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Abstract. In this paper, we consider the notion of generalized multivalued F'—contraction mappings
and prove fixed point theorems for this type mappings. Also, we construct non-trivial example to
validate the potential of our result. Finally, as application, we apply our corollary to show the
existence of a unique solution of the first-order ordinary differential equation.
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1. INTRODUCTION AND PRELIMINARIES

Using the concept of the Hausdorff metric, Nadler [11] introduced the notion of
multivalued contraction mapping and gave a multivalued version of the well known
Banach contraction principle such as:

Let (M, p) be a metric space. Denote by P(M) the family of all nonempty subsets
of M, CB(M) the family of all nonempty, closed and bounded subsets of M and
K (M) the family of all nonempty compact subsets of M. It is well known that,
H :CB(M) x CB(M) — R is defined by, for every A, B € CB(M),

H(A, B) = max {sup D(s, B), sup D(w, A)}
seA weB
is a metric on CB(M), which is called Hausdorf{f metric induced by p, where
D(s,B) = inf {p(s,w) : w € B}.

Let T : M — CB(M) be a map, then T is called multivalued contraction if for all
¢,w € M there exists L € [0,1) such that

H(Ts,Tw) < Lp(s, w).
Then Nadler [11] proved that every multivalued contraction mappings on complete
metric space has a fixed point.

Inspired by his result, various fixed point results concerning multivalued contrac-
tions appeared in the last decades [see, [4,5,7-10,14,15]] Also, combining the ideas of
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Wardowski [16] and Nadler, multivalued F'-contractions by was introduced in [1] and
a fixed point result for these type mappings on complete metric space was given as:

Definition 1.1 ( [1]). Let (M, p) be a metric space and T : M — CB(M) be a
mapping. Then T is said to be a multivalued F-contraction if F' € F and there exists
7 > 0 such that

s,weM, HTs,Tw) > 0= 1+ F(H(Ts,Tw)) < F(M(s,w))

where

M(gaw) = mnax {p(§,W), D(gaTg)a D<w7Tw)> % [D(g,TOJ) + D(vag)}} :

Theorem 1.1 ( [1]). Let (M, p) be a complete metric space and T : M — K (M) be
a multivalued F'-contraction, then T has a fized point in M.

Recently, Gordji et al. [6] introduced the concept of an orthogonal set and present
some fixed point theorems in orthogonal metric spaces. Then Sharma et al. [13] intro-
duced the notion of multivalued orthogonal F-contraction mappings in the framework
of orthogonal metric space. Also you can see [2,3,12].

Now, we give some fundamental definitions and notations of corresponding map-
pings and space which are used in this paper.

Definition 1.2 ( [6]). Let M be a non-empty set and A be a binary relation defined
on M. If binary relation A fulfils the following criteria:

go(Vwe M wAgp) or (Vw € M, g A w),

then pair, (M, A) known as an orthogonal set. The element ¢y is called an orthogonal
element. We denote this O-set or orthogonal set by (M, A).

Definition 1.3 ( [6]). Let (M, A) be an orthogonal set (O-set). Any two elements
G,w € M such that ¢ A w, then ¢,w € M are said to be orthogonally related.

Definition 1.4 ( [6]). A sequence {s,} is called an orthogonal sequence (briefly O
-sequence) if

(Vn € N,¢p A gng1) or (Vn € Njgp1 A Gp).
Similarly, a Cauchy sequence {¢,} is said to be a orthogonally Cauchy sequence if

(Vn € Nygp A Gng1) or (Vn € Nygp1 A ).

Definition 1.5 ( [6]). Let (M, A) be an orthogonal set and p be a metric on M.
Then (M, A, p) is called an orthogonal metric space (shortly O-metric space).

