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1. Introduction and preliminaries

Using the concept of the Hausdorff metric, Nadler [11] introduced the notion of
multivalued contraction mapping and gave a multivalued version of the well known
Banach contraction principle such as:

Let (M,ρ) be a metric space. Denote by P (M) the family of all nonempty subsets
of M, CB(M) the family of all nonempty, closed and bounded subsets of M and
K(M) the family of all nonempty compact subsets of M . It is well known that,
H : CB(M)× CB(M)→ R is defined by, for every A,B ∈ CB(M),

H(A,B) = max

{
sup
ς∈A

D(ς, B), sup
ω∈B

D(ω,A)

}
is a metric on CB(M), which is called Hausdorff metric induced by ρ, where

D(ς, B) = inf {ρ(ς, ω) : ω ∈ B} .
Let T : M → CB(M) be a map, then T is called multivalued contraction if for all
ς, ω ∈M there exists L ∈ [0, 1) such that

H(Tς, Tω) ≤ Lρ(ς, ω).

Then Nadler [11] proved that every multivalued contraction mappings on complete
metric space has a fixed point.

Inspired by his result, various fixed point results concerning multivalued contrac-
tions appeared in the last decades [see, [4,5,7–10,14,15]] Also, combining the ideas of
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Wardowski [16] and Nadler, multivalued F -contractions by was introduced in [1] and
a fixed point result for these type mappings on complete metric space was given as:

Definition 1.1 ( [1]). Let (M,ρ) be a metric space and T : M → CB(M) be a
mapping. Then T is said to be a multivalued F -contraction if F ∈ F and there exists
τ > 0 such that

ς, ω ∈M, H(Tς, Tω) > 0⇒ τ + F (H(Tς, Tω)) ≤ F (M(ς, ω))

where

M(ς, ω) = max

{
ρ(ς, ω), D(ς, T ς), D(ω, Tω),

1

2
[D(ς, Tω) +D(ω, T ς)]

}
.

Theorem 1.1 ( [1]). Let (M,ρ) be a complete metric space and T : M → K(M) be
a multivalued F -contraction, then T has a fixed point in M.

Recently, Gordji et al. [6] introduced the concept of an orthogonal set and present
some fixed point theorems in orthogonal metric spaces. Then Sharma et al. [13] intro-
duced the notion of multivalued orthogonal F -contraction mappings in the framework
of orthogonal metric space. Also you can see [2, 3, 12].

Now, we give some fundamental definitions and notations of corresponding map-
pings and space which are used in this paper.

Definition 1.2 ( [6]). Let M be a non-empty set and f be a binary relation defined
on M . If binary relation f fulfils the following criteria:

∃ς0(∀ω∈M,ωfς0) or (∀ω ∈M, ς0 f ω),

then pair, (M,f) known as an orthogonal set. The element ς0 is called an orthogonal
element. We denote this O-set or orthogonal set by (M,f).

Definition 1.3 ( [6]). Let (M,f) be an orthogonal set (O-set). Any two elements
ς, ω ∈M such that ς f ω, then ς, ω ∈M are said to be orthogonally related.

Definition 1.4 ( [6]). A sequence {ςn} is called an orthogonal sequence (briefly O
-sequence) if

(∀n ∈ N, ςn f ςn+1) or (∀n ∈ N, ςn+1 f ςn).

Similarly, a Cauchy sequence {ςn} is said to be a orthogonally Cauchy sequence if

(∀n ∈ N, ςn f ςn+1) or (∀n ∈ N, ςn+1 f ςn).

Definition 1.5 ( [6]). Let (M,f) be an orthogonal set and ρ be a metric on M .
Then (M,f, ρ) is called an orthogonal metric space (shortly O-metric space).

Definition 1.6 ( [6]). Let (M,f, ρ) be an orthogonal metric space. Then M is said
to be a O-complete if every Cauchy O-sequence is converges in M .
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Definition 1.7 ( [6]). Let (M,f, ρ) be an orthogonal metric space. A function
f : M →M is said to be orthogonally continuous ( f -continuous ) at ς if for each O-
sequence {ςn} converging to ς implies f(ςn)→ f(ς) as n→∞. Also f is f-continuous
on M if f is f-continuous at every ς ∈M .

Definition 1.8 ( [6]). Let a pair (M,f) be an O-set, where M( 6= ∅) be a non-empty
set and f be a binary relation on set M . A mapping f : M → M is said to be
f-preserving if f(ς)f f(ω) whenever ς fω and weakly f-preserving if f(ς)f f(ω) or
f(ω)f f(ς) whenever ς f ω.

