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1. Introduction

In this work, we study the existence and multiplicity of T -periodic solutions
x : T→ R to the following equation with delay on time scales

(ϕ(x∆(t)))∆ + h(x(t))x∆(t) + g(x(t− r)) = p(t) t ∈ T, (1.1)

where T is an arbitrary T -periodic nonempty closed subset of R (time scale),
ϕ : (−a, a) → R is an increasing homeomorphism with 0 < a < +∞ such that
ϕ(0) = 0, and h, g : R → R are continuous functions. Moreover, we assume that
T > 0 is a real number and that p(t+ T ) = p(t) is continuous in T with

p :=
1

T

∫ T

0

p(t)∆t = 0.

When T 6= R, we shall assume that the delay r satisfies r = qT for some q ∈ Q≥0 and
that T− r ⊂ T.

The time scales theory was introduced in 1988, in the PhD thesis of Stefan Hilger
[11], as an attempt to unify discrete and continuous calculus. The time scale R
corresponds to the continuous case and, hence, yields results for ordinary differential
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equations. If the time scale is Z, then the results apply to difference equations.
However, the generality of the set T produces many different situations in which the
time scales formalism is useful in several applications. For example, in the study of
hybrid discrete-continuous dynamical systems, see [5].

The methods usually employed to explore the existence of periodic solutions for
dynamic equations in time scales are: fixed point theory [12, 14], Mawhin’s continua-
tion theorem [7, 13], lower and upper solutions [19, 21] and variational methods [10],
[20], [24], among many other works. Some of the above cited references correspond
to the semilinear case, that is, ϕ(x) = x and some others to the p-Laplacian operator,
namely ϕp(x) := |x|p−2x. However, the literature concerning singular ϕ-Laplacian
operators in time scales is more scarce. A special case of (1.1) with T = R is the
forced pendulum equation with relativistic effects, namely, x′√

1− x′2

c2

′ + kx′(t) + b sinx(t) = p(t), t ∈ R, (1.2)

where c > 0 is the speed of light in the vacuum, k > 0 is a possible viscous friction
coefficient and p is a continuous and T -periodic forcing term with mean value zero.
This equation has received much attention by several authors, see e.g. [6, 17, 22].
In particular in [22], employing the Schauder fixed point theorem, Torres proved the
existence of at least one T -periodic solution, provided that 2cT ≤ 1. This result was
later improved in [23] and finally in [3], where the sharper condition cT <

√
3π was

obtained. In the recent paper [8], a new improvement was obtained in terms of k and
‖p‖L1 and allows to obtain the uniform condition cT ≤ 2π.

When a positive delay is added to (1.2), a relativistic instance of the sunflower
equation is obtained, namely x′√

1− x′2

c2

′ + k

r
x′(t) + b sinx(t− r) = p(t), t ∈ R. (1.3)

In this work, we generalize several aspects of the results in [3] and [22, 23]. On
the one hand, our problem consist of dynamical Liénard-like equations on time scales;
on the other hand, the functions g and h are general and the equation may also
include a delay. This implies that the use of the Poincaré operator does not reduce
the problem to a finite-dimensional one, and requires to employ accurate topological
methods such as the Leray-Schauder degree. Moreover, our main theorem is in fact
a multiplicity result, which intuitively can be motivated as follows. If we observe for
example problems (1.2) and (1.3), it is clear that the periodicity of the sine function
implies that if x is a T -periodic solution, then x+2kπ is also a T -periodic solution for
all k ∈ Z. Such solutions are usually called in the literature geometrically equivalent.
However, if the term kx′ is replaced by h(x)x′ for some continuous function h close
to a constant, then the problem still admits infinitely many solutions, which may be
geometrically distinct if h is not a 2π-periodic function. With this idea in mind, it
shall be shown that if the nonlinear term has a more general oscillatory behaviour,
then multiple solutions exist.
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More specifically, our main result reads as follows:
Theorem 1.1. Assume that there exists a strictly increasing sequence {αj}nj=0 such

that

(−1)j
∫ T

0

h(x(t))x∆(t) + g(x(t))∆t < 0 if x(0) = αj ,
∥∥x∆

∥∥
∞ < a.

for every j and each C1 and T -periodic function x(t). Then, for any continuous
T -periodic function p(t) with mean value zero, problem (1.1) has at least n different
T -periodic solutions.

