Fized Point Theory, 25(2024), No. 1, 99-110
DOI: 10.24193/fpt-ro.2024.1.06
http://www.math.ubbcluj.ro/~nodeacj/sfptcj.html

FURTHER RESULTS ON 6-METRIC SPACES

NGUYEN VAN DUNG

*Faculty of Mathematics-Informatics Teacher Education, Dong Thap University,
783 Pham Huu Lau Street, Ward 6, Cao Lanh City, Dong Thap Province, Viet Nam
E-mail: nvdung@dthu.edu.vn

Abstract. In this paper, we first revise some results and proofs on 6-metric spaces. Next, we
construct an explicit metric to metrize a given #-metric that gives an affirmative answer to an open
question on the metrization of f-metric spaces. After that, we use the obtained result to calculate
such metric of known f-metrics, and reprove a fixed point theorem in #-metric spaces.
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1. INTRODUCTION AND PRELIMINARIES

There have been many generalized metric spaces to be used in the fixed point
theory [13], [15]. One of the approaches to study such spaces is to metrize the given
generalized metrics [5], [12], [6], [7], [9], [12], [18]. In [19], Som et al. studied the
metrization of certain generalized metric spaces including b-metric spaces, F-metric
spaces, and 6-metric spaces. The author improved upon the metrization results of
An et al. [2] for b-metric spaces, provided two shorter proofs of the metrization of
F-metric spaces [18], and answered partially to Question 1.1 below regarding the
openness of F-open balls in F-metric spaces.

Question 1.1 ([3], Open problem 2.6). Is every open ball an F-open set in F-metric
spaces?

Actually, Question 1.1 was answered negatively in [10, Examples 5-6]. Moreover,
there is a closed ball in an F-metric space that is not F-closed in [10, Example 5].
The authors also posed the following question.

Question 1.2 ([19], Open question on page 271). (1) Can an explicit metric be
constructed with respect to which the given b-metric space with coefficient K
is metrizable?

(2) Can an explicit metric be constructed with respect to which the given 0-metric
space is metrizable?
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Also, Question 1.2.(1) was answered affirmatively so that there has been an explicit
metric to metrize the b-metric spaces, for example see [1, Theorem I] and [16, Propo-
sition on page 4308]. One shows that the class of b-metrics and that of #-metrics are
distinct. There also exists a b-metric that is not an F-metric [11, Proposition 2.1],
and there exists an F-metric that is not a b-metric [11, Remark 2.2].

In [14, Definition 15], the authors defined the open ball B(x, r) in the #-metric space
with 7 € Im#. The assumption r € Im# has been used to prove [14, Lemma 16] that
each open ball is an open set in the #-metric space. However, with this assumption,
the open ball B(z, L) does not exist if + ¢ Imf. So [14, Lemma 18] which states that
the family {B(z, 1) : n € N} is a countably local base at 2 needs to be revised.

Note that every B-action 6 is only assumed to be continuous in each variable, see
Definition 1.3.(2) below. However, in the proof of [14, Theorem 26], the authors used
the continuity of 8 at (0,0) to prove the inequality (21) therein. Also, in the proof
of [19, Theorem 3.8], the authors confirmed that the B-action § is continuous at the
point (0,0) by using the unproved claim lim 6(s,,t,) =0 as lim (sp,t,) = (0,0). It

n—oo n—oo
implies that we have to prove again the continuity of the B-action 6 at (0,0).

In this paper, we first prove a revision for [14, Lemma 16] and prove that every
B-action 6 is continuous at (0,0). Next, motivated by Frink’s technique [8], we
construct an explicit metric from a given #-metric that gives an affirmative answer
to Question 1.2.(2) above. After that, we use the obtained result to calculate such
metrics for known #-metrics, and reprove a fixed point theorem in #-metric spaces.

Now, we recall the notions and properties which will be useful later.