Definition 1.9 ( [13]). Let A and B be two nonempty subsets of an orthogonal set
(M,f). The set A is orthogonal to set B is denoted by f1 and defined as follows:

Af1 B, if for every a ∈ A and b ∈ B, af b.

Lemma 1.1 ( [13]). Let (M,f, ρ) be an orthogonal metric space, x ∈ M and A ∈
K(M). Then there exists a ∈ A such that

D(x,A) = d(x, a).

Lemma 1.2 ( [13]). Let (M,f, ρ) be an orthogonal metric space, and A,B ∈ K(M),
a ∈ A. Then there exists b ∈ B such that

d(a, b) ≤ H(A,B).

Definition 1.10 ( [16]). Let F be the set of all functions F : (0,∞)→ R satisfying
the following conditions:
(F1) F is strictly increasing, i.e., for all α, β ∈ (0,∞) such that α < β, F (α) < F (β),
(F2) for each sequence {an} of positive numbers,

lim
n→∞

an = 0 if and only if lim
n→∞

F (an) = −∞,

(F3) there exists k ∈ (0, 1) such that limα→0+ αkF (α) = 0.
We consider by F be the set of all functions F satisfying (F1)-(F3) and
(F4) F (inf A) = inf F (A) for all A ⊂ (0,∞) with inf A > 0.

The following examples will certify this assertion:

Example 1.1 ( [16]). Let F1 : (0,∞)→ R be given by the formulae F1(α) = lnα. It
is clear that F1 ∈ F .

Example 1.2 ( [16]). Let F2 : (0,∞)→ R be given by the formulae F2(α) = α+lnα.
It is clear that F2 ∈ F .

We can find some different examples for the function F belonging to F in [16]. In
addition, Wardowski concluded that every F -contraction T is a contractive mapping,
i.e.,

d(Tx, Ty) < d(x, y), for all x, y ∈ X,Tx 6= Ty.

Thus, every F -contraction is a continuous mapping.
Also, Wardowski concluded that if F1, F2 ∈ F with F1(α) ≤ F2(α) for all α > 0

and G = F2 −F1 is nondecreasing, then every F1-contraction T is an F2-contraction.
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He noted that for the mappings F1(α) = lnα and F2(α) = α + lnα, F1 < F2 and
a mapping F2 − F1 is strictly increasing. Hence, it was obtained that every Banach
contraction satisfies the contractive condition. On the other side, Example 2.5 in [16]

Motivated by the significance of the problems mentioned above, in this paper, we
consider the notion of generalized multivalued F−contraction mappings and prove
fixed point theorems for this mappings. Finally, we construct non-trivial example to
validate the potential of our result.

2. Main Result

We begin with this section by presenting the new concept of generalized multivalued
F -contraction on orthogonal metric space, then we give a fixed point theorems for
this type mapping.

Definition 2.1. Let (M,f, ρ) be a metric space and T : M → CB(M) be a mapping.
Then T is said to be a generalized multivalued orthogonal F -contraction if F ∈ F
and there exist τ > 0, L > 0 such that ς, ω ∈M with ς f ω,

H(Tς, Tω) > 0⇒ τ + F (H(Tς, Tω)) ≤ F (M(ς, ω) + LN(ς, ω)), (2.1)

where

M(ς, ω) = max

{
ρ(ς, ω), D(ς, T ς), D(ω, Tω),

1

2
[D(ς, Tω) +D(ω, T ς)]

}
N(ς, ω) = min {D(ς, Tω), D(ω, T ς)} .

Theorem 2.1. Let (M,f, ρ) be an O−complete orthogonal metric space and T :
M → K(M) be a mapping. Assume that the following conditions are satisfied:
(i) There exists ς0 ∈M such that {ς0}f1 Tς0 or Tς0 f1 {ς0} ,
(ii) For all ς, ω ∈M, ς f ω implies Tς f1 Tω,
(iii) If {ςn} is an orthogonal sequence in M such that ςn → ς∗, then ςn f ς∗ or ς∗ f
ςn for all n ∈ N,
(iv) T is a generalized multivalued orthogonal F -contraction.

Then, T has at least a fixed point in M .

