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Abstract. We establish a unique best proximity point theorem for generalized set-valued contrac-

tions on metric spaces without involving the Hausdorff distance. This result subsumes and generalizes

few important fixed point and best proximity point results for set-valued mappings. In particular,
our result enables us to derive the Mizoguchi-Takahashi’s fixed point result for closed valued map

rather than closed and bounded valued. Moreover, we obtain a best proximity point result for maps
satisfying Mizoguchi-Takahashi contractions uniformly locally.
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1. Introduction

Consider a space X with metric d and a map T : A → B in which A,B ⊆ (X, d).
There need not be an element x∗ ∈ A meeting Tx∗ = x∗ if A does not intersects B.
In that situation, we are interested to look for a nearest solution of Tx = x. The
idea of best proximity point was initiated with an aim for finding a best approximant
point x∗ ∈ A which optimizes the problem minx∈A d(x, Tx). As for each x in A,
d(x, Tx) ≥ inf{d(a, b) : a ∈ A, b ∈ B} = dist(A,B), an element x∗ ∈ A satisfying
d(x∗, Tx∗) = dist(A,B) will optimize minx∈A d(x, Tx). We call those element x∗, a
best proximity point [9, 8, 10] for T in general. In fact, Basha and Veeramani [2, 3]
have studied for ensuring best proximity points of set-valued maps on a normed linear
space. For a set-valued mapping T : A → 2B , the idea of best proximity point was
initiated for finding a point in A which optimizes the problem minx∈AD(x, Tx) where
D(x,C) = infz∈C d(x, z) for C ⊆ X. Therefore a point x∗ ∈ A meeting the condition
D(x∗, Tx∗) = dist(A,B) is familiar as best proximity point [1, 15] of the map T .

Nadler [12] in 1969 first initiated the study of fixed points for multi-valued contrac-
tions on (X, d). Let us now define the renowned Hausdorff metric H defined on the
set CB(X) = {M ⊆ X : M is closed, bounded and M 6= ∅}. Let F : X → CB(X)
be such that H(F (x), F (y)) ≤ kd(x, y) ∀x, y ∈ X and for some k ∈ [0, 1). Nadler
[12] deduced that ∃x∗ ∈ X satisfying x∗ ∈ F (x∗) if (X, d) is complete. After that,
Mizoguchi and Takahashi [11] derived an extension of Nadler’s result for generalized
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set-valued contractions. It is worth to mention that Reich [14] studied the existence of
fixed points for such generalized contractions defined from X to K(X) (where K(X)
is the set of non-empty compact subsets of X). In [16], examples has been given to
illustrate that such contractions is not necessarily Nadler contractions in general.

Theorem 1.1. [11] Assume F : X → CB(X) is a map such that

H(F (x), F (y)) ≤ β(d(x, y))d(x, y) ∀x, y ∈ X, x 6= y, (1.1)

in which β : (0,∞) → [0, 1) satisfy lim sups→t+ β(s) < 1 for any t. If (X, d) is
complete, then ∃x∗ ∈ X with x∗ ∈ F (x∗).

Feng and Liu [6] proved Nadler’s result in a new direction without using the
Hausdorff metric. In fact, they consider the map F to be Cl(X) valued where
Cl(X) = {M ⊆ X : M is closed and M 6= ∅}. The result derived by them is sated
below.

Theorem 1.2. [6] Suppose F : X → Cl(X) fulfills for x ∈ X, y ∈ F (x)

D(y, F (y)) ≤ kd(x, y) for some k ∈ [0, 1). (1.2)

Then we have x∗ ∈ X satisfying x∗ ∈ F (x∗) when (X, d) is complete and x →
D(x, F (x)) becomes lower semi-continuous.

On the other hand, Akbar and Gabeleh [1] obtained a theorem on best proximity
point for maps satisfying set-valued contractive conditions on metric spaces. This
result extends the set-valued fixed point result proved by Nadler [12]. The result due
to Akbar and Gabeleh [1] is stated below.