Definition 1.3 ([14], Definition 4). Let 6 : [0,00) x [0,00) — [0,00) be a function
such that for all s,t,u,v € [0, c0),

1) 6 is continuous with respect to each variable.
0(0 O) =0.

( )<9(st)1feitheru§sandv<toru<sandv§t.

For each m € Imf and each ¢ € [0,m], there exists s € [0,m] such that
(s,t) = m, where Im@ = {0(s,t) : s,t > 0}.

(6) 0(s, 0)§5f0ralls>0

Then 0 is called a B-action.

Definition 1.4 ([14], Definition 11). Let X be a non-empty set and the function
d: X x X — [0,00) and the B-action 6 satisfying the following for all z,y,z € X,

[
(1) d(z,y) = 0 if and only if x = y.
(2) d(z,y) = d(y, z).

(3) d(,2) < 8(d(x,y), d(y, 2)).
Then d is called a f-metric on X with respect to the B-action 6 and (X, d, 6) is called
a 0-metric space.

For other notions and properties of f-metric spaces, the reader may refer to [4],
[14], [17] and the references therein.
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2. MAIN RESULTS
First, we prove a revision for [14, Lemma 18] as follows.

Proposition 2.1. Suppose that (X,d,0) is a 0-metric space. Then for every x € X,
the family {B(m,G(O,%)) :n € N} is a local base at x, and the topological space
(X,d,0) is first countable.

Proof. Let r € Imf and r > 0. Then there exists n such that
from Definition 1.3.(5) that there exists s,, € [0,7] such that (s,

tion 1.3.(4) we have
0 (0,1) <0 (sm 1> =r.
n n

This proves that B(x,6(0,2)) C B(z,r). So the family {B(z,6(0,%)) : n € N} is a
local base at x. Since this farmly is countable, the topological space (X,d,0) is first
countable. (|

1
n
1

)

< r. It follows
= By Defini-

Next, we prove that every B-action is continuous at (0, 0).
Proposition 2.2. Suppose that 0 is a B-action. Then 0 is continuous at (0,0).
Proof. Let lim (sp,t,) = (0,0) in [0,00) X [0,00). If there exists ng € N such that

n—oo
sp = 0 for all n > ng, then, for all n > ng,
0 < 0(8n,tn) = 0(0, 1) < tn
It implies that lim 6(sy,t,) = 0= 6(0,0).
n—oo
Similarly, if there exists ng € N such that ¢,, = 0 for all n > ng, then we also have

lim O(sp,t,) =0=26(0,0).

n—oo

Now, we can suppose that both of sets {n € N: s, >0} and {n € N:¢, > 0} are
infinite. Let € > 0. Then 6(0,¢) > 6(0,0) > 0. Since lim ¢, = 0, there exists ng such
n—oo

that 0 < t,, < 0(0,¢) < €. Let r,, € [0,6(0,¢)) be such that 0(r,,,tn,) = 0(0,¢). If
Tne = 0, then

O(Tngstrg) = 0(0,tn,) < tn, < 0(0,€).
It is a contradiction. So we have r,, > 0. Since hm (sn, t,) = (0,0), there exists
n1 > ng such that s, < ry, and ¢, <t,, for all n > n1 Then

O(rn,tn) < O(rng,tn,) = 60(0,e) < e

for all n > ny. This proves that lim 0(r,,t,) =0=6(0,0).
The above arguments show ﬁr?looﬁ(sn,tn) = 0 = 0(0,0), that is, € is continuous
at (0,0). . 0

Remark 2.3. (1) Proposition 2.1 and Proposition 2.2 ensure that [14, Theo-
rems 20, 21, 27] still hold but B(«, %) in their proofs has to be replaced by

B(x,0(0, 1)).
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(2) It follows from Definition 1.3.(1) that the B-action is continuous with respect
to each variable. However, known examples of B-actions in the literature
are continuous in both variables. It still remains open that there exists a
non-continuous B-action or not.