Proof. By assumption (i), we can choose ς1 ∈ Tς0 such that ς0 f ς1 or ς1 f ς0 and
from (ii), we get Tς0 f1 Tς1, that is there exists ς2 ∈ Tς1 such that ς1 f ς2 or ς2 f ς1.
If ς1 ∈ Tς1, then ς1 is a fixed point of T. Let ς1 /∈ Tς1. Then D(ς1, T ς1) > 0 since Tς1
is compact. On the other hand, from

D(ς1, T ς1) ≤ H(Tς0, T ς1)

and (F1), we obtain

F (D(ς1, T ς1)) ≤ F (H(Tς0, T ς1)).
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From (2.1), we can write that

F (D(ς1, T ς1))

≤ F (H(Tς0, T ς1)) ≤ F (M(ς0, ς1) + LN((ς0, ς1))− τ

= F

 max

{
ρ(ς0, ς1), D(ς0, T ς0), D(ς1, T ς1),
1
2 [D(ς0, T ς1) +D(ς1, T ς0)]

}
+Lmin {D(ς0, T ς1), D(ς1, T ς0)}

− τ
≤ F

(
max

{
ρ(ς0, ς1),

1

2
D(ς0, T ς1)

})
− τ

≤ F

(
max

{
ρ(ς0, ς1),

1

2
[ρ(ς0, ς1) +D(ς1, T ς1)]

})
− τ

≤ F (max {ρ(ς0, ς1), D(ς1, T ς1)})− τ

= F (ρ(ς0, ς1))− τ. (2.2)

Continuing this process, we can construct an orthogonal sequence {ςn} in M such
that ςn+1 ∈ Tςn for all n ∈ N ∪ {0}. Thus, we have ςn+1 f ςn or ςn f ςn+1 for all
n ∈ N ∪ {0}. If ςk ∈ Tςk for all k ∈ N ∪ {0} then ςk is a fixed point of T. So, we may
assume that ςk /∈ Tςk for all k ∈ N ∪ {0}. Since Tςn closed, we have D(ςn, T ςn) > 0
for all n ∈ N ∪ {0}. Also

D(ςn, T ςn) ≤ H(Tςn−1, T ςn).

So using (F1), we have

F (D(ςn, T ςn)) ≤ F (H(Tςn−1, T ςn)).

Further from (iv), we get

F (D(ςn, T ςn))

≤ F (H(Tςn−1, T ςn))

≤ F (M(ςn−1, ςn) + LN(ςn−1, ςn))− τ

= F

 max

{
ρ(ςn−1, ςn), D(ςn−1, T ςn−1), D(ςn, T ςn),
1
2 [D(ςn−1, T ςn) +D(ςn, T ςn−1)]

}
+Lmin {D(ςn−1, T ςn), D(ςn, T ςn−1)}

− τ
= F

(
max

{
ρ(ςn−1, ςn), D(ςn−1, T ςn−1), D(ςn, T ςn),
1
2 [D(ςn−1, T ςn) +D(ςn, T ςn−1)]

})
− τ

≤ F (ρ(ςn−1, ςn))− τ.
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Hence from the strictly increasing property of F, we get

H(Tςn−1, T ςn) < ρ(ςn−1, ςn).

We know that xn+1 ∈ Txn,

ρ(ςn, ςn+1) = D(ςn, T ςn) ≤ H(Tςn−1, T ςn) < ρ(ςn−1, ςn).

Therefore the sequence {ρ(ςn, ςn+1)} is strictly decreasing sequence. Suppose that
an = ρ(ςn, ςn+1)→ t for some t ≥ 0. Furthermore for all n ≥ n0, we have

τ + F (ρ(ςn, ςn+1)) ≤ τ + F (H(Tςn, T ςn−1))

≤ F (ρ(ςn, ςn−1)). (2.3)

Taking n→∞ in (2.3), we get a contradiction. So ρ(ςn, ςn+1)→ 0. From (F3) there
exists k ∈ (0, 1) such that

lim
n→∞

aknF (an) = 0.

Then the following holds for all n ∈ N

aknF (an)− aknF (a0) ≤ −aknnτ ≤ 0. (2.4)

Letting n→∞ in (2.4), we obtain that

lim
n→∞

nakn = 0. (2.5)

From (2.5), there exits n1 ∈ N such that nakn ≤ 1 for all n ≥ n1. So we have

an ≤
1

n1/k
(2.6)

for all n ≥ n1. In order to show that {ςn} is a O−Cauchy sequence consider m,n ∈ N
such that m > n ≥ n1. Using the triangular inequality for the metric and from (2.6),
we have

ρ(ςn, ςm) ≤ ρ(ςn, ςn+1) + ρ(ςn+1, ςn+2) + · · ·+ ρ(ςm−1, ςm)

= an + an+1 + · · ·+ am−1

=

m−1∑
i=n

ai

≤
∞∑
i=n

ai

≤
∞∑
i=n

1

i1/k
.