In particular, if g is oscillatory over R and h is locally monotone or locally close
to a constant, then (1.1) has infinitely many different T -periodic solutions, provided
that the oscillations are sufficiently slow. More precisely, the following corollaries are
obtained:
Corollary 1.2. Assume that there exists a strictly increasing sequence {αj}nj=0 such

that

(−1)jg > 0 and (−1)jh is nonincreasing over (αj − aT
2 , αj + aT

2 ).

Then, for any continuous T -periodic function p(t) with mean value zero, problem (2.1)
has at least n different T -periodic solutions.
Corollary 1.3. Assume there exists a strictly increasing sequence {αj}nj=0 and con-

stants γj such that

a|h(x)− γj | < (−1)jg(x) for all x ∈ (αj − aT
2 , αj + aT

2 ).

Then, for any continuous T -periodic function p(t) with mean value zero, problem (2.1)
has at least n different T -periodic solutions.

The proof of the preceding results shall be based on the search for fixed points
of an appropriate compact operator defined on the Banach space of all continuous
T -periodic functions on T. The singular nature of ϕ will be of help in the obtention of
the required a priori bounds, thus making possible a Leray-Schauder degree approach.
We highlight that, in contrast with the continuous case, the treatment of Liénard-like
equations on time scales is more delicate because the average of the term h(x(t))x∆(t)
with T -periodic x is not necessarily equal to 0. This is due to the fact that the standard
chain rule does not hold and, consequently, extra conditions are required in order to
avoid this difficulty.

The paper is organized as follows. In Section 2, we set the notation, terminology,
and several preliminary results which will be used throughout this paper. In Section
3, we adapt Mawhin’s continuation theorem to the context of times scales in order
to prove the existence of at least one T -periodic solution of (1.1). In Section 4, we
prove our main theorem with the help of the arguments introduced in the preceding
section. Some examples illustrating the results are presented in Section 5.

2. Notation and preliminaries

For fixed T > 0, we shall assume that T is T -periodic, that is, T+T = T. Moreover,
since the equation includes a delay r ≥ 0, we shall also assume that T− r ⊂ T. When
r > 0, it is observed that if T 6= R, then r is necessarily commensurable with T , that
is, r = qT for some positive q ∈ Q. Indeed, this is due to the fact that, otherwise, the
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set {e−2π r
T ni}n∈N is dense in S1 ⊂ C and the conclusion follows from the fact that T

is closed. Note, also, that if r is congruent to r̂ modulo T , then x(t− r) = x(t− r̂) for
any T -periodic function x and, thus, we may assume without loss of generality that
r < T . For convenience, we shall also assume that 0 ∈ T.

Let us denote by CT = CT (T,R) the Banach space of all continuous T -periodic
functions on T endowed with the uniform norm ‖x‖∞ = sup

T
|x(t)| = sup

[0,T ]T

|x(t)| and

the closed subspace

C̃T =
{
x ∈ CT :

∫ T
0
x(s)∆s = 0

}
.

For an element x ∈ CT its maximum and minimum values shall be denoted respec-
tively by xM and xm.

Moreover, denote by C1
T = C1

T (T,R) the Banach space of all continuous T -periodic
functions on T that are ∆-differentiable with continuous ∆-derivatives, endowed with
the usual norm

‖x‖1 = sup
[0,T ]T

|x(t)|+ sup
[0,T ]T

∣∣x∆(t)
∣∣ .