Now, we construct an explicit metric from a given #-metric with respect to which
the #-metric space is metrizable. This result gives an affirmative answer to Ques-
tion 1.2.(2).

Theorem 2.4. Suppose that (X,d,0) is a 6-metric space. Then
(1) For each £ > 0, there exists se € [0,6(0,¢€)] such that

0(s:,0(0,¢)) = 6(0,¢). (2.1)
(2) If for alle > 0,
£ if se =0
V) = {rgnin{;,ss} zﬁ s5e >0
and for oll x,y € X,
0 ifr=y
D(z,y) = D(y,x) = 1 ifd(z,y) > 1 (2.2)

v f YT (1) > d(zy) 2 ¢"(1),n €N

o
then the formula

0(z,y) = inf { ZD(xi,le) TLY =X, T, T, Tl =Y € X, N E N} (2.3)
=0
defines a metric on X, and for all x,y € X,

D
D&Y < sa,9) < D). (24)

(3) If D is a metric, then § = D.

(4) The 0-metric space (X,d,0) is metrizable by metric 0.

(5) The 0-metric space (X,d,0) is complete if and only if the metric space (X, 0)

is complete.
Proof. (1). For each € > 0, we have 6(0,¢) € Imf. By Definition 1.3.(5), there exists
se € 10,60(0,¢)] such that
0(s<,6(0,¢)) = 6(0,¢).
(2). For each & > 0, we have 0 < ¢(¢) < § < 5. Then for all n,

n—1
0<wr)=vw—a) < W o PD L
So we get
lim 4" (1) = 0. (2.5)
We also have
Y (1)

L) = (" (1)) < <¢"(1).

2
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Then the sequence {1™(1)} is strictly decreasing. It implies that the formula (2.2) is
well-defined and so the formula (2.3) is.

Let z,y,2z € X and ¢ > 0. We prove that if D(z,2) < ¢ and D(z,y) < &, then
D(z,y) < 2e. On the contrary, suppose that there exist g9 > 0 and zg,yo,20 € X
with D(xo,ZQ) < &g, D(Zo,yo) < € and D(xo,yo) > 260. Since D(xo,yo) < 1, we

have g5 < % Then there exists mg such that ﬁ <egg < 2%0 Since D(zg,20) < €
and D(yo, z0) < €0, we have D(xg,20) < 745 and D(yo, 20) < 7. By using (2.2) we

get d(zg, z0) < ¥™°(1) and d(yo, z0) < ¥™°(1). So, by the definition of ¢, we have
(o, 20) < P (1) = Y1) < symo-1(1)
d(yo, 20) < 9™ (1) = (™ 7H(1)) < symo-1(1)-
By using Definition 1.3.(4) and (2.1) we get
d(z0,y0) < 0(d(20, 20), d(Yo, 20)) < O(Symo-1(1) Symo—1(1))

< O(symo-1(1), 0(0, 9™ (1)) = 00, 4™ (1)) < Ym0 TH(1).
So d(zo,y0) < 1™ ~1(1). By using (2.2) again we get D(zo,y0) < 55 < 2¢0. It is a
contradiction.
So, if D(z,z) < e and D(z,y) < ¢, then D(z,y) < 2e.
In particular, for # # y and z € X, we have D(z,z) < max{D(z, z),D(y,2)} and
D(y,z) < max{D(x, z), D(y,z)}. So we get

D(z,y) < 2max{D(z, z), D(y,2)}. (2.6)
We shall prove that
n—1
D(z,y) < 2D(z,21) +4 Y D(wi,2i41) + 2D (2, y) (2.7)
i=1
n—1
forallz = 2,21, ..., Tn, Tny1 =y € X andn =0,1,2,..., where > D(x;,z;41) =0
i=1

for the cases n =0 and n = 1.
If £ = y, then (2.7) holds. Let z # y. Suppose to the contrary that (2.7) is false.