Theorem 1.3. [1] Assume that A,B ⊆ X are non-empty closed sets with the P -
property and A0 6= ∅. Suppose F : A→ CB(B) satisfying F (A0) ⊆ B0 and

H(F (u), F (v)) ≤ kd(u, v) ∀u, v ∈ A0, (1.3)

for some 0 ≤ k < 1. If (X, d) is complete, then F will have a best proximity point.

Recently, Sahin et al. [15] have used a unique approach to derive the presence
of best proximity point for multi-valued contractions (not necessarily self) on metric
spaces without using the Hausdorff distance by considering the technique used by
Feng and Liu [6] for ensuring fixed points. In fact, the following result is presented
by Sahin et al. [15].

Theorem 1.4. [15] Assume that A,B ⊆ X are non-empty closed sets with the P -
property and A0 6= ∅. Suppose that F : A→ Cl(B) satisfies F (A0) ⊆ B0 and for each
x ∈ A0, y ∈ F (x),

D(y, F (z)) ≤ cd(x, z) for some c ∈ [0, 1),

where z ∈ A0 with d(z, y) = dist(A,B). Then F will have a best proximity point when
(X, d) is complete and f : A×B → R formed by f(x, y) = D(y, F (x)) becomes lower
semi-continuous.
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Following Sahin et al. [15], we derive a unique best proximity point result of
set-valued generalized contractions without involving the Hausdorff distance. Inter-
estingly, our this theorem unifies the above mentioned results for set-valued maps
on fixed point and best proximity points. Indeed, this result enables us to extend
Theorem 1.1 in which the mapping is assumed to be closed valued rather than closed
and bounded valued. Moreover, we have derived another result for ensuring the pres-
ence of best proximity points for those maps who satisfy eqn. (1.1) uniformly locally.
This result yields an extension of Theorem 1.3 for mappings satisfying the contractive
condition (1.3) locally.

2. Preliminaries

We will utilize the subsequent symbols and definitions through this article.
Let X be a space with metric d. For the sets P,Q ⊆ (X, d), we set

P0 := {p ∈ P : d(p, q) = dist(P,Q) where q ∈ Q}
Q0 := {q ∈ Q : d(p, q) = dist(P,Q) where p ∈ P}.

Definition 2.1. For P,Q ⊆ X, the couple set (P,Q) holds the P -property [13] if
p, p′ ∈ P and q, q′ ∈ Q with d(p, q) = dist(P,Q) and d(p′, q′) = dist(P,Q), we have
d(p, p′) = d(q, q′).

Consider a real Hilbert spaceH and P,Q ⊆ H are nonempty convex and closed sets.
Then (P,Q) holds the P -property (see [13]). The stated below example illustrates
that the P -property need not hold if P,Q ⊆ H are not convex.

Example 2.2. Let us take the space (R2, ||.||2). Suppose that

P = {(−5, x) : x ∈ [0, 1]} ∪ {(5, x) : x ∈ [0, 1]}
and

Q = {(−1, x) : x ∈ [0, 1]} ∪ {(1, x) : x ∈ [0, 1]}
are two non-empty closed subsets of R2. Evidently, P0 coincides with P , Q0 coincides
with Q and dist(P,Q) = 4. It is important to mention that (P,Q) does not hold the
P -property.

We are now providing a nontrivial example for a couple set (P,Q) of a metric space
satisfying the P -property.

Example 2.3. Let X = R3 with the metric

d((x1, x2, x3), (y1, y2, y3)) = |x1 − y1|+ |x2 − y2|+ |x3 − y3|.
Suppose that

P = {(0, 0, 0), (0, 0, 4), (0, 4, 0), (0, 4, 5), (0, 5, 4)}
and

Q = {(1, 0, 0), (1, 0, 4), (1, 4, 0), (1, 4, 5), (1, 5, 4)}
are two non-empty subsets of R3. It is easy to see that P0 = P , Q0 = Q and
dist(P,Q) = 1. Moreover, (P,Q) holds the P -property.

We now bring back the stated below lemma proved by Sahin et al. [15] which will
be utilized in the subsequent section.
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Lemma 2.4. [15] Let A,B ⊆ X and F : A → 2B be upper semicontinuous. Then,
f : A×B → R formed by f(a, b) = D(b, F (a)) becomes lower semi-continuous.