By the convergence of the series
∞∑
i=1

1
i1/k

, we get ρ(ςn, ςm) → 0 as n→∞. This yields

that {ςn} is a O−Cauchy sequence in (M,ρ). Since (M,ρ) is a O−complete metric
space, the sequence {ςn} converges to some point z ∈ X, that is, limn→∞ ςn = z.
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Now we claim that, z ∈ Tz. Asume that z /∈ Tz. Hence there exists n1 ∈ N such
that z /∈ {ςn}n≥n1

, H(Tςn, T z) > 0. Therefore further by our assumption, ςn f z or

z f ςn, using (iv), we get

F (D(ςn+1, T z))

≤ F (H(Tςn, T z))

≤ F (M(ςn, z) + LN(ςn, z))− τ

≤ F

 max

{
ρ(ςn, z), D(ςn, T ςn), D(z, Tz),
1
2 [D(ςn, T z) +D(z, T ςn)]

}
+Lmin {D(ςn, T z), D(z, T ςn))}

− τ
≤ F

 max

{
ρ(ςn, z), D(ςn, T ςn), D(z, Tz),
1
2 [D(ςn, T z) +D(z, T ςn)]

}
+Lmin {D(ςn, T z), D(z, ςn+1))}

− τ
= F

 max

{
ρ(ςn, z), ρ(ςn, ςn+1), D(z, Tz),
1
2 [D(ςn, T z) +D(z, T ςn)]

}
+Lmin {D(ςn, T z), D(z, ςn+1))}

− τ
Taking n → ∞, we get F (D(z, Tz)) ≤ F (D(z, Tz)) − τ, which is a contradiction, so
z ∈ Tz. This completes the proof. �

By adding the condition (F4) on F , we can consider CB(M) instead of K(M).

Theorem 2.2. Let (M,f, ρ) be an O−complete orthogonal metric space and T :
M → CB(M) be a mapping. Assume that the following conditions are satisfied:
(i) There exists ς0 ∈M such that {ς0}f1 Tς0 or Tς0 f1 {ς0} ,
(ii) For all ς, ω ∈M, ς f ω implies Tς f1 Tω,
(iii) If {ςn} is an orthogonal sequence in M such that ςn → ς∗, then ςn f ς∗ or ς∗ f
ςn for all n ∈ N,
(iv) T is a generalized multivalued orthogonal F -contraction.

Then, T has at least a fixed point in M .

Proof. Let ς0 ∈ M . Since Tς is nonempty for all ς ∈ M , by assumption (i), we can
choose ς1 ∈ Tς0 such that ς0 f ς1 or ς1 f ς0. If ς1 ∈ Tς1, then ς1 is a fixed point of T.
Let ς1 /∈ Tς1. Then D(ς1, T ς1) > 0 since Tς1 is closed. On the other hand, from

D(ς1, T ς1) ≤ H(Tς0, T ς1)

and (F1), we obtain

F (D(ς1, T ς1)) ≤ F (H(Tς0, T ς1)).
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From (2.1), we can write that

F (D(ς1, T ς1))

≤ F (H(Tς0, T ς1)) ≤ F (M(ς0, ς1) + LN((ς0, ς1))− τ

= F

 max

{
ρ(ς0, ς1), D(ς0, T ς0), D(ς1, T ς1),
1
2 [D(ς0, T ς1) +D(ς1, T ς0)]

}
+Lmin {D(ς0, T ς1), D(ς1, T ς0)}

− τ
≤ F

(
max

{
ρ(ς0, ς1),

1

2
D(ς0, T ς1)

})
− τ

≤ F

(
max

{
ρ(ς0, ς1),

1

2
[ρ(ς0, ς1) +D(ς1, T ς1)]

})
− τ

≤ F (max {ρ(ς0, ς1), D(ς1, T ς1)})− τ

= F (ρ(ς0, ς1))− τ. (2.7)

From (F4) we get

F (D(ς1, T ς1)) = inf
y∈Tς1

F (ρ(ς1, y)).