Then there exist ng and 2° = 29, 29,... 22, $910+1 =y € X such that
’I’Lo—l
D(a°,y°) > 2D(2",29) + 4 Y D(af,alyy) +2D (a0, 4°). (2.8)
i=1

It follows from (2.6) that ng > 2. We suppose that ng is possible smallest, that is, for
all n < ng we have

n—1

D(z,y) < 2D(w, 1) +4 Y D(ws,ig1) + 2D (wn,y) (2.9)
i=1
For any i = 1,...,ng, if D(2°,4%) > 2D(2%,2%) and D(2°,4°) > 2D(2?,4°), then
from (2.6) we get

D(mo,yo) > QmaX{D(xO,x?),D(x?,yo)} > D(a:o,yo).
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It is a contradiction. So either

D(z°,4°) < 2D(2°, 2?) (2.10)
or

D(2°,y°) < 2D(x7,y"). (2.11)

If ¢ = 1 then from (2.8) we see that (2.10) does not hold. So (2.11) holds. It also
follows from(2.8) that (2.11) does not hold for i = ng. Put

ip =max{i =1,...,n9 — 1: D(2°4°) <2D(z,y")}.
Then ig < ng — 1 and we have
D(z°,y°) < 2D(a9,,4°) (2.12)
D(z°,y°) > 2D(a9 ,1,9°). (2.13)
It follows from (2.13) and (2.6) that
D(a°,9°) <2D(a°2? ,,). (2.14)

Note that ig < ng and ng — 1 —1ig < ng. By using (2.9) for n = ig and n = ng— 1 — i,
we get

ig—1
D(° a9 1) <2D(a%a0) + 4> D(a?,29,,) +2D(x), 29, ;) (2.15)
1=1
and
nofl
D(xy, %) < 2D, a) (1) +4 > D(af,29,,) + 2D(xny, ). (2.16)
i=ig+1

It follows from (2.12), (2.14), (2.15) and (2.16) that
D(J:Ovyo) Qmin{D(xO,x?0+1) D( ?o’yo)}
D(xo"r10+1)+D( zo7y )

Zo 1
2D (2% 29) +4 ) D(af,adsy) +2D(af 2l 1)

i=1

IN A

IN

’no—l
+2D(x), 0 1) +4 Y D(af,al ) + 2D(2n,,9°)
1=t9+1
no— 1

= 2D SU xl +4Z xzazz+1 +21)( noay)

It is a contradiction to (2.8). So (2.7) also holds for the case x # y.
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Now (2.7) holds for all x = zg,z1,...,Zn, Tnt1 =y € X andn=10,1,2,..., where
n—1
> D(x;,x541) = 0 for the cases n =0 and n = 1. Then
i=1
n—1
D(z,y) < 2D(z,z1)+4 Z D(i, wit1) + 2D (2n,y)
i=1
n
< 4) D(wi,wi41) (2.17)
i=0
for all x = zg,21,...,Tn, Tue1 =y € X. This proves that
D(z,y) < 48(z,y). (2.18)
For all z,y,z € X, we have d(z,y) > 0, é(x,y) = d(y,x) and
6(z,y) < D(z,y). (2.19)
From (2.18) and (2.19) we get
D
9) < 5(a.) < D). (220)
So (2.4) holds. Moreover, (2.20) also shows that §(z,y) = 0 if and only if D(z,y) = 0,
that is, z = y.
Now, we prove that for all z,y,z € X,
O(z,y) < d(x,2) +6(z,y). (2.21)
Indeed, for all € > 0, it follows from (2.3) that there exist = zg, 21, ..., Tk, Tr11 = 2
and 2 = Tg41, Tk42,- -, Tn, Tnt1 = Yy such that
u €
ZD(%,%H) <O(z,2) + By
i=0
and
n—k—1 c
Z D(xq144, Trg14j4+1) < 0(z,y) + 3
§=0
Then we get
n
S(z,y) < D D(wi,wipn)
i=0
k n—k—1
= ) D(wi, i) + D(Tht145, Tha145+1)
i=0 §=0
€ €
< 6(3?,2) + 5 +(5(z,y) + 5
= (z,2)+0(z,y) +e. (2.22)

