Fixed Point Theory, 25(2024), No. 1, 3-14 DOI: 10.24193/fpt-ro.2024.1.01 http://www.math.ubbcluj.ro/~nodeacj/sfptcj.html

GENERALIZED MULTIVALUED F – CONTRACTION ON ORTHOGONAL METRIC SPACE

ÖZLEM ACAR* AND EŞREF ERDOĞAN**

*Department of Mathematics, Faculty of Science, Selçuk University, 42003, Konya, Turkey E-mail: acarozlem@ymail.com

**Department of Mathematics, Faculty of Science, Selçuk University, 42003, Konya, Turkey E-mail: esreferdogan@yahoo.com

Abstract. In this paper, we consider the notion of generalized multivalued F-contraction mappings and prove fixed point theorems for this type mappings. Also, we construct non-trivial example to validate the potential of our result. Finally, as application, we apply our corollary to show the existence of a unique solution of the first-order ordinary differential equation. **Key Words and Phrases:** Fixed point, F-contraction, orthogonal metric space. **2020 Mathematics Subject Classification:** 54H25, 47H10.

1. INTRODUCTION AND PRELIMINARIES

Using the concept of the Hausdorff metric, Nadler [11] introduced the notion of multivalued contraction mapping and gave a multivalued version of the well known Banach contraction principle such as:

Let (M, ρ) be a metric space. Denote by P(M) the family of all nonempty subsets of M, CB(M) the family of all nonempty, closed and bounded subsets of M and K(M) the family of all nonempty compact subsets of M. It is well known that, $H: CB(M) \times CB(M) \to \mathbb{R}$ is defined by, for every $A, B \in CB(M)$,

$$H(A,B) = \max\left\{\sup_{\varsigma \in A} D(\varsigma,B), \sup_{\omega \in B} D(\omega,A)\right\}$$

is a metric on CB(M), which is called Hausdorff metric induced by ρ , where

$$D(\varsigma, B) = \inf \left\{ \rho(\varsigma, \omega) : \omega \in B \right\}.$$

Let $T: M \to CB(M)$ be a map, then T is called multivalued contraction if for all $\varsigma, \omega \in M$ there exists $L \in [0, 1)$ such that

$$H(T\varsigma, T\omega) \le L\rho(\varsigma, \omega)$$

Then Nadler [11] proved that every multivalued contraction mappings on complete metric space has a fixed point.

Inspired by his result, various fixed point results concerning multivalued contractions appeared in the last decades [see, [4,5,7–10,14,15]] Also, combining the ideas of Wardowski [16] and Nadler, multivalued F-contractions by was introduced in [1] and a fixed point result for these type mappings on complete metric space was given as:

Definition 1.1 ([1]). Let (M, ρ) be a metric space and $T : M \to CB(M)$ be a mapping. Then T is said to be a multivalued F-contraction if $F \in \mathcal{F}$ and there exists $\tau > 0$ such that

$$\varsigma, \omega \in M, \ H(T\varsigma, T\omega) > 0 \Rightarrow \tau + F(H(T\varsigma, T\omega)) \le F(M(\varsigma, \omega))$$

where

$$M(\varsigma,\omega) = \max\left\{\rho(\varsigma,\omega), D(\varsigma,T\varsigma), D(\omega,T\omega), \frac{1}{2}\left[D(\varsigma,T\omega) + D(\omega,T\varsigma)\right]\right\}.$$

Theorem 1.1 ([1]). Let (M, ρ) be a complete metric space and $T : M \to K(M)$ be a multivalued F-contraction, then T has a fixed point in M.

Recently, Gordji et al. [6] introduced the concept of an orthogonal set and present some fixed point theorems in orthogonal metric spaces. Then Sharma et al. [13] introduced the notion of multivalued orthogonal F-contraction mappings in the framework of orthogonal metric space. Also you can see [2,3,12].

Now, we give some fundamental definitions and notations of corresponding mappings and space which are used in this paper.

Definition 1.2 ([6]). Let M be a non-empty set and λ be a binary relation defined on M. If binary relation λ fulfils the following criteria:

$$\exists \varsigma_0 (\forall \omega \in M, \omega \land \varsigma_0) \text{ or } (\forall \omega \in M, \varsigma_0 \land \omega),$$

then pair, (M, λ) known as an orthogonal set. The element ς_0 is called an orthogonal element. We denote this O-set or orthogonal set by (M, λ) .

Definition 1.3 ([6]). Let (M, λ) be an orthogonal set (*O*-set). Any two elements $\varsigma, \omega \in M$ such that $\varsigma \downarrow \omega$, then $\varsigma, \omega \in M$ are said to be orthogonally related.

Definition 1.4 ([6]). A sequence $\{\varsigma_n\}$ is called an orthogonal sequence (briefly *O* -sequence) if

 $(\forall n \in \mathbb{N}, \varsigma_n \land \varsigma_{n+1})$ or $(\forall n \in \mathbb{N}, \varsigma_{n+1} \land \varsigma_n)$.

Similarly, a Cauchy sequence $\{\varsigma_n\}$ is said to be a orthogonally Cauchy sequence if

$$(\forall n \in \mathbb{N}, \varsigma_n \land \varsigma_{n+1})$$
 or $(\forall n \in \mathbb{N}, \varsigma_{n+1} \land \varsigma_n)$.