So, from (2.7), we have

F (D(ς1, T ς1)) = inf
y∈Tς1

F (ρ(ς1, y))

≤ F (H(Tς0, T ς1))

≤ F (ρ(ς0, ς1))− τ

< F (ρ(ς0, ς1))− τ

2
.

By assumption (ii), we get Tς0 f1 Tς1. Continuing this process we constract an
orthogonal sequence {ςn} in M such that ςn+1 ∈ Tςn for all n ∈ N ∪ {0}. Thus we
have ςn+1 f ςn or ςn f ςn+1 for all n ∈ N∪ {0}. If ςk ∈ Tςk for all k ∈ N∪ {0} then ςk
is a fixed point of T. So we may assume that ςk /∈ Tςk for all k ∈ N ∪ {0}. Since Tςn
closed, we have D(ςn, T ςn) > 0 for all n ∈ N ∪ {0}. Also

D(ςn, T ςn) ≤ H(Tςn−1, T ςn).

So using (F1), we have

F (D(ςn, T ςn)) ≤ F (H(Tςn−1, T ςn)).
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Further from (iv), we get

F (D(ςn, T ςn))

≤ F (H(Tςn−1, T ςn))

≤ F (M(ςn−1, ςn) + LN(ςn−1, ςn))− τ

= F

 max

{
ρ(ςn−1, ςn), D(ςn−1, T ςn−1), D(ςn, T ςn),
1
2 [D(ςn−1, T ςn) +D(ςn, T ςn−1)]

}
+Lmin {D(ςn−1, T ςn), D(ςn, T ςn−1)}

− τ
= F

(
max

{
ρ(ςn−1, ςn), D(ςn−1, T ςn−1), D(ςn, T ςn),
1
2 [D(ςn−1, T ςn) +D(ςn, T ςn−1)]

})
− τ

≤ F (ρ(ςn−1, ςn))− τ

< F (ρ(ςn−1, ςn))− τ

2
.

Since

F (D(ςn, T ςn)) = inf
y∈Tςn

F (ρ(ςn, y)).

Therefore using this equality, we get

F (D(ςn, T ςn)) = inf
y∈Tςn

F (ρ(ςn, y))

≤ F (H(Tςn−1, T ςn))

< F (ρ(ςn−1, ςn))− τ

2
. (2.8)

So, from (2.8) we can get a sequence {ςn} in M such that ςn+1 ∈ Tςn and

F (ρ(ςn, ςn+1)) < F (ρ(ςn−1, ςn))

for all n ∈ N. The rest of the proof can be completed as in the proof of Theorem
2.1. �

Example 2.1. Let M = {ςn = n(n+1)
2 : n ∈ N} and ρ(ς, ω) = |ς − ω| , ς, ω ∈ M.

Define a relation f on M by

ς f ω ⇐⇒ ςω ∈ {ς, ω} ⊂M = {ςn} .
Then (M,f, ρ) is an O−complete metric space. Define the mapping T : M → K(M)
by the:

Tς =

 {ς1} , ς = ς1

{ς1, ς2, · · · , ςn−1} , ς = ςn

.

Then T is generalized multivalued orthogonal F -contraction with respect to

F (α) = α+ lnα and τ = 1.
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On the other hand, since

lim
n→∞

H(Tςn, T ς1)

M(ςn, ς1)
= lim
n→∞

ςn−1 − 1

ςn − 1
= 1,

then T is not generalized multivalued contraction.

Corollary 2.1. Let (M,f, ρ) be an O−complete orthogonal metric space and T :
M → CB(M) be a mapping. Assume that the following conditions are satisfied:
(i) There exists ς0 ∈M such that {ς0}f1 Tς0 or Tς0 f1 {ς0} ,
(ii) For all ς, ω ∈M, ς f ω implies Tς f1 Tω,
(iii) If {ςn} is an orthogonal sequence in M such that ςn → ς∗, then ςn f ς∗ or ς∗ f
ςn for all n ∈ N,
(iv) F ∈ F and there exists τ > 0 such that ς, ω ∈M with ς f ω,

H(Tς, Tω) > 0⇒ τ + F (H(Tς, Tω)) ≤ F (M(ς, ω)),

where

M(ς, ω) = max

{
ρ(ς, ω), D(ς, T ς), D(ω, Tω),

1

2
[D(ς, Tω) +D(ω, T ς)]

}
.

Then, T has at least a fixed point in M .