We introduce the following operators and functions:

• The Nemytskii operator Nf : C1
T → CT , given by

Nf (z)(t) = f(t, x(t), x∆(t), x(t− r)),
where f : T× R3 → R is a continuous function;

• The integration operator H : C̃T → C1
T ,

H(z)(t) =
∫ t

0
z(s)∆s,

• The continuous linear projectors:

Q : CT → CT , Q(x)(t) = 1
T

∫ T
0
x(s)∆s,

P : CT → CT , P (x)(t) = x(0)

where, for convenience, the isomorphism between R and the subspace of con-
stant functions of CT is omitted.

The above equation (1.1) can be written as follows:

(ϕ(x∆(t)))∆ = f(t, x(t), x∆(t), x(t− r)), t ∈ T, (2.1)

A function x ∈ C1
T is said to be a solution of (2.1) if ϕ(x∆) is of class C1 and

verifies (ϕ(x∆(t)))∆ = f(t, x(t), x∆(t), x(t− r)) for all t ∈ T.

The following lemma is an adaptation of a result of [4] to time scales.
Lemma 2.1. For each x ∈ CT , there exists a unique Qϕ = Qϕ(x) ∈ [xm, xM ] such
that ∫ T

0

ϕ−1(x(t)−Qϕ(x))∆t = 0.

Moreover, the function Qϕ : CT → R is continuous and sends bounded sets into
bounded sets.
Proof. Let x ∈ CT and define the continuous application Gx : [xm, xM ]→ R by

Gx(s) =
∫ T

0
ϕ−1(x(t)− s)∆t.
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We claim that the equation

Gx(s) = 0 (2.2)

has a unique solution Qϕ(x). Indeed, Let r, s ∈ [xm, xM ] be such that∫ T
0
ϕ−1(x(t)− r)∆t = 0 =

∫ T
0
ϕ−1(x(t)− s)∆t,

then using the fact that ϕ−1 is strictly increasing we deduce that r = s. Moreover, It
is seen that ∫ T

0
ϕ−1(x(t)− xM )∆t ≤ 0 ≤

∫ T
0
ϕ−1(x(t)− xm)∆t,

whence

Gx(xm)Gx(xM ) ≤ 0.

Thus, there exists s ∈ [xm, xM ] such that Gx(s) = 0, that is, equation (2.2) has a
unique solution. It follows that function Qϕ : CT → R given by Qϕ(x) = s is well
defined and, furthermore, because s ∈ [xm, xM ] we deduce that

|Qϕ(x)| ≤ ‖x‖∞.

Therefore, the function Qϕ sends bounded sets into bounded sets.
Finally, let us verify that Qϕ is continuous on CT . Let (xn)n ⊂ CT be a sequence

such that xn → x in CT . Since the function Qϕ sends bounded sets into bounded sets,
the sequence (Qϕ(xn))n is bounded in R and, consequently, without loss of generality
we may assume that it converges to some ã.

Because ∫ T
0
ϕ−1(xn(t)−Qϕ(xn))∆t = 0

for all n, by the dominated convergence theorem on time scales [5], we deduce that∫ T
0
ϕ−1(x(t)− ã)∆t = 0,

so Qϕ(h) = ã. Thus, we conclude that the function Qϕ is continuous.

Now, we define a fixed point operator, which is similar to the one employed in [4]
(see also [1] for an elementary introduction). In order to transform problem (2.1) into
a fixed point problem we use the operators H,Q,Nf , P and Lemma 2.1. The proof
of this result is similar to the continuous case and shall not repeated here.
Lemma 2.2. x ∈ C1

T is a solution of (2.1) if and only if x is a fixed point of the
operator Mf defined on C1

T by

Mf (x) =
P (x) +Q(Nf (x)) +H

(
ϕ−1 [H(Nf (x)−Q(Nf (x)))−Qϕ(H(Nf (x)−Q(Nf (x))))]

)
.

As the function f is continuous, using the Arzelà-Ascoli theorem it is not difficult
to see that Mf is completely continuous.

Using Lemma 2.2, the existence of a T -periodic solution for (2.1) is reduced to the
obtention of fixed points of the operator Mf . To this end, we will use topological
degree theory.