Definition 1.5 ([6]). Let (M, λ) be an orthogonal set and ρ be a metric on M. Then (M, λ, ρ) is called an orthogonal metric space (shortly *O*-metric space).

Definition 1.6 ([6]). Let (M, λ, ρ) be an orthogonal metric space. Then M is said to be a O-complete if every Cauchy O-sequence is converges in M.

Definition 1.7 ([6]). Let (M, λ, ρ) be an orthogonal metric space. A function $f: M \to M$ is said to be orthogonally continuous $(\lambda$ -continuous) at ς if for each *O*-sequence $\{\varsigma_n\}$ converging to ς implies $f(\varsigma_n) \to f(\varsigma)$ as $n \to \infty$. Also f is λ -continuous on M if f is λ -continuous at every $\varsigma \in M$.

Definition 1.8 ([6]). Let a pair (M, λ) be an *O*-set, where $M \neq \emptyset$ be a non-empty set and λ be a binary relation on set *M*. A mapping $f : M \to M$ is said to be λ -preserving if $f(\varsigma) \land f(\omega)$ whenever $\varsigma \land \omega$ and weakly λ -preserving if $f(\varsigma) \land f(\omega)$ or $f(\omega) \land f(\varsigma)$ whenever $\varsigma \land \omega$.

Definition 1.9 ([13]). Let A and B be two nonempty subsets of an orthogonal set (M, λ) . The set A is orthogonal to set B is denoted by λ_1 and defined as follows:

 $A \downarrow_1 B$, if for every $a \in A$ and $b \in B, a \downarrow b$.

Lemma 1.1 ([13]). Let (M, λ, ρ) be an orthogonal metric space, $x \in M$ and $A \in K(M)$. Then there exists $a \in A$ such that

$$D(x,A) = d(x,a).$$

Lemma 1.2 ([13]). Let (M, λ, ρ) be an orthogonal metric space, and $A, B \in K(M)$, $a \in A$. Then there exists $b \in B$ such that

$$d(a,b) \le H(A,B).$$

Definition 1.10 ([16]). Let \mathcal{F} be the set of all functions $F : (0, \infty) \to \mathbb{R}$ satisfying the following conditions:

(F1) F is strictly increasing, i.e., for all $\alpha, \beta \in (0, \infty)$ such that $\alpha < \beta, F(\alpha) < F(\beta)$, (F2) for each sequence $\{a_n\}$ of positive numbers,

 $\lim_{n \to \infty} a_n = 0 \text{ if and only if } \lim_{n \to \infty} F(a_n) = -\infty,$

(F3) there exists $k \in (0, 1)$ such that $\lim_{\alpha \to 0^+} \alpha^k F(\alpha) = 0$. We consider by \mathcal{F} be the set of all functions F satisfying (F1)-(F3) and (F4) $F(\inf A) = \inf F(A)$ for all $A \subset (0, \infty)$ with $\inf A > 0$.

The following examples will certify this assertion:

Example 1.1 ([16]). Let $F_1 : (0, \infty) \to \mathbb{R}$ be given by the formulae $F_1(\alpha) = \ln \alpha$. It is clear that $F_1 \in \mathcal{F}$.

Example 1.2 ([16]). Let $F_2 : (0, \infty) \to \mathbb{R}$ be given by the formulae $F_2(\alpha) = \alpha + \ln \alpha$. It is clear that $F_2 \in \mathcal{F}$.

We can find some different examples for the function F belonging to \mathcal{F} in [16]. In addition, Wardowski concluded that every F-contraction T is a contractive mapping, i.e.,

$$d(Tx, Ty) < d(x, y)$$
, for all $x, y \in X, Tx \neq Ty$.

Thus, every *F*-contraction is a continuous mapping.

Also, Wardowski concluded that if $F_1, F_2 \in \mathcal{F}$ with $F_1(\alpha) \leq F_2(\alpha)$ for all $\alpha > 0$ and $G = F_2 - F_1$ is nondecreasing, then every F_1 -contraction T is an F_2 -contraction.

ÖZLEM ACAR AND EŞREF ERDOĞAN

He noted that for the mappings $F_1(\alpha) = \ln \alpha$ and $F_2(\alpha) = \alpha + \ln \alpha$, $F_1 < F_2$ and a mapping $F_2 - F_1$ is strictly increasing. Hence, it was obtained that every Banach contraction satisfies the contractive condition. On the other side, Example 2.5 in [16]

Motivated by the significance of the problems mentioned above, in this paper, we consider the notion of generalized multivalued F-contraction mappings and prove fixed point theorems for this mappings. Finally, we construct non-trivial example to validate the potential of our result.

2. Main Result

We begin with this section by presenting the new concept of generalized multivalued F-contraction on orthogonal metric space, then we give a fixed point theorems for this type mapping.

