example 2.7. Consider the function θ(s, t) = st
1+st in [14, Example 5. (θ3)]. We

have θ(t, 0) = 0 for all t ≥ 0. So the given function does not satisfy Definition 1.3.(4).
Then the function is not a B-function.

Example 2.8. Consider the B-functions θ(s, t) =
√
s2 + t2, θ(s, t) = s+ t+

√
st, and

θ(s, t) = (s+ t)(1 + st) in [14, Example 5. (θ4), (θ6), (θ7)]. Suppose that (X, d, θ) is
a θ-metric space with such θ.

For each ε ≥ 0, we have θ(0, ε) = ε. It follows from (2.1) that

θ(sε, ε) = θ(sε, θ(0, ε)) = θ(0, ε).

Then, by using Definition 1.3.(4), we get sε = 0. It implies that ψ(ε) = ε
3 , and

D(x, y) = D(y, x) =


0 if x = y

1 if d(x, y) ≥ 1
1
2n if 1

3n−1 > d(x, y) ≥ 1
3n , n ∈ N.

So the metric δ defined by (2.3) is explicit.

Example 2.9. Consider the θ-metric space (X, d, θ) in [14, Example 13], where X =
{a, b, c} and θ(s, t) = s+ t+ st for all t, s ≥ 0, and

d(x, y) = d(y, x) =


0 if x = y

2 if (x, y) = (a, b)

6 if (x, y) = (a, c)

10 if (x, y) = (b, c).

It follows from [14, Remark 14] that d is a θ-metric which is not a metric.
Since d(x, y) ≥ 1 for all x 6= y, we have

D(x, y) =

{
0 if x = y

1 if x 6= y.

So D is a metric. It follows from Theorem 2.4.(3) that δ = D.

Example 2.10. Consider the θ-metric space (X, d, θ) in [4, Example 3.11], where
X = [0, 1] and θ(s, t) = s + t + st. For each ε ≥ 0, we have θ(0, ε) = ε. It follows
from (2.1) that

θ(sε, ε) = θ(sε, θ(0, ε)) = θ(0, ε).
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Then, by using Definition 1.3.(4), we get sε = 0. It implies that ψ(ε) = ε
3 , and

D(x, y) = D(y, x) =


0 if x = y

1 if d(x, y) ≥ 1
1
2n if 1

3n−1 > d(x, y) ≥ 1
3n , n ∈ N.

So the metric δ defined by (2.3) is explicit.

Finally, by using Theorem 2.4, we reprove the following fixed point result in [14].

Theorem 2.11 ([14], Theorem 28). Let (X, d, θ) be a complete θ-metric space and
f : X → X be a map such that

d(fx, fy) ≤ αd(x, y) (2.23)

for all x, y ∈ X and for some α ∈ [0, 1). Then f has a unique fixed point.

Proof. Let x0 ∈ X and xn+1 = fxn for all n ∈ N. We have

0 ≤ d(xn+1, xn) ≤ αd(xn, xn−1) ≤ · · · ≤ αnd(x1, x0).

Since α ∈ [0, 1), we get lim
n→∞

d(xn+1, xn) = 0. Then there exists n0 such that

d(xn+1, xn) < 1 for all n ≥ n0. By using the notations in Theorem 2.4, we have
for each n ≥ n0, there exists kn such that ψkn−1(1) > d(xn+1, xn) ≥ ψkn(1). By
using (2.2) we get D(xn+1, xn) = 1

2kn
. It follows from (2.4) that

δ(xn+1, xn) ≤ D(xn+1, xn) =
1

2kn
.

Then we get for all m ≥ n,

δ(xn, xm) ≤ d(xn, xn+1) + · · ·+ d(xm−1, xm) ≤ 1

2kn
+ · · ·+ 1

2km−1
≤
∞∑
i=kn

1

2i
.

This implies that lim
n→∞

δ(xn, xm) = 0. So {xn} is a Cauchy sequence in the metric

space (X, δ). Since the θ-metric space (X, d, θ) is complete, the metric space (X, δ) is
complete by Theorem 2.4.(5). Then there exists the limit lim

n→∞
xn = x∗ in (X, δ). It

follows from Theorem 2.4.(4) that lim
n→∞

xn = x∗ in the θ-metric space (X, d, θ). Note

that for all n ∈ N,

d(xn+1, fx
∗) = d(fxn, fx

∗) ≤ αd(xn, x
∗).

Then lim
n→∞

d(xn+1, fx
∗) = 0, that is lim

n→∞
xn+1 = fx∗ in (X, d, θ). By using [14,

Theorem 19], the limit point of a convergent sequence in (X, d, θ) is unique. So
x∗ = fx∗. This proves that x∗ is a fixed point of f .

Now, let x∗, y∗ be two fixed points of f . Then

0 ≤ d(x∗, y∗) = d(fx∗, fy∗) ≤ αd(x∗, y∗).

Note that α ∈ [0, 1). So d(x∗, y∗) = 0, that is, x∗ = y∗. Then the fixed point of f is
unique. �
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