The symbol S indicates the set consists of all β : (0,∞) → [0, 1) fulfilling
lim sups→t+ β(s) < 1, ∀ t ∈ [0,∞).

3. Main results

We now present the stated below result for ensuring the presence of best proximity
points for multi-valued maps on a space (X, d) where the map is assumed to be closed
valued rather than closed and bounded valued.

Theorem 3.1. Assume A,B ⊆ X are nonempty closed sets with the P -property. Let
F : A → Cl(B) satisfy F (A0) ⊆ B0 where A0 6= ∅. Assume that ∃β ∈ S so that for
each x ∈ A0 and y ∈ F (x)

D(y, F (z)) ≤ β(d(x, z))d(x, z), (3.1)

where z ∈ A0 with d(z, y) = dist(A,B). Then F will have a best proximity point
when (X, d) is complete and the map f : A×B → R formed as f(x, y) = D(y, F (x))
becomes lower semicontinuous.

Proof. Let us take an arbitrary point x0 ∈ A0 and y0 ∈ F (x0). As y0 ∈ F (A0) ⊆ B0,
then ∃x1 ∈ A0 with d(x1, y0) = dist(A,B). Therefore for this x1 ∈ A0

D(y0, F (x1)) ≤ β(d(x0, x1))d(x0, x1).

Considering that [β(d(x0, x1))]1/2 is less than 1, we can find an element y1 ∈ F (x1)
satisfying

[β(d(x0, x1))]1/2d(y0, y1) ≤ D(y0, F (x1)).

It appears from the above inequalities that

d(y0, y1) ≤ [β(d(x0, x1))]1/2d(x0, x1).

Again, there is x2 ∈ A0 satisfying d(x2, y1) = dist(A,B) as y1 ∈ F (A0) ⊆ B0. Thus
for this x2 ∈ A0, we can find an element y2 ∈ F (x2) with

d(y1, y2) ≤ [β(d(x1, x2))]1/2d(x1, x2).

In similar fashion, we derive {xn}n ∈ A and {yn}n ∈ B satisfying for n ∈ N,

d(yn, yn+1) ≤ [β(d(xn, xn+1))]1/2d(xn, xn+1) (3.2)

and d(xn+1, yn) = dist(A,B). Hence and taking into account that the pair (A,B)
having the P -property, it occurs

d(xn+1, xn) = d(yn, yn−1) for each n. (3.3)

Hence and by eqn. (3.2), it appears that {ln}n = {d(xn, xn−1)}n is monotone decreas-
ing. Thus it is convergent to l (say). Considering the fact that lim sups→l+ β(s) < 1,
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there exist a natural number M and a real q ∈ [0, 1) fulfilling β(ln) < q ∀n ≥ M .
Hence for k = 1, 2, · · · and n ≥M , we have from (3.2) and (3.3) that

d(xn, xn+k) ≤ ln+1 + ln+2 + · · ·+ ln+k

≤

(
n∏

s=1

[β(ls)]
1/2

)
l1 + · · ·+

(
n+k−1∏
s=1

[β(ls)]
1/2

)
l1

≤ Eqn/2[1 + q1/2 + · · ·+ q(k−1)/2]

≤ Eqn/2/(1− q1/2).

where E is a positive real number. Therefore {xn}n∈N ∈ A is Cauchy and thus
convergent on account of A is closed. Assume xn → x∗ ∈ A when n tends to ∞.
Hence and from eq (3.3), it appears that {yn}n∈N ∈ B will also converge to some
y∗ ∈ B (say). Thus

lim
n→∞

d(xn+1, yn) = d(x∗, y∗).

Moreover for any n, d(xn+1, yn) = dist(A,B) and hence one can conclude that
d(x∗, y∗) = dist(A,B). Since d(xn, yn) → d(x∗, y∗) and yn ∈ F (xn), the lower semi-
continuity of f implies that

D(y∗, F (x∗)) = f(x∗, y∗) ≤ lim inf f(xn, yn) = lim inf D(yn, F (xn)) = 0.

