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1. Introduction

For more than fifty-five years now, there has been a lot of research activity regard-
ing the fixed point theory of nonexpansive (that is, 1-Lipschitz) mappings. See, for
example, [2, 4, 5, 8, 9, 10, 12, 13, 14, 15, 16, 20, 21, 23, 24, 25, 26, 27, 28, 33, 34, 35]
and the references cited therein. This activity stems from Banach’s classical theorem
[1] concerning the existence of a unique fixed point for a strict contraction. It also
concerns the convergence of (inexact) iterates of a nonexpansive mapping to one of
its fixed points. Since that seminal result, many developments have taken place in
this field including, in particular, studies of feasibility, common fixed point problems
and variational inequalities, which find important applications in engineering, medical
and the natural sciences [3, 6, 7, 11, 29, 30, 31, 34, 35].

In this work we consider a contraction mapping of Perov type which maps a closed
subset of a generalized complete metric space into the space. The study of this class
of mappings is an important topic in the fixed point theory [17, 18, 19, 22, 32]. We
show the existence of a unique fixed point which attracts all (inexact) iterates of the
mapping uniformly on bounded sets.

2. Main results

Let Rn be an n-dimensional Euclidean space. In other words,

Rn = {x = (x1, . . . , xn) : xi ∈ R1, i = 1, . . . , n}.
Let

Rn+ = {x = (x1, . . . , xn) ∈ Rn : xi ≥ 0, i = 1, . . . , n}
419
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and e = (1, 1, . . . , 1) ∈ Rn. We say that x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn

satisfy x ≤ y if xi ≤ yi for all i = 1, . . . , n. For each x = (x1, . . . , xn) ∈ Rn set

‖x‖1 =

n∑
i=1

|xi|.

Let Y be a nonempty set and let S : Y → Y . We denote by S0 the identity mapping
in Y , set S1 = S and for every integer i ≥ 0 define

Si+1 = S ◦ Si.
We suppose that the sum over an empty set is zero.

Assume that X is a nonempty set and a function d : X × X → Rn+ satisfies for
each x, y, z ∈ X,

d(x, y) = 0 if and only if x = y,

d(x, y) = d(y, x),

d(x, z) ≤ d(x, y) + d(y, z).

The pair (X, d) is called a generalized metric space and d is called a generalized metric
[17, 18, 19, 22, 32].

For all x, y ∈ X set

d(x, y) = (d1(x, y), . . . , dn(x, y)).

Fix θ ∈ X. For each x ∈ X and each r ∈ Rn+ set

B(x, r) = {y ∈ X : d(x, y) ≤ r}.
We say that a sequence {xi}∞i=0 ⊂ X converges to x∗ ∈ X if

lim
i→∞

‖d(xi, x∗)‖1 = 0.

We say that {xi}∞i=0 ⊂ X is a Cauchy sequence if for each ε > 0 there exists a natural
number n(ε) such that for each pair of integers p,m ≥ n(ε),

‖d(xp, xm)‖1 ≤ ε.
The generalized metric space (X, d) is complete if every Cauchy sequence converges.

For all x, y ∈ X set

d̃(x, y) = ‖d(x, y)‖1 = d1(x, y) + · · ·+ dn(x, y).

Clearly, (X, d̃) is a metric space and convergence in (X, d) is equivalent to the con-

vergence in (X, d̃).

We assume that the metric space (X, d̃) is complete.
Assume that A : Rn+ → Rn+ and that the following properties hold:
(i) A(0) = 0 and A is continuous at zero;
(ii) for each z1, z2 ∈ Rn+ satisfying 0 ≤ z1 ≤ z2,

A(z1) ≤ A(z2);

(iii) for each z1, z2 ∈ Rn+,

A(z1 + z2) ≤ A(z1 + z2);

(iv) Ak(e)→ 0 as k →∞;
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(v) A(λz) = λA(z) for each λ ≥ 0 and each z ∈ Rn+.
Assume that K is a nonempty closed subset of X and T : K → X satisfies for each

x, y ∈ K,

d(T (x), T (y)) ≤ A(d(x, y)). (2.1)

It is natural to call the mapping T as a generalized contraction [24, 27]. This class
of mappings was introduced in [17]. A particular case when A is a linear mapping
was introduced in [18].