Definition 2.1. Let (M, λ, ρ) be a metric space and $T: M \to CB(M)$ be a mapping. Then T is said to be a generalized multivalued orthogonal F-contraction if $F \in \mathcal{F}$ and there exist $\tau > 0, L > 0$ such that $\varsigma, \omega \in M$ with $\varsigma \downarrow \omega$,

$$H(T\varsigma, T\omega) > 0 \Rightarrow \tau + F(H(T\varsigma, T\omega)) \le F(M(\varsigma, \omega) + LN(\varsigma, \omega)),$$
(2.1)

where

$$M(\varsigma,\omega) = \max\left\{\rho(\varsigma,\omega), D(\varsigma,T\varsigma), D(\omega,T\omega), \frac{1}{2}\left[D(\varsigma,T\omega) + D(\omega,T\varsigma)\right]\right\}$$
$$N(\varsigma,\omega) = \min\left\{D(\varsigma,T\omega), D(\omega,T\varsigma)\right\}.$$

Theorem 2.1. Let (M, λ, ρ) be an O-complete orthogonal metric space and T: $M \to K(M)$ be a mapping. Assume that the following conditions are satisfied: (i) There exists $\varsigma_0 \in M$ such that $\{\varsigma_0\} \downarrow_1 T\varsigma_0$ or $T\varsigma_0 \downarrow_1 \{\varsigma_0\}$, (ii) For all $\varsigma, \omega \in M, \varsigma \downarrow \omega$ implies $T\varsigma \downarrow_1 T\omega$,

(iii) If $\{\varsigma_n\}$ is an orthogonal sequence in M such that $\varsigma_n \to \varsigma^*$, then $\varsigma_n \downarrow \varsigma^*$ or $\varsigma^* \downarrow \varsigma_n$ for all $n \in \mathbb{N}$,

(iv) T is a generalized multivalued orthogonal F-contraction.

Then, T has at least a fixed point in M.

Proof. By assumption (*i*), we can choose $\varsigma_1 \in T_{\varsigma_0}$ such that $\varsigma_0 \land \varsigma_1$ or $\varsigma_1 \land \varsigma_0$ and from (*ii*), we get $T_{\varsigma_0} \land_1 T_{\varsigma_1}$, that is there exists $\varsigma_2 \in T_{\varsigma_1}$ such that $\varsigma_1 \land \varsigma_2$ or $\varsigma_2 \land \varsigma_1$. If $\varsigma_1 \in T_{\varsigma_1}$, then ς_1 is a fixed point of *T*. Let $\varsigma_1 \notin T_{\varsigma_1}$. Then $D(\varsigma_1, T_{\varsigma_1}) > 0$ since T_{ς_1} is compact. On the other hand, from

$$D(\varsigma_1, T\varsigma_1) \le H(T\varsigma_0, T\varsigma_1)$$

and (F1), we obtain

$$F(D(\varsigma_1, T\varsigma_1)) \le F(H(T\varsigma_0, T\varsigma_1)).$$

From (2.1), we can write that

$$F(D(\varsigma_{1}, T\varsigma_{1})) \leq F(M(\varsigma_{0}, \varsigma_{1}) + LN((\varsigma_{0}, \varsigma_{1})) - \tau$$

$$= F\left(\max\left\{\begin{array}{c} \max\left\{\begin{array}{c} \rho(\varsigma_{0}, \varsigma_{1}), D(\varsigma_{0}, T\varsigma_{0}), D(\varsigma_{1}, T\varsigma_{1}), \\ \frac{1}{2}[D(\varsigma_{0}, T\varsigma_{1}) + D(\varsigma_{1}, T\varsigma_{0})] \\ +L\min\left\{D(\varsigma_{0}, T\varsigma_{1}), D(\varsigma_{1}, T\varsigma_{0})\right\}\end{array}\right) - \tau$$

$$\leq F\left(\max\left\{\rho(\varsigma_{0}, \varsigma_{1}), \frac{1}{2}D(\varsigma_{0}, T\varsigma_{1})\right\}\right) - \tau$$

$$\leq F\left(\max\left\{\rho(\varsigma_{0}, \varsigma_{1}), \frac{1}{2}[\rho(\varsigma_{0}, \varsigma_{1}) + D(\varsigma_{1}, T\varsigma_{1})]\right\}\right) - \tau$$

$$\leq F(\max\left\{\rho(\varsigma_{0}, \varsigma_{1}), D(\varsigma_{1}, T\varsigma_{1})\right\}) - \tau$$

$$= F(\rho(\varsigma_{0}, \varsigma_{1})) - \tau. \qquad (2.2)$$

Continuing this process, we can construct an orthogonal sequence $\{\varsigma_n\}$ in M such that $\varsigma_{n+1} \in T\varsigma_n$ for all $n \in \mathbb{N} \cup \{0\}$. Thus, we have $\varsigma_{n+1} \land \varsigma_n$ or $\varsigma_n \land \varsigma_{n+1}$ for all $n \in \mathbb{N} \cup \{0\}$. If $\varsigma_k \in T\varsigma_k$ for all $k \in \mathbb{N} \cup \{0\}$ then ς_k is a fixed point of T. So, we may assume that $\varsigma_k \notin T\varsigma_k$ for all $k \in \mathbb{N} \cup \{0\}$. Since $T\varsigma_n$ closed, we have $D(\varsigma_n, T\varsigma_n) > 0$ for all $n \in \mathbb{N} \cup \{0\}$. Also

$$D(\varsigma_n, T\varsigma_n) \le H(T\varsigma_{n-1}, T\varsigma_n).$$

So using (F1), we have

$$F(D(\varsigma_n, T\varsigma_n)) \le F(H(T\varsigma_{n-1}, T\varsigma_n)).$$

Further from (iv), we get

$$F(D(\varsigma_{n}, T\varsigma_{n}))$$

$$\leq F(H(T\varsigma_{n-1}, T\varsigma_{n}))$$

$$\leq F(M(\varsigma_{n-1}, \varsigma_{n}) + LN(\varsigma_{n-1}, \varsigma_{n})) - \tau$$