Definition 1.6 ( [6]). Let (M, A, p) be an orthogonal metric space. Then M is said
to be a O-complete if every Cauchy O-sequence is converges in M.
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Definition 1.7 ( [6]). Let (M, A, p) be an orthogonal metric space. A function
f M — M is said to be orthogonally continuous ( A -continuous ) at ¢ if for each O-
sequence {s, } converging to ¢ implies f(s,) = f(¢) as n — oo. Also f is A-continuous
on M if f is A-continuous at every ¢ € M.

Definition 1.8 ( [6]). Let a pair (M, A) be an O-set, where M (# () be a non-empty
set and A be a binary relation on set M. A mapping f : M — M is said to be
A-preserving if f(¢) A f(w) whenever ¢ A w and weakly A-preserving if f(¢) A f(w) or
f(w) A f(s) whenever ¢ A w.

Definition 1.9 ( [13]). Let A and B be two nonempty subsets of an orthogonal set
(M, A). The set A is orthogonal to set B is denoted by A; and defined as follows:

A Ay B, if for every a € Aand b € B,a A b.

Lemma 1.1 ( [13]). Let (M, A, p) be an orthogonal metric space, x € M and A €
K(M). Then there exists a € A such that

D(z, A) = d(z,a).

Lemma 1.2 ( [13]). Let (M, A, p) be an orthogonal metric space, and A, B € K(M),
a € A. Then there exists b € B such that

d(a,b) < H(A, B).

Definition 1.10 ( [16]). Let F be the set of all functions F : (0,00) — R satisfying
the following conditions:

(F1) F is strictly increasing, i.e., for all «, 8 € (0, 00) such that a < 8, F(a) < F(8),
(F2) for each sequence {a,} of positive numbers,

lim a, =0 if and only if lim F(a,) = —oo,

(F3) there exists k € (0,1) such that lim,_,g+ o*F(a) = 0.
We consider by F be the set of all functions F' satisfying (F'1)-(F'3) and
(F4) F(inf A) = inf F(A) for all A C (0,00) with inf A > 0.

The following examples will certify this assertion:

Example 1.1 ( [16]). Let Fj : (0,00) — R be given by the formulae Fy(a) = Ina. It
is clear that F; € F.

Example 1.2 ( [16]). Let F5 : (0,00) — R be given by the formulae Fy(a) = a+Ina.
It is clear that Fy € F.

We can find some different examples for the function F' belonging to F in [16]. In
addition, Wardowski concluded that every F-contraction T is a contractive mapping,
ie.,

d(Tz,Ty) < d(z,y), for all z,y € X, Tx # Ty.
Thus, every F-contraction is a continuous mapping.

Also, Wardowski concluded that if Fy, Fy € F with Fy(o) < Fa(a) for all o > 0

and G = Fy — F} is nondecreasing, then every F}-contraction T is an F-contraction.
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He noted that for the mappings Fi(a) = Ina and Fy(a) = o+ lna, Fy < Fy and
a mapping F» — Fj is strictly increasing. Hence, it was obtained that every Banach
contraction satisfies the contractive condition. On the other side, Example 2.5 in [16]

Motivated by the significance of the problems mentioned above, in this paper, we
consider the notion of generalized multivalued F'—contraction mappings and prove
fixed point theorems for this mappings. Finally, we construct non-trivial example to
validate the potential of our result.

2. MAIN RESULT

We begin with this section by presenting the new concept of generalized multivalued
F-contraction on orthogonal metric space, then we give a fixed point theorems for
this type mapping.

Definition 2.1. Let (M, A, p) be a metric space and T : M — CB(M) be a mapping.
Then T is said to be a generalized multivalued orthogonal F-contraction if F' € F
and there exist 7 > 0, L > 0 such that ¢,w € M with ¢ A w,

H(Ts,Tw) > 0 = 7+ F(H(Ts,Tw)) < F(M(s,w) + LN(,w)),  (2.1)
where
Misw) = max{pls.), DIs.TO), D Tw), 3 1D(. Tu) + Do TO)
N(,w) = min{D(s,Tw), D(w,Ts)}.