It is easy to see that the following auxiliary result holds.
Lemma 2.1. Let x, y ∈ K, m ≥ 1 be an integer and let Tm(x), Tm(y) exist. Then

d(Tm(x), Tm(y)) ≤ Am(d(x, y)).

Set

∆1 = sup{‖Ai(e)‖1 : i = 1, 2, . . . } (2.2)

(see property (iv)).
In this paper we prove the following results.

Theorem 2.2. Assume that for each ε > 0 there exists xε ∈ K such that

d(xε, T (xε)) ≤ εe.

Then the following assertions hold.
1. There exists a unique point xT ∈ K such that T (xT ) = xT .
2. For each ε > 0 there exists δ > 0 such that if x ∈ K satisfies d(x, T (x)) ≤ δe,

then d(x, xT ) ≤ εe.

Theorem 2.3. Assume that c > 0 and that for each integer m ≥ 1 there exists

{x(m)
i }mi=0 ⊂ K such that

d(x
(m)
0 , x

(m)
1 ) ≤ ce (2.2)

and that for each integer i ∈ {0, . . . ,m− 1},

d(x
(m)
i+1 , T (x

(m)
i )) ≤ m−1e. (2.3)

Then there exists a unique point xT ∈ K such that T (xT ) = xT .

Theorem 2.4. Assume that xT ∈ K satisfies T (xT ) = xT and c, ε > 0. Then there
exist δ ∈ (0, ε) and a natural number n0 such that for each integer m ≥ n0 and each
sequence {xi}mi=0 ⊂ K which satisfies

d(x0, xT ) ≤ ce,

d(xi+1, T (xi)) ≤ δ, i = 0, . . . ,m− 1

the inequality

d(xi, xT ) ≤ εe
holds for all integers i = n0, . . . ,m.
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Theorem 2.5. Assume that xT ∈ K satisfies T (xT ) = xT and ε > 0. Then there
exists δ ∈ (0, ε) such that for each integer k ≥ 1 and each sequence {xi}ki=0 ⊂ K which
satisfies

d(x0, xT ) ≤ δe,
d(xi+1, T (xi)) ≤ δ, i = 0, . . . , k − 1

the inequality
d(xi, xT ) ≤ εe

holds for all integers i = 0, . . . , k.

3. Proof of Theorem 2.2

By property (iv), there exists a natural number k∗ > 4 such that for each integer
k ≥ k∗,

Ak(e) ≤ (8n)−1e. (3.1)

Proposition 3.1. Let ε ∈ (0, 1), a positive number δ satisfy

δ(2k∗ + 1)

k∗−1∑
i=0

Ai(e) ≤ (4n)−1εe (3.2)

and let {xi}k∗i=0, {yi}
k∗
i=0 ⊂ K satisfy

d(x0, T (x0)) ≤ δe, d(y0, T (y0)) ≤ δe (3.3)

and for each i = 0, . . . , k∗ − 1

d(xi+1, T (xi)) ≤ δe, d(yi+1, T (yi)) ≤ δe. (3.4)

Then
d(x0, y0) ≤ εe.

Proof. Assume that the proposition is not true. Then

d̃(x0, y0) > ε. (3.5)

In view of (3.3) and (3.4),

d(x0, x1) ≤ d(x0, T (x0)) + d(T (x0), x1) ≤ 2δe,

d(y0, y1) ≤ d(y0, T (y0)) + d(T (y0), y1) ≤ 2δe. (3.6)

By (2.1), (3.4) and (3.6),

d(x1, x2) ≤ d(x1, T (x0)) + d(T (x0), T (x1)) + d(T (x1), x2)

