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Abstract. This note presents some new results on existence of zeros in continuous mappings for

convex domains that can be regarded as generalizations of the Bolzano intermediate value theorem

concerning the cube and the Borsuk-Ulam theorem for the unit ball. Based on the classic Borsuk-
Ulam theorem, the main result is proved that under some antipodal-type inequality conditions any

continuous map defined on a convex domain has zero point in the domain. As an application, we
present a new proof of the well known Poincaré–Miranda theorem, also showing that the Borsuk-

Ulam theorem implies the Poincaré–Miranda theorem.
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1. Introduction

A well known text-book theorem in mathematical analysis is the Bolzano inter-
mediate value theorem stating that if a continuous function f(x) defined on a closed
interval [a, b] satisfies hf(a) ≤ 0 and hf(b) ≥ 0 for h ∈ {−1, 1} then f(x) has at least
one zero on this interval. This theorem was later extended to continuous mappings
from n-dimensional cube into Rn by H. Poincaré and C. Miranda [3, 4, 5] which is
well known as the Poincaré-Miranda theorem. Let us recall this theorem for reader’s
convenience. Let

In = [a1, b1]× [a2, b2]× . . .× [an, bn] ⊂ Rn.

Consider a continuous mapping

f : In → Rn, f(x) = (f1(x), . . . , fn(x)), x = (x1, x2, . . . , xn).

The Poincaré-Miranda theorem can be stated as follows
The Poincaré-Miranda theorem. [4] Suppose that a continuous mapping f : In →
Rn satisfies

hifi(x1, . . . , xi−1, ai, xi+1, . . . , xn) ≥ 0
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and

hifi(x1, . . . , xi−1, bi, xi+1, . . . , xn) ≤ 0

for i = 1, 2, . . . , n, where hi ∈ {−1, 1}.
Then there exists a point x̄ ∈ In such that f(x̄) = 0.
The Poincaré-Miranda theorem as an n-dimensional generalization of the Bolzano

intermediate value theorem is usually more suitable than the Brouwer fixed point
theorem in many applications to the existence of periodic solutions of ordinary dif-
ferential equations. Thus several proofs [3, 4, 5, 6, 7] from the elementary analytical
to the topological were given to this wonderful theorem. It is also of significance to
get a generalization of the Bolzano intermediate value theorem that can have more
applications. Recently, this theorem has been extended to infinite dimensional Ba-
nach spaces [1], and some new versions of the Bolzano intermediate value theorem
has been generalized to the case where the domain is a simplex [8, 9].

In this note, we will present some new generalizations of the Bolzano intermediate
value theorem under the so called antipodal-type inequality condition. Our main
result can be stated as follows.

The main theorem. Let U ⊂ Rn be a bounded open convex domain, and let f :
Ū → Rn be a continuous map. Suppose that there is point p ∈ U such that for every
straight line L(p) passing through p, the following holds

〈f(xL), f(yL)〉 < ‖f(xL)‖‖f(yl)‖
where {xL, yL} = L(p) ∩ ∂Ū . Then there is a point x̄ ∈ U such that f(x̄) = 0.

The rest of this paper is organized as follows: Section 2 first considers the contin-
uous map defined on the unit ball, and presents a result which is a general version of
Borsuk-Ulam theorem. Section 3 provides the proof of the main result on continuous
maps defined on convex domains, which seem more natural and succinct compared
with the one dimensional Bolzano intermediate value theorem. As an application a
new proof of the Poincaré-Miranda theorem is given in Section 4.

2. Bolzano Intermediate Value Theorem under antipodal inequality
condition

The Bolzano intermediate value theorem can also be restated as follows. If a
continuous function f(x) defined on a closed interval [−a, a] satisfies f(−a)f(a) ≤ 0,
then f(x) has at least one zero on this interval. In the same spirit to this formulation,
a more elegant generalization can be formulated in the context of the ball centered
at the origin.

Let Dn(r) ⊂ Rn be the closed ball centered at the origin with radius r. We have
the following fact.

Proposition 2.1. Consider a continuous map f : Dn(r) → Rn. Assume that for
each x ∈ ∂Dn(r), the following inequality condition holds

〈f(−x), f(x)〉 ≤ 0 for every x ∈ ∂Dn(r). (2.1)
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Then there exists at least one point x̄ ∈ Dn such that f(x̄) = 0.

A special case of the above statement is an equivalent version of the famous Borsuk-
Ulam theorem:

The Borsuk-Ulam theorem. Consider a continuous map f : Dn(r)→ Rn. If

f(x) = −f(−x), ∀x ∈ ∂Dn(r).