Theorem 2.1. Let (M, A,p) be an O—complete orthogonal metric space and T :
M — K(M) be a mapping. Assume that the following conditions are satisfied:
(i) There exists so € M such that {so} A1 Tso or Ty A1{so},
(i1) For all ,w € M,s A w implies Ts A1 Tw,
(#3t) If {sn} is an orthogonal sequence in M such that ¢, — ¢*, then ¢, A ¢* or¢* A
Sn for allm € N,
(i) T is a generalized multivalued orthogonal F-contraction.
Then, T has at least a fized point in M.

Proof. By assumption (i), we can choose ¢; € T'qp such that ¢y A ¢; or ¢ A ¢o and
from (ii), we get T'so A1 T's1, that is there exists ¢o € T'¢; such that ¢; A g3 or ¢ A gp.
If ¢; € Ty, then ¢ is a fixed point of T. Let ¢; ¢ T's;. Then D(s1,Ts1) > 0 since T’y
is compact. On the other hand, from

D(s1,Ts1) < H(T<p,Ts1)

and (F'1), we obtain

F(D(s1,T1)) < F(H(T<so,T<1))-
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From (2.1), we can write that

F(D(s1,T<1))

IN

F(H(T<,Ts1)) < F(M(so,51) + LN((s0,61)) — T

max p(§0,§1),D(§0,T§0)7D(§1,T§1),
- F 1 [D(0,T<1) + D(s1,Tso)] -7
+Lmin {D(s0,Ts1), D(s1,Ts0)}

IN

F <max {p(%,q), ;D(CO,TQ)}> —r

IN

F <max {p(§0,§1), % [o(s0,61) + D(gl,Tgl)]}> -7

IN

F(max {p(<o,<1), D(c1,T<1)}) — 7

= F(p(so,61)) — 7.

(2.2)

Continuing this process, we can construct an orthogonal sequence {s,} in M such
that ¢,41 € T, for all n € NU {0}. Thus, we have ¢,11 A G, OF G A Gy for all
n € NU{0}. If ¢, € Ty, for all k € NU {0} then ¢ is a fixed point of T. So, we may
assume that ¢, ¢ T, for all kK € NU {0}. Since T, closed, we have D(s,,Ts,) > 0
for all n € NU {0}. Also

D(sn,Tsp) < H(Tn-1,T5y).

So using (F'1), we have

F(D(sn,Tspn)) < F(H(Tsp-1,Tsp)).

Further from (iv), we get

IN

IN

IN

F(D(Cna Tgn))
F(H(Tgnfh Tgn))

F(M(gn—lygn) + LN(gn—lagn)) - T

max p(gnfl’gn%D(g’nflngnfl)?D(g’nuTg’n)»
F LD ($u-1,Tsn) + D(sn, Ts—1)] .
+Lmin {D(sp—1,Tn), D(sn, TSrn-1)}

p(§n717 g’ﬂ)’ D(§n717 Tgnfl)a D(g'ru Tgn),
F _
(max { % [D(§n717 Tgn) + D(§na Tgnfl)] T

F(p<§n71; Cn)) —T.
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Hence from the strictly increasing property of F, we get

H(Tgn—lv Tgn) < P(gn—l’ §n)~

We know that z,,4+1 € Tz,
P(Sn,Snt1) = D(6n, Tsn) < H(Tsn—-1,T6n) < p(Sn—1,5n)-

Therefore the sequence {p(¢n,sn+1)} is strictly decreasing sequence. Suppose that
an = p(Sn,Snt+1) — t for some ¢ > 0. Furthermore for all n > ng, we have