≤ 2δe+A(d(x0, x1)) ≤ 2δe+A(2δe),

d(y1, y2) ≤ d(y1, T (y0)) + d(T (y0), T (y1)) + d(T (y1), y2)

≤ 2δe+A(d(y0, y1)) ≤ 2δe+A(2δe). (3.7)

We show that for all p = 0, . . . , k∗ − 1,

d(xp, xp+1) ≤
p∑
i=0

Ai(2δe), (3.8)
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d(yp, yp+1) ≤
p∑
i=0

Ai(2δe). (3.9)

In view of (3.6) and (3.7), equations (3.8) and (3.9) hold for p = 0, 1.
Assume that p ∈ {1, . . . , k∗ − 2} and that (3.8) and (3.9) hold. It follows from

(2.1), (3.4) and (3.8) that

d(xp+1, xp+2) ≤ d(xp+1, T (xp)) + d(T (xp), T (xp+1)) + d(T (xp+1), xp+2)

≤ 2δe+A(d(xp, xp+1))

≤ 2δe+A(

p∑
i=0

Ai(2δe)) ≤
p+1∑
i=0

Ai(2δe).

Analogously, we show that

d(yp+1, yp+2) ≤
p+1∑
i=0

Ai(2δe).

Thus the assumption made for p also holds for p+ 1. Thus we showed that (3.8) and
(3.9) hold for all p = 0, . . . , k∗ − 1. Equations (3.8) and (3.9) imply that

d(x0, xk∗) ≤
k∗−1∑
p=0

d(xp, xp+1) ≤
k∗−1∑
p=0

(

p∑
i=0

Ai(2δe)) ≤ k∗
k∗−1∑
i=0

Ai(2δe) (3.10)

and analogously

d(y0, yk∗) ≤ k∗
k∗−1∑
i=0

Ai(2δe) (3.11)

By (2.1) and (3.4),

d(x1, y1) ≤ d(x1, T (x0)) + d(T (x0), T (y0)) + d(T (y0), y1)

≤ 2δe+A(d(x0, y0)). (3.12)

We show that for all p = 1, . . . , k∗,

d(xp, yp) ≤ Ap(d(x0, y0)) +

p−1∑
i=0

Ai(2δe). (3.13)

In view of (3.12) equation (3.13) holds for p = 1.
Assume that p ∈ {1, . . . , k∗ − 1} and (3.13) holds. It follows from (2.1), (3.4) and
(3.13) that

d(xp+1, yp+1) ≤ d(xp+1, T (xp)) + d(T (xp), T (yp)) + d(T (yp), yp+1)

≤ 2δe+A(d(xp, yp)) ≤ Ap+1(d(x0, y0)) +

p∑
i=0

Ai(2δe)

and (3.13) is true for p+ 1 too. Thus (3.13) holds for all integers p = 0, . . . , k∗ and

d(xk∗ , yk∗) ≤ Ak∗(d(x0, y0)) +

k∗−1∑
i=0

Ai(2δe). (3.14)
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By (3.1), (3.2), (3.10), (3.11) and (3.14),

d(x0, y0) ≤ d(x0, xk∗) + d(xk∗ , yk∗) + d(yk∗ , y0)

≤ 2k∗

k∗−1∑
i=0

Ai(2δe) +

k∗−1∑
i=0

Ai(2δe) +Ak∗(d(x0, y0))

≤ 2δ(2k∗ + 1)

k∗−1∑
i=0

Ai(e) + d̃(x0, y0)Ak∗(e)

≤ (2n)−1εe+ (4n)−1d̃(x0, y0)e, d̃(x0, y0)

≤ 2−1ε+ 4−1d̃(x0, y0)

and d̃(x0, y0) ≤ ε. Proposition 3.1 is proved.