Then there exists a point x̄ ∈ Dn(r) such that f(x̄) = 0.

However, Proposition 1 is just a special case of the following result.

Theorem 2.1. Consider a continuous map f : Dn(r)→ Rn. Assume that ‖f(x)‖ 6=
0, for each x ∈ ∂Dn(r), and the following inequality condition holds

〈f(−x), f(x)〉 < ‖f(−x)‖‖f(x)‖ for every x ∈ ∂Dn(r).

Then the degree of the map f restricted to the boundary is an odd number, therefore
there exists at least one point x̄ ∈ Dn(r) such that f(x̄) = 0.

For convenience the above inequality is called the boundary antipodal inequality.
Proof. Without loss of generality, suppose that f has no zero point on ∂Dn(r) =

Sn−1(r). Consider f̃ = f |∂Dn(r) : Sn−1(r)→ Rn and define

θ =
f̃

‖f̃‖
: Sn−1(r)→ sn−1

which is well defined on the sphere. Because of the above boundary antipodal in-
equality, the inequality θ(x) · θ(−x) < 1 holds for all x ∈ ∂Dn(r) = Sn−1(r).

It is easy to see that the map θ is not nullhomotopic. In fact, we can construct a
homotopy H : [0, 1]× Sn−1(r)→ Sn−1 as follows

H(t, x) =
θ(x)− tθ(−x)

‖θ(x)− tθ(−x)‖
, (t, x) ∈ [0, 1]× Sn−1(r).

Note that

〈θ(x), θ(x)〉 − t〈θ(−x), θ(x)〉 = 1− t〈θ(x), θ(x)〉 > 0 for ∀x ∈ Sn−1(r),

this homotopy makes sense. Therefore θ(x) is homotopic to the antipodal map

h(x) =
θ(x)− θ(−x)

‖θ(x)− θ(−x)‖
which is not nullhomotopic by the well known Borsuk antipodal theorem ([2], page
93) consequently θ is not nullhomotopic. Therefore there exists at least one point
x̄ ∈ intDn(r) such that f(x̄) = 0. �

Remark 2.1. In fact, it is easy to prove that the degree of an antipodal map is an
odd number by virtue of the degree theory.

As an application of Theorem 2.1, we can give a new proof of the well-known
Brower fixed point theorem.
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Brouwer fixed point theorem. Consider a continuous map f : Dn → Rn. Assume
that f(Dn) ⊆ Dn, then f has a fixed point.
Proof. Without loss of generality suppose that f has no fixed point on the boundary
∂Dn. Then construct a continuous map

g(x) = f(x)− x.
It is easy to see that

〈g(x), g(−x)〉 < ‖g(x)‖‖g(−x)‖, ∀x ∈ ∂Dn

and the equality holds only if

g(x) = f(x)− x = g(−x) = f(−x) + x, ∀x ∈ ∂Dn.

This yields
f(x)− f(−x) = 2x.

It is follows that
〈x, f(x)〉 − 〈x, f(−x)〉 = 2, ∀x ∈ ∂Dn.

Since f has no fixed point on the boundary ∂Dn, 〈x, f(x)〉 < 1, and this is in contra-
diction to the above equation. Therefore the strict inequality holds,

〈g(x), g(−x)〉 < ‖g(x)‖‖g(−x)‖, ∀x ∈ ∂Dn.

By Theorem 2.1, g has a zero point in Dn, hence f has a fixed point in Dn. �

3. Bolzano Intermediate Value Theorem for convex domains

Theorem 3.1. Let K ⊂ Rn be a bounded convex closed domain that is symmetric
with respect to the origin, and let f : K → Rn be a continuous map. Assume that
‖f(x)‖ 6= 0, for each x ∈ ∂K, and the following inequality condition holds

〈f(−x), f(x)〉 < ‖f(−x)‖‖f(x)‖, for every x ∈ ∂K.
Then there is a point p ∈ int K such that f(p) = 0.
Proof. Without loss of generality, suppose that F has no zero point on ∂K. Let
Sn−1(r) ⊂ int K be the sphere with radius r > 0. Consider the map g that sends
the point x ∈ Sn−1(r) to the point where Sn−1(r) intersects with the half line {tx :
t > 0}. Clearly g : Sn−1(r) → ∂K is a homeomorphism. Now the composition
f ◦ g : Sn−1(r) → Rn satisfies the antipodal inequality, and it is easy to see that its
degree number is odd in view of Remark 2.1 and Theorem 2.1, and this implies that
the map f : ∂K → Rn has an odd degree number. Therefore f has at least a zero in
int K. �

It is easy to see that the above theorem can be extended to star-shape domains.