T+ F(p(SnySn41)) < 7+ F(H(T6n, Tsp-1))
< F(p(snsSn-1))- (2.3)
Taking n — oo in (2.3), we get a contradiction. So p(Sp,Sn+1) — 0. From (F'3) there
exists k € (0, 1) such that
lim o F(a,) = 0.
n— oo
Then the following holds for all n € N
af F(ay,) — a* F(ag) < —afnr <0. (2.4)
Letting n — oo in (2.4), we obtain that

lim na® = 0. (2.5)

n— oo

From (2.5), there exits ny € N such that na,’i <1 for all n > ny. So we have

a, <
"= pl/k

(2.6)

for all n > ny. In order to show that {¢,} is a O—Cauchy sequence consider m,n € N
such that m > n > ny. Using the triangular inequality for the metric and from (2.6),
we have

p(§n7 Cm) S p(gn; gn—i—l) + p(§n+l7 §n+2) + -+ P(§m—17 gm)
an+an+1+"'+am—1

m—1
= Z ai
i=n
[e%S)
>
i=n
= 1
>
i=n

IN

IN

By the convergence of the series Z l/k , we get p(Sn,Sm) — 0asn — oco. This yields

that {s,} is a O—Cauchy sequence in (M, p). Since (M, p) is a O—complete metric
space, the sequence {gn} converges to some point z € X, that is, lim,, . ¢, = 2.
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Now we claim that, z € Tz. Asume that z ¢ T'z. Hence there exists n; € N such
that z ¢ {Gn},>,, » H(Tsn, Tz) > 0. Therefore further by our assumption, ¢, A z or
Z A ¢p, using (iv), we get

F(D(sn41,T2))

< F(H(T<,,T?))

< F(M(S,2) + LN(p,2)) — 7
max{ p(Sns 2)s D(6n, Tn), D(2,T'2), }

< F 5 [D(sn, T2) + D(2,Ts,)] -7
+Lmln{D(§n7TZ)aD(Z7T§n))}
max{ p(gn’z)7D(§,“T§n),D(Z,TZ), }

< F %[D(gn,TZ)‘FD(Z:Tgn)] -7
+Lmin {D(s,, Tz2), D(2,5n41))}
max{ p(gnaZ)ap(gTL?CTH‘l)’D(Z’TZ)’ }

- F 3 [D(sn,T2) 4+ D(2,Tsy)] -7

+Lmin {D(s,, T2), D(2,5n41))}

Taking n — oo, we get F(D(z,Tz)) < F(D(z,Tz)) — 7, which is a contradiction, so
z € T'z. This completes the proof. O

By adding the condition (F'4) on F', we can consider CB(M) instead of K (M).

Theorem 2.2. Let (M, A,p) be an O—complete orthogonal metric space and T :
M — CB(M) be a mapping. Assume that the following conditions are satisfied:
(i) There exists g9 € M such that {so} A1 Tso or Tso A1 {0},
(i) For all q,w € M, s A w implies Ts k1 Tw,
(#i1) If {c,} is an orthogonal sequence in M such that ¢, — ¢*, then ¢, A ¢* or¢* A
Sp for allm € N|
(iv) T is a generalized multivalued orthogonal F-contraction.
Then, T has at least a fized point in M.

Proof. Let ¢y € M. Since T's is nonempty for all ¢ € M, by assumption (¢), we can

choose ¢1 € T'gg such that ¢y A ¢; or ¢; A p. If g1 € Ty, then ¢ is a fixed point of T

Let ¢; ¢ T;. Then D(sy,Ts1) > 0 since Ty is closed. On the other hand, from
D(s1,T<1) < H(T0,Ts1)

and (F'1), we obtain
F(D(s1,Ts1)) < F(H(T<, T<1)).
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From (2.1), we can write that

IA

IA

IA

IN

From (F4) we get

F(D(1,Ts1))
F(H(T<,Ts1)) < F(M(so,61) + LN((s0,61)) — 7

max P(§0,§1)7D(§07T§O)7D(<17T§1)7
Ja 1 [D(0, T1) + D(s1,Tso)] -7
+Lmin {D(s0,Ts1), D(s1,Ts0)}