Consider the following family of problems defined for λ ∈ [0, 1]:

(ϕ(x∆(t)))∆ = λNf (x)(t) + (1− λ)Q(Nf (x)), (2.3)

where the operator Nf is defined by

Nf (x)(t) = f(t, x(t), x∆(t), x(t− r)) := −h(x(t))x∆(t)− g(x(t− r)) + p(t), t ∈ T.
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For each λ ∈ [0, 1], consider the nonlinear operator M(λ, ·), where M is defined on
[0, 1]× C1

T by

M(λ, x) = P (x) +Q(Nf (x))+ (2.4)

H(ϕ−1 [λH(Nf (x)−Q(Nf (x)))−Qϕ(λH(Nf (x)−Q(Nf (x))))]).

Observe that M(1, x) = Mf ; moreover, similarly as above, it is easy to see that
M is completely continuous and that, for λ > 0, the existence of solution to equation
(2.3) is equivalent to the problem

x = M(λ, x).

We claim that the previous assertion is true also for λ = 0. Indeed, because Qϕ(c) = c
for any constant c, it is clear that M(0, x) = P (x) + Q(Nf (x)). If x = M(0, x)
then x is constant and x = P (x), that is, Q(Nf (x)) = 0 and (2.3) with λ = 0
is trivially satisfied. Conversely, if (ϕ(x∆(t)))∆ ≡ Q(Nf (x)) then we obtain, upon

integration,
∫ T

0
Q(Nf (x))∆t = 0 which, in turn, implies that Q(Nf (x)) = 0. Thus

x∆ is constant and, by periodicity, x∆ ≡ 0, that is, x is constant and, consequently,
x = P (x) = P (x) +Q(Nf (x)) = M(0, x).
Remark 2.3. It is worthy to notice that, for any λ ∈ [0, 1], if x is a fixed point of M
then Q(Nf (x)) = 0.

3. Continuation theorem

In this section, we establish the continuation theorem that shall be employed for
the proof of our main result. Let us denote by degB and degLS the Brouwer and Leray-
Schauder degrees respectively. The following result is obtained as in the continuous
case; we include a proof for the sake of completeness.
Theorem 3.1. Assume that Ω is an open bounded set in C1

T such that the following
conditions hold:

(1) For each λ ∈ (0, 1) the problem

(ϕ(x∆(t)))∆ = λNf (x) (3.1)

has no solution on ∂Ω.
(2) The equation

g(y) = 0,

has no solution on ∂Ω ∩ R, where we consider the natural identification of R
with the subspace of constant functions of C1

T .
(3) The Brouwer degree of g satisfies:

degB(g,Ω ∩ R, 0) 6= 0.

Then problem (1.1) has at least one T -periodic solution.
Proof. Let λ ∈ (0, 1]. If x is a solution of (3.1), then Q(Nf (x)) = 0, hence x is a
solution of problem (2.3). On the other hand, for λ ∈ (0, 1], let x be a solution of
(2.3) and since

Q (λNf (x) + (1− λ)Q(Nf (x))) = Q(Nf (x)),
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it follows that Q(Nf (x)) = 0, whence x is a solution of (3.1). It is deduced that, for
λ ∈ (0, 1], problems (2.3) and (3.1) have the same solutions. We assume that (2.3)
has no solutions on ∂Ω for λ = 1, since otherwise we are done with the proof. It
follows that (2.3) has no solutions for (λ, x) ∈ (0, 1] × ∂Ω. If x is a solution of (2.3)
for λ = 0, then we conclude as before that Q(Nf (x)) = 0 and x(t) ≡ b ∈ R. Thus,

using the fact that
∫ T

0
p(t)∆t = 0

0 =
1

T

∫ T

0

f(t, b, 0, b)∆t = −g(b),

which, together with hypothesis 2, implies that b /∈ ∂Ω.
Summarizing, we proved that (2.3) has no solution on ∂Ω for all λ ∈ [0, 1]. Thus,

for each λ ∈ [0, 1], the Leray-Schauder degree degLS(I −M(λ, ·),Ω, 0) is well defined
and, by the homotopy invariance property,

degLS(I −M(0, ·),Ω, 0) = degLS(I −M(1, ·),Ω, 0).