$$= F\left(\max\left\{\begin{array}{c} \max\left\{\begin{array}{c} \rho(\varsigma_{n-1}, \varsigma_{n}), D(\varsigma_{n-1}, T\varsigma_{n-1}), D(\varsigma_{n}, T\varsigma_{n}), \\ \frac{1}{2}[D(\varsigma_{n-1}, T\varsigma_{n}) + D(\varsigma_{n}, T\varsigma_{n-1})] \\ +L\min\left\{D(\varsigma_{n-1}, T\varsigma_{n}), D(\varsigma_{n}, T\varsigma_{n-1})\right\}\end{array}\right\}\right) - \tau$$

$$= F\left(\max\left\{\begin{array}{c} \rho(\varsigma_{n-1}, \varsigma_{n}), D(\varsigma_{n-1}, T\varsigma_{n-1}), D(\varsigma_{n}, T\varsigma_{n}), \\ \frac{1}{2}[D(\varsigma_{n-1}, T\varsigma_{n}) + D(\varsigma_{n}, T\varsigma_{n-1})] \\ \end{array}\right\}\right) - \tau$$

$$\leq F(\rho(\varsigma_{n-1}, \varsigma_{n})) - \tau.$$

Hence from the strictly increasing property of F, we get

$$H(T\varsigma_{n-1}, T\varsigma_n) < \rho(\varsigma_{n-1}, \varsigma_n)$$

We know that $x_{n+1} \in Tx_n$,

$$\rho(\varsigma_n,\varsigma_{n+1}) = D(\varsigma_n,T\varsigma_n) \le H(T\varsigma_{n-1},T\varsigma_n) < \rho(\varsigma_{n-1},\varsigma_n).$$

Therefore the sequence $\{\rho(\varsigma_n, \varsigma_{n+1})\}$ is strictly decreasing sequence. Suppose that $a_n = \rho(\varsigma_n, \varsigma_{n+1}) \to t$ for some $t \ge 0$. Furthermore for all $n \ge n_0$, we have

$$\tau + F(\rho(\varsigma_n, \varsigma_{n+1})) \leq \tau + F(H(T\varsigma_n, T\varsigma_{n-1}))$$

$$\leq F(\rho(\varsigma_n, \varsigma_{n-1})).$$
(2.3)

Taking $n \to \infty$ in (2.3), we get a contradiction. So $\rho(\varsigma_n, \varsigma_{n+1}) \to 0$. From (F3) there exists $k \in (0, 1)$ such that

$$\lim_{n \to \infty} a_n^k F(a_n) = 0.$$

Then the following holds for all $n \in \mathbb{N}$

$$a_n^k F(a_n) - a_n^k F(a_0) \le -a_n^k n\tau \le 0.$$
 (2.4)

Letting $n \to \infty$ in (2.4), we obtain that

$$\lim_{n \to \infty} n a_n^k = 0. \tag{2.5}$$

From (2.5), there exits $n_1 \in \mathbb{N}$ such that $na_n^k \leq 1$ for all $n \geq n_1$. So we have

$$a_n \le \frac{1}{n^{1/k}} \tag{2.6}$$

for all $n \ge n_1$. In order to show that $\{\varsigma_n\}$ is a O-Cauchy sequence consider $m, n \in \mathbb{N}$ such that $m > n \ge n_1$. Using the triangular inequality for the metric and from (2.6), we have

$$\rho(\varsigma_n, \varsigma_m) \leq \rho(\varsigma_n, \varsigma_{n+1}) + \rho(\varsigma_{n+1}, \varsigma_{n+2}) + \dots + \rho(\varsigma_{m-1}, \varsigma_m)$$

$$= a_n + a_{n+1} + \dots + a_{m-1}$$

$$= \sum_{i=n}^{m-1} a_i$$

$$\leq \sum_{i=n}^{\infty} a_i$$

$$\leq \sum_{i=n}^{\infty} \frac{1}{i^{1/k}}.$$

By the convergence of the series $\sum_{i=1}^{\infty} \frac{1}{i^{1/k}}$, we get $\rho(\varsigma_n, \varsigma_m) \to 0$ as $n \to \infty$. This yields that $\{\varsigma_n\}$ is a *O*-Cauchy sequence in (M, ρ) . Since (M, ρ) is a *O*-complete metric space, the sequence $\{\varsigma_n\}$ converges to some point $z \in X$, that is, $\lim_{n\to\infty} \varsigma_n = z$.

Now we claim that, $z \in Tz$. Asume that $z \notin Tz$. Hence there exists $n_1 \in \mathbb{N}$ such that $z \notin \{\varsigma_n\}_{n \ge n_1}$, $H(T\varsigma_n, Tz) > 0$. Therefore further by our assumption, $\varsigma_n \land z$ or $z \land \varsigma_n$, using (iv), we get

$$F(D(\varsigma_{n+1}, Tz))$$

$$\leq F(H(T\varsigma_n, Tz))$$

$$\leq F(M(\varsigma_n, z) + LN(\varsigma_n, z)) - \tau$$

$$\leq F\left(\max\left\{\begin{array}{c} \rho(\varsigma_n, z), D(\varsigma_n, T\varsigma_n), D(z, Tz), \\ \frac{1}{2}[D(\varsigma_n, Tz) + D(z, T\varsigma_n)] \\ +L\min\{D(\varsigma_n, Tz), D(z, T\varsigma_n)\}\end{array}\right\}\right) - \tau$$