F <max {p(q;,q), ;D(%,Tq)}) T

F <max {p(%ml), % [p(0,1) + D(q,Tq)]}) -7

F(max {p(c0,61), D(s1,T1)}) — 7

F(p(s0,61)) — -

F(D(c1,Ts1)) = yier;fgl F(p(1,y))-

So, from (2.7), we have

F(D(c1,Ts1)) = yier;ilF(p(cl,y))

F(H(T<,Ts1))
F(p(so,61)) — 7

F(p(s0,61)) — %

IN N

A

By assumption (ii), we get Ty A1 Ts1. Continuing this process we constract an
orthogonal sequence {s,} in M such that ¢,11 € T, for all n € NU {0}. Thus we
have ¢, 41 A Gp OF G A Gy for all n € NU{0}. If ¢ € Ty, for all k € NU {0} then ¢
is a fixed point of T. So we may assume that ¢ ¢ T, for all k € NU {0}. Since T,
closed, we have D(s,,Tsy,) > 0 for all n € NU {0}. Also

D(Q’m Tgn) S H(T§n717 T§n)

So using (F'1), we have

F(D(n,Tsn)) < F(H(Tsp-1,T6n)).
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Further from (iv), we get

F(D(Q'La T§n))

< F(H(Tgn—lzTgn))

< F(M(§n_1,§n) + LN(gn—lagn)) - T
max p(gnflvgn)7D(§n717T§n71)7D(§n;T§n),

= F % [D(§n,1, Tgn) + D(Cna T(nfl)] — T
+Lmin {D(sp—1,Tn), D(sn, TSn-1)}

p(§n717§n),D(§n71,T§n,1),D(§n7T§n),
= F o
(max { % [D(§n717 Tgn) + D(§na Tgnfl)] T
< F(p(Sn-1,6n)) = T

< F(p(sn-1,%n)) —

[NV

Since

F(D(n,Tsn)) = yg;fg F(p(sn,y)).

Therefore using this equality, we get

F(D(n,Tsn)) = yégEnF(p(gn,y))

< F(H(Tgn—h Tgn))

-

< F(,O(Cn—l,Cn)) - 5

So, from (2.8) we can get a sequence {,} in M such that ¢,41 € T's, and
F(p(§n>§n+l)) < F(P(§n—17§n))

for all n € N. The rest of the proof can be completed as in the proof of Theorem
2.1. O

Example 2.1. Let M = {g, = "("TH) :n € N} and p(s,w) = |[s—w| , s,w € M.
Define a relation A on M by
Shw<<= w e {s,w} C M ={s,}.

Then (M, A, p) is an O—complete metric space. Define the mapping T': M — K (M)
by the:

{a} , s=q

T =

{§17§2a"' 7§n—1} , S =6n

Then T is generalized multivalued orthogonal F-contraction with respect to

Fla)=a+Inaand 7 = 1.
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On the other hand, since

. H(T<,,T<1) . Sn—1—1
lim ———— = lim —— =1,
n—oo  M(n,51) n—oo G, — 1

then T is not generalized multivalued contraction.

Corollary 2.1. Let (M, A,p) be an O—complete orthogonal metric space and T :
M — CB(M) be a mapping. Assume that the following conditions are satisfied:

(i) There exists o € M such that {so} A1 Tso or Ty A1{so},

(i1) For all ,w € M,s A w implies Ts A1 Tw,

(#3t) If {sn} is an orthogonal sequence in M such that ¢, — ¢*, then ¢, A ¢* or¢* A
Sp for allm € N,

(tv) F € F and there exists T > 0 such that ¢,w € M with ¢ A w,

H(Ts,Tw) > 0= 7+ F(H(Ts,Tw)) < F(M(s,w)),

where

M(s,w) = max {p(g,w), D(s,Ts), D(w,Tw), = [D(s, Tw) + D(w,Tg)]} .