On the other hand,

degLS(I −M(0, ·),Ω, 0) = degLS(I − (P +QNf ),Ω, 0).

But the range of the mapping

z 7→ P (z) +QNf (z)

is contained in the subspace of constant functions of C1
T , identified with R. Thus,

using the reduction property of the Leray-Schauder degree [9, 16]

degLS(I − (P +QNf ),Ω, 0) = degB
(
I − (P +QNf )

∣∣
Ω∩R ,Ω ∩ R, 0

)
= degB(g,Ω ∩ R, 0) 6= 0.

Then, degLS(I −M(1, ·),Ω, 0) 6= 0 and, in consequence, there exists x ∈ Ω such that
Mf (x) = M(1, x) = x, which is a solution of (2.1) and therefore a solution of (1.1).

With the help of Theorem 3.1 we shall be able to prove the existence of fixed points
of Mf . With this aim, for λ ∈ (0, 1] we consider the equation(

ϕ
(
x∆(t)

))∆
+ λh(x(t))x∆(t) + λg(x(t− r)) = λp(t) t ∈ T, (3.2)

which is the explicit expression of problem (3.1).

The next example shows that the
∫ T

0
h(x(t))x∆(t)∆t is not necessarily equal to

zero. This is due to the fact that the standard chain rule does not hold for time
scales.
Example 3.2. Let T be 3-periodic with [0, 3]T = [0, 1] ∪ {2, 3}, let h(x) = x, and let
x : T→ R be the 3-periodic function defined on [0, 3)T by

x(t) =

 t if 0 ≤ t ≤ 1

2 if t = 2.

It follows by direct computation that
∫ 3

0
x(t)x∆(t)∆t = − 5

2 .
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Lemma 3.3. Assume that h is nondecreasing (resp. nonincreasing) over the range
of x ∈ C1

T . Then ∫ T

0

h(x(t))x∆(t)∆t ≤ 0 (resp. ≥ 0).

Proof. Consider the primitive of h, namely

H(u) =
∫ u

0
h(s)ds

and observe that H ◦ x is ∆-differentiable. Moreover, if t0 is right dense, then (H ◦
x)∆(t0) = h(x(t0))x∆(t0). On the other hand, if t0 is right-scattered, then

(H ◦ x)∆(t0) = h(ξ)x∆(t0)

for some ξ between x(t0) and x(σ(t0)). If h is nondecreasing over the range of x, it
readily follows that

(H ◦ x)∆(t0) ≥ h(x(t0))x∆(t0)

and, consequently, ∫ T

0

h(x(t))x∆(t)∆t ≤
∫ T

0

(H ◦ x)∆(t)∆t = 0.

The opposite inequality is obtained if we assume, instead, that h is nonincreasing.

4. Multiplicity of periodic solutions

In this section we establish the existence of at least n different solutions of problem
(1.1). The statements in the introduction are repeated here, for the sake of clarity.
Theorem 4.1. Assume that there exists a strictly increasing sequence {αj}nj=0 such

that for all j and x ∈ C1
T ,

(−1)j
∫ T

0

[h(x(t))x∆(t) + g(x(t))]∆t < 0 if x(0) = αj ,
∥∥x∆

∥∥
∞ < a. (4.1)

Then, for any continuous T -periodic function p(t) with mean value zero, problem (1.1)
has at least n different T -periodic solutions.

Proof. Assume that x ∈ C1
T (T,R) is a solution of (3.2) with λ ∈ (0, 1], then |x∆(t)| <

a and ∫ T

0

[h(x(t))x∆(t) + g(x(t− r))]∆t = 0.