$$\leq F\left(\max\left\{\begin{array}{c} \rho(\varsigma_n, z), D(\varsigma_n, T\varsigma_n), D(z, Tz), \\ \frac{1}{2}[D(\varsigma_n, Tz) + D(z, T\varsigma_n)] \\ +L\min\{D(\varsigma_n, Tz), D(z, \varsigma_{n+1})\}\end{array}\right) - \tau$$

$$= F\left(\max\left\{\begin{array}{c} \rho(\varsigma_n, z), \rho(\varsigma_n, \varsigma_{n+1}), D(z, Tz), \\ \frac{1}{2}[D(\varsigma_n, Tz) + D(z, T\varsigma_n)] \\ +L\min\{D(\varsigma_n, Tz), D(z, \varsigma_{n+1}), D(z, Tz), \\ \frac{1}{2}[D(\varsigma_n, Tz) + D(z, T\varsigma_n)] \\ +L\min\{D(\varsigma_n, Tz), D(z, \varsigma_{n+1}), P(z, Ts_n)\}\right\} - \tau$$

Taking $n \to \infty$, we get $F(D(z, Tz)) \leq F(D(z, Tz)) - \tau$, which is a contradiction, so $z \in Tz$. This completes the proof.

By adding the condition (F4) on F, we can consider CB(M) instead of K(M).

Theorem 2.2. Let (M, λ, ρ) be an O-complete orthogonal metric space and T: $M \to CB(M)$ be a mapping. Assume that the following conditions are satisfied: (i) There exists $\varsigma_0 \in M$ such that $\{\varsigma_0\} \downarrow_1 T\varsigma_0$ or $T\varsigma_0 \downarrow_1 \{\varsigma_0\}$, (ii) For all $\varsigma, \omega \in M, \varsigma \downarrow \omega$ implies $T\varsigma \downarrow_1 T\omega$, (iii) If $\{\varsigma_n\}$ is an orthogonal sequence in M such that $\varsigma_n \to \varsigma^*$, then $\varsigma_n \downarrow \varsigma^*$ or $\varsigma^* \downarrow$ ς_n for all $n \in \mathbb{N}$, (iv) T is a generalized multivalued orthogonal F-contraction.

Then, T has at least a fixed point in M.

Proof. Let $\varsigma_0 \in M$. Since $T\varsigma$ is nonempty for all $\varsigma \in M$, by assumption (*i*), we can choose $\varsigma_1 \in T\varsigma_0$ such that $\varsigma_0 \land \varsigma_1$ or $\varsigma_1 \land \varsigma_0$. If $\varsigma_1 \in T\varsigma_1$, then ς_1 is a fixed point of T. Let $\varsigma_1 \notin T\varsigma_1$. Then $D(\varsigma_1, T\varsigma_1) > 0$ since $T\varsigma_1$ is closed. On the other hand, from

$$D(\varsigma_1, T\varsigma_1) \le H(T\varsigma_0, T\varsigma_1)$$

and (F1), we obtain

$$F(D(\varsigma_1, T\varsigma_1)) \le F(H(T\varsigma_0, T\varsigma_1)).$$

From (2.1), we can write that

$$F(D(\varsigma_{1}, T\varsigma_{1})) \leq F(M(\varsigma_{0}, \varsigma_{1}) + LN((\varsigma_{0}, \varsigma_{1})) - \tau$$

$$= F\left(\max\left\{\begin{array}{c} \max\left\{\begin{array}{c} \rho(\varsigma_{0}, \varsigma_{1}), D(\varsigma_{0}, T\varsigma_{0}), D(\varsigma_{1}, T\varsigma_{1}), \\ \frac{1}{2}[D(\varsigma_{0}, T\varsigma_{1}) + D(\varsigma_{1}, T\varsigma_{0})] \\ +L\min\left\{D(\varsigma_{0}, T\varsigma_{1}), D(\varsigma_{1}, T\varsigma_{0})\right\}\end{array}\right) - \tau$$

$$\leq F\left(\max\left\{\rho(\varsigma_{0}, \varsigma_{1}), \frac{1}{2}D(\varsigma_{0}, T\varsigma_{1})\right\}\right) - \tau$$

$$\leq F\left(\max\left\{\rho(\varsigma_{0}, \varsigma_{1}), \frac{1}{2}[\rho(\varsigma_{0}, \varsigma_{1}) + D(\varsigma_{1}, T\varsigma_{1})]\right\}\right) - \tau$$

$$\leq F(\max\left\{\rho(\varsigma_{0}, \varsigma_{1}), D(\varsigma_{1}, T\varsigma_{1})\right\}) - \tau$$

$$= F(\rho(\varsigma_{0}, \varsigma_{1})) - \tau. \qquad (2.7)$$

From (F4) we get

$$F(D(\varsigma_1, T\varsigma_1)) = \inf_{y \in T\varsigma_1} F(\rho(\varsigma_1, y)).$$