Taking the limit as e — 0% in (2.22) we get
d(z,y) < d(x,2) +6(2,y).
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So § defines a metric on X.
(3). If D is a metric, then

D(l‘,y) < D(l’i,l‘H-l)

i=

(=)

for all x = xg,%1,-+-,Tpn,Tnr1 = y € X. It implies that D(x,y) < §(z,y). By
combining with (2.19) we get § = D.
(4). One shows that every #-metric space is metrizalbe [14, Theorem 26] or [19,
Theorem 3.8]. So, to prove the #-metric space (X, d, 6) is metrizable by metric §, we
need only to prove that:
lim z, =z in (X,d,0) if and only if lim z, =z in (X,4).
n—oo n—roo

By using (2.4), we have
lim z, =z in (X,4) if and only if lim z, = in (X, D).
n—oo n—r00

So we need only to prove that
lim z, =z in (X,d,0) if and only if lim z, =z in (X, D),
n—oo n—oo

that is,
lim d(x,,2z) =0 if and only if lim D(x,,z) =0.
n—oo n—oo

Indeed, let lim d(zy,z) = 0. For each ¢ > 0, there exists ny such that - < e.
n—oo

Since lim d(zp,z) = 0, there exists ny such that d(x,,z) < ™ (1) for all n >
n— oo

ny. By using (2.2) we get D(z,,2) < 53 < € for all n > no. This proves that
lim D(z,,z)=0.
n—0o0

Now, let lim D(z,,z) = 0. For each ¢ > 0, by using (2.5) there exists ns such
n—oo
that 1"3(1) < e. Since lim D(z,,r) = 0, there exists ny such that D(z,,z) < 5
n—oo

273
for all n > ny. By using (2.2) we get d(zp,x) < 9™ (1) < ¢ for all n > ny. This
proves that lim d(z,,z) = 0. O

n— oo

Now we apply Theorem 2.4 to show the explicit metrics of known f-metrics in the
literature.

Example 2.5. For some k € (0,1], consider the B-action 6(s,t) = k(s +t) in [14,
Example 5. (61)]. Suppose that (X, d, 6) is a #-metric space with such 6.

If £ =1, then the f-metric space is exactly a metric space.

Let k € (0,1). We have

0< d(a:,y) < H(d(:c,y),d(y,y)) = G(d(x,y),O) = kd(x,y)

So 0 < d(x,y) < k.d(x,y). It implies that d(z,y) = 0, that is, z = y. So the given
f-metric space is trivial in the sense that it has only one point.

Example 2.6. For some k € (0, 1], consider the B-action 6(s,t) = k(s + ¢ + st) in
[14, Example 5. (62)]. Suppose that (X, d,0) is a #-metric space with such 6.

If £ € (0,1), then similar to Example 2.5 we see that the given f-metric space is
also trivial.
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Let k = 1. Then 0(s,t) = s+t + st. For each € > 0, we have 0(0,¢) = ¢. It follows
from (2.1) that
0(se,€) = 0(s:,6(0,¢)) = 6(0,¢).

Then, by using Definition 1.3.(4), we get s. = 0. It implies that () = £, and

0 ifx=y
D(z,y) = D(y,x) =q1 ifd(z,y) >1

3w if g7 > d(z,y) > 3m,neN.

So the metric § defined by (2.3) is explicit.

Example 2.7. Consider the function 6(s,t) = 1fst in [14, Example 5. (63)]. We

have 6(t,0) = 0 for all ¢ > 0. So the given function does not satisfy Definition 1.3.(4).
Then the function is not a B-function.