From the periodicity of x we deduce from (4.1) that x(0) 6= αj , for any j = 0, . . . , n.
Moreover, (4.1) for x ≡ αj also implies that (−1)jg(αj) < 0. Therefore, problem
(2.3) has no solution in ∂Ωj for all j = 0, . . . , n− 1, where

Ωj :=
{
x ∈ C1

T (T,R) /x(0) ∈ (αj , αj+1),
∥∥x∆

∥∥
∞ < a

}
.
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From the homotopy invariance of the Leray-Schauder degree, we obtain

degLS(I −M(1, ·),Ωj , 0) = degLS(I −M(0, ·),Ωj , 0) =

= degLS(I − (P +QNf ),Ωj , 0)

= degB

(
I − (P +QNf )

∣∣∣Ωj∩R ,Ωj ∩ R, 0
)

= degB(g,Ωj ∩ R, 0)

= degB(g, (αj , αj+1), 0) = (−1)j .

We conclude that the operator M(1, ·) = Mf has a fixed point xj ∈ Ωj . Finally,
observe that xj(0) ∈ (αj , αj+1) hence all the solutions are different.
Remark 4.2. It is clear that the sign in condition (4.1) may be reversed, that is:

(−1)j
∫ T

0

[h(x(t))x∆(t) + g(x(t))]∆t > 0 if x(0) = αj ,
∥∥x∆

∥∥
∞ < a.

The next corollary shows that condition (4.1) can be obtained from appropriate
explicit assumptions on g and h.
Corollary 4.3. Assume that there exists a strictly increasing sequence {αj}nj=0 such

that

(−1)jg > 0 and (−1)jh is nonincreasing over (αj − aT
2 , αj + aT

2 ).

Then, for any continuous T -periodic function p(t) with mean value zero, problem (2.1)
has at least n different T -periodic solutions.
Proof. From the previous proof and Lemma 3.3 it suffices to verify that if x ∈ C1

T

satisfies x(0) = αj and ‖x∆‖∞ < a, then x(t) ∈ (αj − aT
2 , αj + aT

2 ) for all t. To this

end, observe that if |x(t)− αj | ≥ aT
2 for some t ∈ (0, T )T, then

aT

2
≤ |x(t)− αj | ≤

∫ t

0

|x∆(s)|∆s < at,

whence t > T
2 . Due to the periodicity, we also deduce that T −t > T

2 , a contradiction.
Remark 4.4. In particular, the conditions in the previous theorem imply that

αj+1 − αj ≥ aT for j = 0, 1, . . . , n− 1.

The alternative condition that h is locally close to a constant is obtained in the
following corollary:
Corollary 4.5. Assume there exists a strictly increasing sequence {αj}nj=0 and con-

stants γj such that

a|h(x)− γj | < (−1)jg(x) for all x ∈ (αj − aT
2 , αj + aT

2 ).

Then, for any continuous T -periodic function p(t) with mean value zero, problem (2.1)
has at least n different T -periodic solutions.
Proof. Suppose for example that x is a solution of (3.2) with j even and x(0) = αj .

Because ‖x∆‖∞ < a and x(t) ∈ (αj − aT
2 , αj + aT

2 ), then

(h(x(t))− γj)x∆(t) + g(x(t)) ≥ g(x(t))− a|h(x(t))− γj | > 0.
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Since
∫ T

0
γjx

∆(t)∆t = 0, we deduce that∫ T

0

[h(x(t))x∆(t) + g(x(t− r))]∆t =

∫ T

0

[h(x(t))x∆(t) + g(x(t))]∆t > 0.

An analogous reasoning for j odd shows that condition (4.1) is fulfilled.

Remark 4.6. In particular, suppose that g has slow oscillations, that is, there
exists a sequence of zeros xj ↗ +∞ such that (−1)jg(x) > 0 for x ∈ (xj , xj+1), with
xj+1−xj > aT , then the problem has infinitely many solutions, provided that (−1)jh

is nonincreasing or a|h(x)| < |g(x)| in (αj− aT
2 , αj+ aT

2 ) for all j, where αj =
xj+xj+1

2 .

5. Examples

In order to illustrate the above results, we consider some examples.