Proposition 3.1. Let K ⊂ Rn be a bounded star-shape closed domain with respect
to the origin, and let f : K → Rn be a continuous map. Assume that ‖f(x)‖ 6= 0, for
each x ∈ ∂K, and the following inequality condition holds

〈f(−x), f(x)〉 < ‖f(−x)‖‖f(x)‖, for every x ∈ ∂K.
Then there is a point p ∈ int K such that f(p) = 0.
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More generally, we have the following statement.

Theorem 3.2. Let U ⊂ Rn be a bounded open convex domain, and let f : Ū → Rn

be a continuous map. Suppose that there is point p ∈ U such that for every straight
line L(p) passing through p, the following holds

〈f(xL), f(yL)〉 < ‖f(xL)‖‖f(yL)‖,
where {xL, yL} = L(p) ∩ ∂Ū . Then there is a point x̄ ∈ U such that f(x̄) = 0.
Proof. Without loss of generality, suppose that f has no zero point on ∂U . Let
Sn−1(p, r) ⊂ U ⊂ Rn be the sphere centered at p with radius r > 0. Consider the map
g that sends the point x ∈ Sn−1(p, r) to the point where x ∈ Sn−1(p, r) intersect with
the half line {t(x− p) + p : t > 0}. Clearly g : Sn−1(p, r)→ ∂U is a homeomorphism
because of convexity of ∂U . Now the composition f ◦ g : Sn−1(p, r) → Rn satisfies
the antipodal inequality, and it is easy to see that its degree number is odd in view of
Remark 2.1 and Theorem 2.1, and this implies that the map f : ∂Ū → Rn has also an
odd degree number. Therefore, f has at least a zero in U , the proof is completed. �

The above theorem can be restated as follows.

Theorem 3.3. Let U ⊂ Rn be a bounded convex open domains, and let f : Ū → Rn

be a continuous map. Suppose that there is point p ∈ U such that for every straight
line L(p) passing through p, the following holds:

There is no λ > 0 satisfying f(xL) = λf(yL),

where {xL, yL} = L(p) ∩ ∂Ū .
Then there is a point x̄ ∈ U such that f(x̄) = 0.

4. A new proof of The Poincaré-Miranda theorem

As an application of the above arguments, we can give a new short proof of the
well known Poincaré-Miranda theorem.

First, suppose that the strict boundary inequality holds

hifi(x1, · · · , xi−1, ai, xi+1, · · · , xn) > 0,

and
hifi(x1, · · · , xi−1, bi, xi+1, · · · , xn) < 0,

for i = 1, 2, · · · , n, where hi ∈ {−1, 1}.
The cube is In = [a1, b1]× [a2, b2]× · · · × [an, bn] ⊂ Rn. Denote

I+i ={x = (x1, · · · , xi, · · · , xn) ∈ In, xi = bi},
I−i ={x = (x1, · · · , xi, · · · , xn) ∈ In, xi = ai}.

Obviously In is a convex domain. Take the center point of In,

p =

(
a1 + b1

2
,
a2 + b2

2
, · · · , an + bn

2

)
∈ In

and consider the line L = {t(x− p) + p : t ∈ R}, x ∈ ∂In.
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Without loss of generality, suppose that x ∈ I+i , then L intersects with x ∈ I−i at
−x+2p, since the boundary ∂In is symmetric with respect to p. It is easy to see that
no λ > 0 satisfies f(x) = λf(−x + 2p), since fi(x)fi(−x + 2p) < 0. Then Theorem
3.3 applies to ensure the existence of zero in the interior of In. Now assume that the
weak inequality (2.1) holds, and suppose that f has no zero on In. Then there is a
δ > 0 such that f(x) ≥ δ, ∀x ∈ In. Thus it is easy to perturb f by a small continuous
map η with 2‖η(x)‖ < δ, ∀x ∈ In such that f̄(x) = f(x) + η(x) has no zero on the
cube and the perturbed map satisfies

hif̄i(x1, · · · , xi−1, ai, xi+1, · · · , xn) > 0 and hif̄i(x1, · · · , xi−1, bi, xi+1, · · · , xn) < 0.

Now in view of Theorem 3.3 we get a contradiction.

Remark. Since Theorem 3.3 is derived from the Borsuk-Ulam theorem, this shows
that the Borsuk-Ulam theorem implies the Poincaré-Miranda theorem.
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