Example 2.8. Consider the B-functions (s, t) = V52 + 12, 0(s,t) = s+t ++/st, and
0(s,t) = (s +1)(1 + st) in [14, Example 5. (64), (6s), (67)]. Suppose that (X,d, ) is
a f-metric space with such 6.
For each € > 0, we have 0(0,¢) = e. It follows from (2.1) that
0(se,e) = 0(s¢,0(0,2)) = 6(0,¢).
Then, by using Definition 1.3.(4), we get s. = 0. It implies that 1(e) = £,
0 ifx=y
D(z,y) = D(y,z) =<1 if d(z,y) > 1
3w if gt > d(z,y) > 3m,neN.
So the metric § defined by (2.3) is explicit.
Example 2.9. Consider the #-metric space (X,d, 8) in [14, Example 13|, where X =
{a,b,c} and (s, t) = s+t + st for all ¢,s > 0, and
0 ife=y
2 if (z,y) = (a,b)
6 if (z,y) = (a,0)
10 if (z,y) = (b, ¢).

d(x,y) = d(y7x) =

It follows from [14, Remark 14] that d is a #-metric which is not a metric.
Since d(z,y) > 1 for all x # y, we have

0 ifz=y
D(x,y) = .
1 ifx#y.
So D is a metric. It follows from Theorem 2.4.(3) that 6 = D.

Example 2.10. Consider the #-metric space (X,d,0) in [4, Example 3.11], where
X =10,1] and 0(s,t) = s+t + st. For each € > 0, we have 0(0,e) = . It follows
from (2.1) that

0(se,e) = 0(s¢,0(0,2)) = 6(0,¢).
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Then, by using Definition 1.3.(4), we get s. = 0. It implies that ¢(¢) = §, and
0 ifx=y
D(z,y) = D(y,z) =<1 if d(z,y) > 1
3w if i > d(z,y) > gm,n e N
So the metric § defined by (2.3) is explicit.

Finally, by using Theorem 2.4, we reprove the following fixed point result in [14].

Theorem 2.11 ([14], Theorem 28). Let (X,d,0) be a complete §-metric space and
f: X — X be a map such that

d(fx, fy) < ad(z,y) (2.23)
for all z,y € X and for some a € [0,1). Then f has a unique fized point.
Proof. Let g € X and z,41 = fz, for all n € N. We have
0 <d(xpnt1,2n) < ad(zp,tp—1) < -+ < a"d(z1,x0).
Since a € [0,1), we get nlgréo d(@py1,2n) = 0. Then there exists ng such that

d(xpy1,2n) < 1 for all n > ng. By using the notations in Theorem 2.4, we have
for each n > ny, there exists k, such that ¥*»~1(1) > d(zpy1,2,) > ¥*(1). By
using (2.2) we get D(Zpn41,2n) = z27. It follows from (2.4) that

5(-Tn+17xn) S D(xn-‘rlaxn) = 2Tn
Then we get for all m > n,

6<xn7$m) S d(l'nvanrl) + -+ d(xmflyxm)

Do

1 =1
Sgkn—i_" ka1 Z*
i=kn

This implies that nh_)nOlo 8(xn,xm) = 0. So {x,} is a Cauchy sequence in the metric
space (X, 0). Since the §-metric space (X, d, #) is complete, the metric space (X, ¢) is
complete by Theorem 2.4.(5). Then there exists the limit nh_}rrgo x, = 2" in (X,0). It
follows from Theorem 2.4.(4) that nl;ngo Zp = a* in the f-metric space (X, d, ). Note
that for all n € N,
A(Xpi1, fr*) =d(fan, fo*) < ad(z,, x¥).

Then nlgr()lo d(xpy1, fz*) = 0, that is nli_{rgoxnﬂ = fa* in (X,d,0). By using [14,
Theorem 19], the limit point of a convergent sequence in (X,d,#) is unique. So

x* = fa*. This proves that x* is a fixed point of f.
Now, let z*, y* be two fixed points of f. Then

0 <d(z*,y") =d(fz*, fy*) < ad(z*,y").
Note that o € [0,1). So d(z*,y*) = 0, that is, 2* = y*. Then the fixed point of f is

unique. O
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