Corollary 2.2. Let (M,f, ρ) be an O−complete orthogonal metric space and T :
M → CB(M) be a mapping. Assume that the following conditions are satisfied:
(i) There exists ς0 ∈M such that {ς0}f1 Tς0 or Tς0 f1 {ς0} ,
(ii) For all ς, ω ∈M, ς f ω implies Tς f1 Tω,
(iii) If {ςn} is an orthogonal sequence in M such that ςn → ς∗, then ςn f ς∗ or ς∗ f
ςn for all n ∈ N,
(iv) F ∈ F and there exists τ > 0 such that ς, ω ∈M with ς f ω,

H(Tς, Tω) > 0⇒ τ + F (H(Tς, Tω)) ≤ F (ρ(ς, ω)).

Then, T has at least a fixed point in M .

Corollary 2.3. Let (M,f, ρ) be an O−complete orthogonal metric space and T :
M →M be a mapping. Assume that the following conditions are satisfied:
(i) There exists ς0 ∈M such that {ς0}f1 Tς0 or Tς0 f1 {ς0} ,
(ii) For all ς, ω ∈M, ς f ω implies Tς f1 Tω,
(iii) If {ςn} is an orthogonal sequence in M such that ςn → ς∗, then ςn f ς∗ or ς∗ f
ςn for all n ∈ N,
(iv) F ∈ F and there exists τ > 0 such that ς, ω ∈M with ς f ω,

τ + F (ρ(Tς, Tω)) ≤ F (ρ(ς, ω)).

Then, T has at least a fixed point in M .

3. Applications

Recall that, for any 1 ≤ p <∞, the space Lp (M,F, µ) (or Lp (M)) consists of all
complex-valued measurable functions κ on the underlying space M satisfying∫

M

|κ (ς)|p dµ (ς) ,
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where F is the σ-algebra of measurable sets and µ is the measure. When p = 1, the
space L1 (M) consists of all integrable functions κ on M and we define the L1-norm
of κ by

‖κ‖1 =

∫
M

|κ (ς)| dµ (ς) .

In the section, using Theorem 2.1, we show the existence of a solution of the following
differential equation:{

u
′
(t) = f (t, u (t)) , a.e. t ∈ I := [0, T ]

u (0) = a, a ≥ 1,
(3.1)

where f : I × R→ R is an integrable function satisfying the following conditions:
(i) f (s, p) ≥ 0 for all p ≥ 0 and s ∈ I;
(ii) for each ς, ω ∈ L1 (I) with ς (s)ω (s) ≥ ς (s) or ς (s)ω (s) ≥ ω (s) for all s ∈ I,
there exist κ ∈ L1 (I) and τ > 0 such that

|f (s, ς (s))− f (s, ω (s))| ≤ κ (s)(
1 + τ

√
κ (s)

)2 |ς (s)− ω (s)| (3.2)

and

|ς (s)− ω (s)| ≤ κ (s) eA(s)

for all s ∈ I,where A (s) :=
s∫
0

|κ (w)| dw.

Theorem 3.1. Consider the differential Eq. 3.1. If (i) and (ii) are satisfied, then
the differential Eq. 3.1 has a unique positive solution.

Proof. Let X = {u ∈ C (I,R) : u (t) > 0 for all t ∈ I} . Define the orthogonality rela-
tion ⊥ on M by

ς⊥ω ⇐⇒ ς (s)ω (s) ≥ ς (s) orς (s)ω (s) ≥ ω (s) for all t ∈ I.

Since A (t) =
t∫
0

|κ (s)| ds, we have A
′
(t) = |κ (t)| for almost everywhere t ∈ I.

Define a mapping ρ (ς, ω) = ‖ς − ω‖A = sup
t∈I

e−A(t) |ς (s)− ω (s)| for all ς, ω ∈ M.

Thus, (X, d) is a metric space and also a complete metric space (see, [6] for details).
Define a mapping G : M →M by

(Gς) (t) = a+

t∫
0

f (s, ς (s)) ds.

Then, we see that G is ⊥-continuous. Now, we shot that G is ⊥- preserving. For each
ς, ω ∈M with ς⊥ω and t ∈ I, we have

(Gς) (t) = a+

t∫
0

f (s, ς (s)) ds ≥ 1.
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It follows that [(Gς) (t)] [(Gω) (t)] ≥ (Gω) (t) and so (Gς) (t)⊥ (Gω) (t) . Then G is
⊥-preserving.

Now, we can say that G satisfies Corollary 2.3 with F (α) = −1√
α
. Hence the differ-

ential equation (3.1) has a unique positive solution. �
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