So, from (2.7), we have

$$F(D(\varsigma_1, T\varsigma_1)) = \inf_{\substack{y \in T\varsigma_1}} F(\rho(\varsigma_1, y))$$

$$\leq F(H(T\varsigma_0, T\varsigma_1))$$

$$\leq F(\rho(\varsigma_0, \varsigma_1)) - \tau$$

$$< F(\rho(\varsigma_0, \varsigma_1)) - \frac{\tau}{2}.$$

By assumption (*ii*), we get $T_{\varsigma_0} \wedge_1 T_{\varsigma_1}$. Continuing this process we construct an orthogonal sequence $\{\varsigma_n\}$ in M such that $\varsigma_{n+1} \in T_{\varsigma_n}$ for all $n \in \mathbb{N} \cup \{0\}$. Thus we have $\varsigma_{n+1} \wedge \varsigma_n$ or $\varsigma_n \wedge \varsigma_{n+1}$ for all $n \in \mathbb{N} \cup \{0\}$. If $\varsigma_k \in T_{\varsigma_k}$ for all $k \in \mathbb{N} \cup \{0\}$ then ς_k is a fixed point of T. So we may assume that $\varsigma_k \notin T_{\varsigma_k}$ for all $k \in \mathbb{N} \cup \{0\}$. Since T_{ς_n} closed, we have $D(\varsigma_n, T_{\varsigma_n}) > 0$ for all $n \in \mathbb{N} \cup \{0\}$. Also

$$D(\varsigma_n, T\varsigma_n) \le H(T\varsigma_{n-1}, T\varsigma_n).$$

So using (F1), we have

$$F(D(\varsigma_n, T\varsigma_n)) \le F(H(T\varsigma_{n-1}, T\varsigma_n)).$$

Further from (iv), we get

$$F(D(\varsigma_{n}, T\varsigma_{n}))$$

$$\leq F(H(T\varsigma_{n-1}, T\varsigma_{n}))$$

$$\leq F(M(\varsigma_{n-1}, \varsigma_{n}) + LN(\varsigma_{n-1}, \varsigma_{n})) - \tau$$

$$= F\left(\max\left\{\begin{array}{c} \max\left\{\begin{array}{c} \rho(\varsigma_{n-1}, \varsigma_{n}), D(\varsigma_{n-1}, T\varsigma_{n-1}), D(\varsigma_{n}, T\varsigma_{n}), \\ \frac{1}{2} \left[D(\varsigma_{n-1}, T\varsigma_{n}) + D(\varsigma_{n}, T\varsigma_{n-1}) \right] \\ +L\min\left\{ D(\varsigma_{n-1}, T\varsigma_{n}), D(\varsigma_{n}, T\varsigma_{n-1}) \right\} \end{array}\right) - \tau$$

$$= F\left(\max\left\{\begin{array}{c} \rho(\varsigma_{n-1}, \varsigma_{n}), D(\varsigma_{n-1}, T\varsigma_{n-1}), D(\varsigma_{n}, T\varsigma_{n}), \\ \frac{1}{2} \left[D(\varsigma_{n-1}, T\varsigma_{n}) + D(\varsigma_{n}, T\varsigma_{n-1}) \right] \\ \end{array}\right) - \tau$$

$$\leq F(\rho(\varsigma_{n-1}, \varsigma_{n})) - \tau$$

$$< F(\rho(\varsigma_{n-1}, \varsigma_{n})) - \frac{\tau}{2}.$$

Since

$$F(D(\varsigma_n, T\varsigma_n)) = \inf_{y \in T\varsigma_n} F(\rho(\varsigma_n, y)).$$

Therefore using this equality, we get

$$F(D(\varsigma_n, T\varsigma_n)) = \inf_{y \in T\varsigma_n} F(\rho(\varsigma_n, y))$$

$$\leq F(H(T\varsigma_{n-1}, T\varsigma_n))$$

$$< F(\rho(\varsigma_{n-1}, \varsigma_n)) - \frac{\tau}{2}.$$
(2.8)

•

So, from (2.8) we can get a sequence $\{\varsigma_n\}$ in M such that $\varsigma_{n+1} \in T\varsigma_n$ and

$$F(\rho(\varsigma_n,\varsigma_{n+1})) < F(\rho(\varsigma_{n-1},\varsigma_n))$$

for all $n \in \mathbb{N}$. The rest of the proof can be completed as in the proof of Theorem 2.1.

Example 2.1. Let $M = \{\varsigma_n = \frac{n(n+1)}{2} : n \in \mathbb{N}\}$ and $\rho(\varsigma, \omega) = |\varsigma - \omega|, \varsigma, \omega \in M$. Define a relation λ on M by

$$\varsigma \land \omega \Longleftrightarrow \varsigma \omega \in \{\varsigma, \omega\} \subset M = \{\varsigma_n\}$$

Then (M, λ, ρ) is an O-complete metric space. Define the mapping $T: M \to K(M)$ by the:

$$T\varsigma = \begin{cases} \{\varsigma_1\} & , \quad \varsigma = \varsigma_1 \\ \\ \{\varsigma_1, \varsigma_2, \cdots, \varsigma_{n-1}\} & , \quad \varsigma = \varsigma_n \end{cases}$$

Then T is generalized multivalued orthogonal F-contraction with respect to

$$F(\alpha) = \alpha + \ln \alpha \text{ and } \tau = 1.$$

On the other hand, since

$$\lim_{n \to \infty} \frac{H(T\varsigma_n, T\varsigma_1)}{M(\varsigma_n, \varsigma_1)} = \lim_{n \to \infty} \frac{\varsigma_{n-1} - 1}{\varsigma_n - 1} = 1,$$

then T is not generalized multivalued contraction.