Proof of Theorem 2.2. For each integer k ≥ 1 there exists xk ∈ K such that

d(xk, T (xk)) ≤ k−1e. (3.15)

By Proposition 3.1, {xk}∞k=1 is a Cauchy sequence in (X, d̃). There exists

xT = lim
k→∞

xk. (3.16)

By (3.15) and (3.16), for each integer k ≥ 1,

d(xT , T (xT )) ≤ d(xT , xk) + d(xk, T (xk)) + d(T (xk), T (xT ))

≤ d(xT , xk) + d(xk, T (xk)) +A(d(xk, T (xk))→ 0

as k → ∞. Thus xT = T (xT ). Now Assertion 2 follows from Proposition 3.1. The
uniqueness of the fixed point of T follows from Assertion 2. Theorem 2.2 is proved.

4. Proof of Theorem 2.3

Let ε ∈ (0, 1). In view of Theorem 2.2, it is sufficient to show that there exists
xε ∈ K such that

d(xk, T (xk)) ≤ εe.
Property (iv) implies that there exists a natural number n0 > 4 such that

cAn0−1(e) < 8−1εe. (4.1)

Choose an integer

m > n0 + 2

such that

m−1
n0−1∑
i=0

Ai(e) < 8−1εe. (4.2)

We show that for all integers p = 1, . . . ,m− 1,

d(x(m)
p , T (x(m)

p )) ≤ cAp(e) + 2

p−1∑
i=0

Ai(m−1e)−m−1e. (4.3)
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By (2.1)-(2.3),

d(x
(m)
1 , T (x

(m)
1 )) ≤ d(x

(m)
1 , T (x

(m)
0 )) + d(T (x

(m)
0 ), T (x

(m)
1 ))

≤ m−1e+A(d(x
(m)
0 , x

(m)
1 )) ≤ m−1e+A(ce)

and (4.3) holds for p = 1.
Assume that p ∈ {1, . . . ,m− 2} and that (4.3) holds. By (2.1), (2.3) and (4.3),

d(x
(m)
p+1, T (x

(m)
p+1)) ≤ d(x

(m)
p+1, T (x(m)

p )) + d(T (x(m)
p ), T (x

(m)
p+1))

≤ m−1e+A(d(x(m)
p , x

(m)
p+1))

≤ m−1e+A(d(x(m)
p , T (x(m)

p )) + d(T (x(m)
p ), x

(m)
p+1))

≤ m−1e+A(d(T (x(m)
p ), x(m)

p ) +m−1e)

≤ m−1e+A(2

p−1∑
i=0

Ai(m−1e)) +Ap+1(ce)

= cAp+1(e) + 2

p∑
i=0

Ai(m−1e)−m−1e

and (4.3) holds for p+ 1 too. Thus (4.3) holds for all p = 1, . . . ,m− 1. In particular
for p = n0 − 1, in view of (4.1) and (4.2),

d(x
(m)
n0−1, T (x

(m)
n0−1)) ≤ cAn0−1(e) + 2

n0−1∑
i=0

Ai(m−1e) < 8−1εe+ 8−1εe < εe.

This completes the proof of Theorem 2.3.

5. Auxiliary results for Theorems 2.4 and 2.5

Lemma 5.1. Assume that xT ∈ K satisfies

T (xT ) = xT , (5.1)

δ ∈ (0, 1), m ≥ 1 is an integer and {xi}mi=0 ⊂ K satisfies

d(xi+1, T (xi)) ≤ δ, i = 0, . . . ,m− 1. (5.2)

Then for all p = 0, . . . ,m,

d(xp, xT ) ≤ Ap(d(x0, xT )) +

p−1∑
i=0

Ai(δe). (5.3)

Proof. Clearly, (5.3) holds for p = 0. By (2.1), (5.1) and (5.2),

d(x1, xT ) ≤ d(xT , T (x0)) + d(T (x0), x1) ≤ A(d(xT , x0)) + δe

and (5.3) holds for p = 1.
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Assume that p ∈ {0, . . . ,m− 1} and (5.3) holds. It follows from (2.1), (5.2) and (5.3)
that

d(xp+1, xT ) ≤ d(xp+1, T (xp)) + d(T (xp), xT )

≤ δe+A(Ap(d(x0, xT )) +

p−1∑
i=0

Ai(δe))

≤ Ap+1(d(x0, xT )) +

p∑
i=0

Ai(δe)

and (5.3) holds for p+ 1. This completes the proof of Lemma 5.1.