N |

Then, T has at least a fized point in M.

Corollary 2.2. Let (M, A,p) be an O—complete orthogonal metric space and T :
M — CB(M) be a mapping. Assume that the following conditions are satisfied:

(1) There exists so € M such that {so} A1 Tso or Ty A1{so},

(i) For all ¢,w € M,s A w implies T's k1 Tw,

(#31) If {sn} is an orthogonal sequence in M such that ¢, — ¢*, then ¢, A ¢* or¢* A
Sp for allm € N|

(tv) F € F and there exists T > 0 such that ¢,w € M with ¢ A w,

H(Ts,Tw)>0= 7+ F(H(Ts,Tw)) < F(p(s,w)).
Then, T has at least a fized point in M.

Corollary 2.3. Let (M, A,p) be an O—complete orthogonal metric space and T :
M — M be a mapping. Assume that the following conditions are satisfied:

(i) There exists g9 € M such that {so} A1 Tso or Tso A1 {0},

(i) For all ¢,w € M, s A w implies Ts A1 Tw,

(#91) If {sn} is an orthogonal sequence in M such that ¢, — ¢*, then ¢, A ¢* or¢* A
Sp for allm € N|

(iv) F' € F and there exists T > 0 such that ¢,w € M with ¢ A w,

7+ P(p(Ts, Tw)) < Flpls,w)).
Then, T has at least a fized point in M.
3. APPLICATIONS
Recall that, for any 1 < p < oo, the space LP (M, F, ) (or L? (M)) consists of all

complex-valued measurable functions « on the underlying space M satisfying

JLGRC!



GENERALIZED MULTIVALUED F—CONTRACTION 13

where F' is the o-algebra of measurable sets and p is the measure. When p = 1, the
space L' (M) consists of all integrable functions x on M and we define the L'-norm
of k by

&lly = [ [r () dr(s).
/

In the section, using Theorem 2.1, we show the existence of a solution of the following
differential equation:

u (t) = t,u(t)), ae tel:=|0,T
{¥@=s0ue). ectel=pm 5.)

where f: I x R — R is an integrable function satisfying the following conditions:

(1) f(s,p) >0forallp>0andsel;

(ii) for each ¢,w € L' (I) with ¢ (s)w (s) > ¢(s) or ¢ (s)w(s) > w(s) for all s € I,
there exist x € L' (I) and 7 > 0 such that

1f (5,5 () = f (5,0 (s))] < 5[5 (s) —w(s)] (3.2)

and
[ (s) — w ()] < K (s) A

for all s € I,where A(s) := [ |k (w)]dw.
0
Theorem 3.1. Consider the differential Eq. 3.1. If (i) and (ii) are satisfied, then

the differential Eq. 3.1 has a unique positive solution.

Proof. Let X = {u € C(I,R):u(t) >0 for all t € I'}. Define the orthogonality rela-
tion 1. on M by

clw<<=<¢(s)w(s) > (s)ors(s)w(s) >w(s) forallt el

¢
Since A (t) = [ |x (s)| ds, we have A’ (t) = |k (t)| for almost everywhere t € I.
0
Define a mapping p(s,w) = ||¢ —wl||, = supe 4® [¢(s) —w (s)| for all ¢,w € M.
tel

Thus, (X, d) is a metric space and also a complete metric space (see, [6] for details).
Define a mapping G : M — M by
t
(@90 =a+ [1(ss(o)ds
0

Then, we see that G is | -continuous. Now, we shot that G is - preserving. For each
S,w € M with ¢Lw and t € I, we have

(Go) (t) = a+/f (5,5 (s))ds > 1.
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follows that [(Gs) ()] [(Gw) (t)] > (Gw) (t) and so (Gg) (t) L (Gw) (t). Then G is
preserving.
Now, we can say that G satisfies Corollary 2.3 with F(a) = \7—% Hence the differ-

ential equation (3.1) has a unique positive solution. O
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