Corollary 2.1. Let (M, λ, ρ) be an O-complete orthogonal metric space and T: $M \to CB(M)$ be a mapping. Assume that the following conditions are satisfied: (i) There exists $\varsigma_0 \in M$ such that $\{\varsigma_0\} \downarrow_1 T\varsigma_0$ or $T\varsigma_0 \downarrow_1 \{\varsigma_0\}$, (ii) For all $\varsigma, \omega \in M, \varsigma \downarrow \omega$ implies $T\varsigma \downarrow_1 T\omega$,

(*iii*) If $\{\varsigma_n\}$ is an orthogonal sequence in M such that $\varsigma_n \to \varsigma^*$, then $\varsigma_n \land \varsigma^*$ or $\varsigma^* \land \varsigma_n$ for all $n \in \mathbb{N}$,

(iv) $F \in \mathcal{F}$ and there exists $\tau > 0$ such that $\varsigma, \omega \in M$ with $\varsigma \downarrow \omega$,

$$H(T\varsigma, T\omega) > 0 \Rightarrow \tau + F(H(T\varsigma, T\omega)) \le F(M(\varsigma, \omega)),$$

where

$$M(\varsigma,\omega) = \max\left\{\rho(\varsigma,\omega), D(\varsigma,T\varsigma), D(\omega,T\omega), \frac{1}{2}\left[D(\varsigma,T\omega) + D(\omega,T\varsigma)\right]\right\}.$$

Then, T has at least a fixed point in M.

Corollary 2.2. Let (M, λ, ρ) be an O-complete orthogonal metric space and T: $M \to CB(M)$ be a mapping. Assume that the following conditions are satisfied: (i) There exists $\varsigma_0 \in M$ such that $\{\varsigma_0\} \lambda_1 T\varsigma_0$ or $T\varsigma_0 \lambda_1 \{\varsigma_0\}$, (ii) For all $\varsigma, \omega \in M, \varsigma \lambda \omega$ implies $T\varsigma \lambda_1 T\omega$,

(iii) If $\{\varsigma_n\}$ is an orthogonal sequence in M such that $\varsigma_n \to \varsigma^*$, then $\varsigma_n \land \varsigma^*$ or $\varsigma^* \land \varsigma_n$ for all $n \in \mathbb{N}$,

(iv) $F \in \mathcal{F}$ and there exists $\tau > 0$ such that $\varsigma, \omega \in M$ with $\varsigma \downarrow \omega$,

$$H(T\varsigma, T\omega) > 0 \Rightarrow \tau + F(H(T\varsigma, T\omega)) \le F(\rho(\varsigma, \omega)).$$

Then, T has at least a fixed point in M.

Corollary 2.3. Let (M, λ, ρ) be an O-complete orthogonal metric space and T: $M \to M$ be a mapping. Assume that the following conditions are satisfied:

(i) There exists $\varsigma_0 \in M$ such that $\{\varsigma_0\} \downarrow_1 T\varsigma_0$ or $T\varsigma_0 \downarrow_1 \{\varsigma_0\}$,

(*ii*) For all $\varsigma, \omega \in M, \varsigma \land \omega$ implies $T\varsigma \land_1 T\omega$,

(iii) If $\{\varsigma_n\}$ is an orthogonal sequence in M such that $\varsigma_n \to \varsigma^*$, then $\varsigma_n \land \varsigma^*$ or $\varsigma^* \land \varsigma_n$ for all $n \in \mathbb{N}$,

(iv) $F \in \mathcal{F}$ and there exists $\tau > 0$ such that $\varsigma, \omega \in M$ with $\varsigma \downarrow \omega$,

$$\tau + F(\rho(T\varsigma, T\omega)) \le F(\rho(\varsigma, \omega)).$$

Then, T has at least a fixed point in M.

3. Applications

Recall that, for any $1 \le p < \infty$, the space $L^{p}(M, F, \mu)$ (or $L^{p}(M)$) consists of all complex-valued measurable functions κ on the underlying space M satisfying

$$\int_{M}\left|\kappa\left(\varsigma\right)\right|^{\mathbf{p}}d\mu\left(\varsigma\right),$$

where F is the σ -algebra of measurable sets and μ is the measure. When p = 1, the space $L^{1}(M)$ consists of all integrable functions κ on M and we define the L^{1} -norm of κ by

$$\left\|\kappa\right\|_{1} = \int_{M} \left|\kappa\left(\varsigma\right)\right| d\mu\left(\varsigma\right).$$

In the section, using Theorem 2.1, we show the existence of a solution of the following differential equation:

$$\begin{cases} u'(t) = f(t, u(t)), & a.e. \ t \in I := [0, T] \\ u(0) = a, & a \ge 1, \end{cases}$$
(3.1)

where $f: I \times \mathbb{R} \to \mathbb{R}$ is an integrable function satisfying the following conditions: (i) $f(s, p) \ge 0$ for all $p \ge 0$ and $s \in I$;

(*ii*) for each $\varsigma, \omega \in L^1(I)$ with $\varsigma(s) \omega(s) \ge \varsigma(s)$ or $\varsigma(s) \omega(s) \ge \omega(s)$ for all $s \in I$, there exist $\kappa \in L^1(I)$ and $\tau > 0$ such that

$$|f(s,\varsigma(s)) - f(s,\omega(s))| \le \frac{\kappa(s)}{\left(1 + \tau\sqrt{\kappa(s)}\right)^2} |\varsigma(s) - \omega(s)|$$
(3.2)

and

$$\left|\varsigma\left(s\right) - \omega\left(s\right)\right| \le \kappa\left(s\right)e^{A(s)}$$

for all $s \in I$, where $A(s) := \int_{0}^{s} |\kappa(w)| dw$.