Lemma 5.2. Assume that xT ∈ K satisfies

T (xT ) = xT ,

c > 0 and ε ∈ (0, 1). Then there exist a natural number k and δ ∈ (0, ε) such that for
each finite sequence {xi}ki=0 ⊂ K which satisfies

d(x0, xT ) ≤ ce, (5.4)

d(xi+1, T (xi)) ≤ δe, i = 0, . . . , k − 1 (5.5)

the inequality

d(xk, xT ) ≤ εe.

holds.

Proof. Property (iv) implies that there exists a natural number k such that

cAk(e) < 4−1εe. (5.6)

Choose a positive number δ ∈ (0, ε) such that

δ

k−1∑
i=0

Ai(e) ≤ 4−1εe. (5.7)

Assume that {xi}ki=0 ⊂ K satisfies (5.4) and (5.5). By Lemma 5.1 and (5.4)-(5.7),

d(xk, xT ) ≤ Ak(d(x0, xT )) +

k−1∑
i=0

Ai(δe)

≤ Ak(ce) + δ

k−1∑
i=0

Ai(e) ≤ εe.

Lemma 5.2 is proved.
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6. Proofs of Theorem 2.4 and 2.5

Proof of Theorem 2.5. We may assume that ε ∈ (0, 1). Properties (iv) and (v) imply
that there exists

ε1 ∈ (0, ε)

such that

Ai(ε1e) ≤ 8−1εe, i = 0, 1, . . . . (6.1)

By property (iv), there exists an integer k0 > 1 such that

Ak0(e) ≤ 8−1ε1e. (6.2)

Choose δ ∈ (0, ε1) such that

δ

k0∑
i=0

Ai(e) ≤ 8−1ε1e. (6.3)

Assume that m ≥ 1 is an integer, {xi}mi=0 ⊂ K,

d(x0, xT ) ≤ δe, (6.4)

and that for all i = 0, . . . ,m− 1,

d(xi+1, T (xi)) ≤ δ. (6.5)

Assume that j ∈ {0, . . . ,m},
j + k0 ≤ m (6.6)

and that

d(xj0 , xT ) ≤ e. (6.7)

Set

yi = xi+j0 , i = 0, . . . , k0. (6.8)

Lemma 5.1 and equations (6.2), (6.3), (6.7) and (6.8) imply that

d(xj+k0 , xT ) = d(yk0 , xT ) ≤ Ak0(d(yk0 , xT ))

+

k0−1∑
i=0

Ai(δe) ≤ 8−1ε1e+ 8−1ε1e.

Thus we have shown that the following property holds:
(a) if j ∈ {0, . . . ,m} satisfies (6.6) and (6.7), then d(xj+k0 , xT ) ≤ 4−1ε1e.

Property (a) and (6.4) imply that the following property holds:
(b) if an integer s ≥ 0 satisfies sk0 ≤ m, then d(xsk0 , xT ) ≤ 4−1ε1e.

Assume that p ∈ {1, . . . ,m}. There exists an integer s ≥ 0 such that

sk0 ≤ p < (s+ 1)k0. (6.9)

Property (b) implies that

d(xsk0 , xT ) ≤ 4−1ε1e. (6.10)
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Lemma 5.1, (6.1), (6.3), (6.5), (6.9) and (6.10) imply that

d(xp, xT ) ≤ Ap−sk0(d(xsk0 , xT )) +

k0∑
i=0

Ai(δe)

≤ 4−1ε1A
p−s0(e) + (ε1/8)e ≤ ε.

Theorem 2.5 is proved.

Theorem 2.4 follows from Theorem 2.5 and Lemma 3.2.
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[19] A. Petruşel, G. Petruşel, J.C. Yao, Perov type theorems for orbital contractions, J. Nonlinear

Convex Anal., 21(2020), 759-769.
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