Example 5.1. Let us consider the equation(
x∆(t)√

1− x∆(t)2

)∆

+ e−x
2(t)x∆(t) + arctan(x(t)) = sin(4πt) t ∈ T (5.1)

where T is a 1/2-periodic time scale with

[0, 1/2]T = [0, 1/8] ∪ {3/16} ∪ {1/4} ∪ [5/16, 3/8] ∪ [7/16, 1/2] .

By Corollary 4.3 or Corollary 4.5 with α0 � 0� α1 we deduce that (5.1) has at least
one 1/2-periodic solution.

Example 5.2. Let h : R → R be continuous. Let us study the existence of a
2π-periodic solution to the following problem x∆(t)√

1− x∆(t)2

c2

∆

+ h(x(t))x∆(t) + x3(t− r) = cos(t), t ∈ R, (5.2)

where c > 0 and r ≥ 0. Using Corollaries 4.3 and 4.5, it follows that problem (5.2)
has at least one 2π-periodic solution if one of the following assumptions is verified:

(1) There exists R > 0 such that

h(y) ≤ h(x) for y ≥ x ≥ R or y ≤ x ≤ −R.

(2) lim supx→±∞

∣∣∣h(x)
x3

∣∣∣ < 1.

Example 5.3. Let us consider the relativistic pendulum equation on time scales x∆(t)√
1− x∆(t)2

c2

∆

+ h(x(t))x∆(t) + sin(x(t)) = p(t) t ∈ T, (5.3)

where h, p : R → R are continuous functions and p is T -periodic with mean value
zero. If cT ≤ π, then problem (5.3) has infinitely many T -periodic solutions under
one of the following assumptions:

(1) (−1)jh is nonincreasing in (αj− cT
2 , αj + cT

2 ), where αj = (2j+1)π2 for j ∈ Z.
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(2) c |h(x)− γj | < |sin(x)| for x ∈ (αj− cT
2 , αj+ cT

2 ) for j ∈ Z and some constants
γj .

Clearly, both conditions are satisfied when h is constant although, in this case, the
solutions are not necessarily different in geometric sense (see [22]). It is worth ob-
serving that the restriction cT ≤ π, which comes from Remark 4.4, improves the one
in the original work by Torres, but it is slightly worse than the one obtained in [23]

which, as mentioned in the introduction, reads cT < 2
√

3 = 3.46 . . . However, the
method in [23] involves a change of variables that cannot be extended to a general
time scale. The sharper bound given in [3] is easily obtained in the continuous case,
due to the Sobolev inequality

‖x− x‖2∞ ≤
T

12
‖x′‖2L2 ,

which holds for T -periodic functions. Indeed, it suffices to observe that, if we replace
P by Q in the definition of the operator M in (2.4) then our main theorem is also
valid, changing x(0) by x in condition (4.1) and the definition of Ω. Thus, any possible
solution of (2.3) satisfying for example x = π

2 verifies |x(t) − π
2 | ≤

cT
2
√

3
for all t. If

cT ≤
√

3π, then x(t) ∈ [0, π] for all t and

0 =

∫ T

0

sin(x(t)) dt > 0,

a contradiction. For a general time scale, the argument is essentially the same and
yields the condition c

√
Ts(T) ≤ π

2 , where s(T) is the constant of the corresponding
Sobolev inequality. A refinement of this method was recently introduced in [2] and,
to our knowledge, constitutes the best bound that has been obtained until now for
the continuous case. We recall that, in the continuous case, the obtention of the
value s(R) = T

12 relies on the Fourier series expansion for periodic functions (see
e.g. [15]), which should be adapted accordingly to the general context. For example,
a rapid computation shows, for arbitrary T, that s(T) ≤ T

4 which, applied to this
case, retrieves the condition cT ≤ π. The same conclusions are obtained for the
sunflower-like equation x∆(t)√

1− x∆(t)2

c2

∆

+ h(x(t))x∆(t) + sin(x(t− r)) = p(t) t ∈ T.
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