Theorem 3.1. Consider the differential Eq. 3.1. If (i) and (ii) are satisfied, then the differential Eq. 3.1 has a unique positive solution.

Proof. Let $X = \{u \in C(I, \mathbb{R}) : u(t) > 0$ for all $t \in I\}$. Define the orthogonality relation \perp on M by

$$\varsigma \perp \omega \iff \varsigma(s) \, \omega(s) \ge \varsigma(s) \, or \varsigma(s) \, \omega(s) \ge \omega(s) \text{ for all } t \in I.$$

Since $A(t) = \int_{0}^{t} |\kappa(s)| ds$, we have $A'(t) = |\kappa(t)|$ for almost everywhere $t \in I$.

Define a mapping $\rho(\varsigma, \omega) = \|\varsigma - \omega\|_A = \sup_{t \in I} e^{-A(t)} |\varsigma(s) - \omega(s)|$ for all $\varsigma, \omega \in M$.

Thus, (X, d) is a metric space and also a complete metric space (see, [6] for details). Define a mapping $\mathbb{G}: M \to M$ by

$$\left(\mathbb{G}\varsigma\right)(t) = a + \int_{0}^{t} f\left(s,\varsigma\left(s\right)\right) ds.$$

Then, we see that \mathbb{G} is \perp -continuous. Now, we shot that \mathbb{G} is \perp - preserving. For each $\varsigma, \omega \in M$ with $\varsigma \perp \omega$ and $t \in I$, we have

$$\left(\mathbb{G}\varsigma\right)(t) = a + \int_{0}^{t} f\left(s,\varsigma\left(s\right)\right) ds \ge 1.$$

It follows that $[(\mathbb{G}_{\varsigma})(t)][(\mathbb{G}_{\omega})(t)] \ge (\mathbb{G}_{\omega})(t)$ and so $(\mathbb{G}_{\varsigma})(t) \perp (\mathbb{G}_{\omega})(t)$. Then \mathbb{G} is \perp -preserving.

Now, we can say that \mathbb{G} satisfies Corollary 2.3 with $F(\alpha) = \frac{-1}{\sqrt{\alpha}}$. Hence the differential equation (3.1) has a unique positive solution.

References

- Ö. Acar, G. Durmaz, G. Mınak, Generalized multivalued F-contractions on complete metric space, Bull. Iranian Math. Soc., 40(2014), no. 6, 1469-1478.
- [2] Ö. Acar, E. Erdoğan, Some fixed point results for almost contraction on orthogonal metric space, Creat. Math. Inform., 31(2022), no. 2, 147-153.
- [3] Ö. Acar, A.S. Özkapu, Multivalued Rational Type F-Contraction on Orthogonal Metric Space, Mathematical Foundations of Computing 6 (3)(2022), 303-312.
- [4] Lj. B. Čirić, Multi-valued nonlinear contraction mappings, Nonlinear Anal., 71(2009), 2716-2723.
- [5] P.Z. Daffer, H. Kaneko, Fixed points of generalized contractive multivalued mappings, J. Math. Anal. Appl., 192(1995), 655-666.
- [6] M.E. Gordji, M. Rameani, M. De La Sen, Y.J. Cho, On orthogonal sets and Banach fixed point theorem, Fixed Point Theory, 18(2017), 569-578.
- [7] E. Karapinar, A. Fulga, R.P. Agarwal, A survey: F-contractions with related fixed point results, Journal of Fixed Point Theory and Applications, (2020), 22:69 https://doi.org/10.1007/s11784-020-00803-7.
- [8] D. Klim, D. Wardowski, Fixed point theorems for set-valued contractions in complete metric spaces, J. Math. Anal. Appl., 334(2007), 132-139.
- [9] S. Kumar, M. Asim, Fixed point theorems for a pair of ordered F-contraction mappings in ordered metric spaces, Advances in Nonlinear Variational Inequalities, 25(2022), no. 1, 17-28.
- [10] S. Kumar, L. Sholastica, On some fixed point theorems for multivalued F-contractions in partial metric spaces, Demonstratio Mathematica, 54(2021), 151-161.
- [11] S.B. Nadler, Multi-valued contraction mappings, Pacific J. Math., 30(1969), 475-488.
- [12] K. Sawangsup, W. Sintunavarat, Y.J. Cho, Fixed point theorems for orthogonal F-contraction mappings on O-complete metric spaces, Journal of Fixed Point Theory and Applications, 22(2020), no. 1, 1-14.
- [13] R.K. Sharma, S. Chandok, Multivalued problems, orthogonal mappings, and fractional integrodifferential equation, Journal of Mathematics, Volume 2020, Article ID 6615478, 8 pages.
- [14] L. Sholastica, S. Kumar, G. Kakiko, Fixed points for F-contraction mappings in partial metric spaces, Lobachevskii Journal of Mathematics, 40(2019), no. 2, 183-188.
- [15] L. Wangwe, S. Kumar, A common fixed point theorem for generalized F-Kannan-Suzuki type mapping in TVS valued cone metric space with applications, Journal of Mathematics, Vol. 2022, Article ID 6504663, 17 pages, https://doi.org/10.1155/2022/6504663.
- [16] D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl. 2012, 2012:94, 6 pp.

Received: October 21, 2021; Accepted: January 23, 2023.

14