Hence one has y∗ ∈ F (x∗) being as F (x∗) closed. Therefore one can see

D(x∗, F (x∗)) ≤ d(x∗, y∗) = dist(A,B) ≤ D(x∗, F (x∗)).

Thus it appears that x∗ ∈ A satisfiesD(x∗, F (x∗)) = dist(A,B) and hence proved. �

The subsequent examples demonstrate the above result.

Example 3.2. Consider the space l1 consists of all real sequences

x = (xn)n∈N = (x1, x2, · · · )
such that

∞∑
j=1

|xj | <∞.

Let X = l1 with the metric

d(x, y) =

∞∑
j=1

|xj − yj |.

Then (X, d) is a complete metric space. Let

A =
{(

0,
a

20
,
a

2
,
a

22
,
a

23
,
a

24
, · · ·

)
: a ∈ [0, 1]

}
and

B =

{(
1,

b

20
,
b

2
,
b

22
,
b

23
,
b

24
, · · ·

)
: b ∈ [0, 1]

}
be two non-empty closed subsets of l1. Evidently, A0 coincides with A,B0 coincides
with B and dist(A,B) = 1. It is worth to mention that (A,B) holds the P -property.
We form F : A→ Cl(B) as follows



388 BEST PROXIMITY POINTS

F (0, a
20 ,

a
2 ,

a
22 , · · · ) =

{
{(1, 0, 0, 0, · · · )} when a = 0,{(

1, a
2

2 ,
1
2
a2

2 ,
1
22

a2

2 , · · ·
)
, (1, 1, 12 ,

1
22 , · · · )

}
otherwise.

Define a map β from the set of non-negative reals onto [0, 1) by β(t) = 3/4, for all
t ≥ 0. It is easy to see that F meets the condition (3.1) of Theorem 3.1 for the
above defined β. We note that the best proximity points of F are (0, 0, 0, 0, 0, · · · )
and (0, 1, 12 ,

1
22 ,

1
23 ,

1
24 , · · · ).

Example 3.3. Let X = R2 with the metric

d((x1, x2), (y1, y2)) = |x1 − y1|+ |x2 − y2|.
Then (X, d) is a complete metric space. Let

A = {(0, x) : x ∈ [0, 1]} ∪ {(3, x) : x ∈ [0, 1]}
and

B = {(1, x) : x ∈ [0, 1]} ∪ {(4, x) : x ∈ [0, 1]}
be two non-empty closed subsets of R2. Evidently, A0 coincides with A,B0 coincides
with B and dist(A,B) = 1. It is worth to mention that (A,B) holds the P -property.
We form F : A→ Cl(B) as follows

F (x) =



{(
1,

x2
2

2

)
, (1, 1)

}
when x = (0, x2), 0 < x2 ≤ 1

{(1, 0)} when x = (0, 0){(
4,

x2
2

2

)
, (4, 1)

}
when x = (3, x2), 0 < x2 ≤ 1

{(4, 0)} otherwise.

Construct a map β from the set of non-negative reals onto [0, 1) by β(t) = 3t/2 when
t ∈ [0, 1/2) and β(t) = 0, otherwise. It is easy to see that F meets the condition (3.1)
of Theorem 3.1 for the above defined β. We observe that the best proximity points
of F are (0, 0), (0, 1), (3, 0) and (3, 1).

By using Lemma 2.4, we can see that Theorem 3.1 yields the stated below result
for maps (not necessarily self) meeting the condition (1.1).

Corollary 3.4. Assume A,B ⊆ X are non-empty closed sets. Let A0 6= ∅ and (A,B)
be with the P -property. Let F : A→ CB(B) satisfy F (A0) ⊆ B0 and for any u, v ∈ A0

H(F (u), F (v)) ≤ β(d(u, v))d(u, v), where β ∈ S.
Then F will have a best proximity point when (X, d) is complete.

If we take both A and B equal to the whole set X in the above Theorem 3.1, the
subsequent generalization of Theorem 1.1 follows in which the map is assumed to be
closed valued rather than closed and bounded valued.

Corollary 3.5. Let F : X → Cl(X) satisfy for any x ∈ X, y ∈ F (x)

D(y, F (y)) ≤ α(d(x, y))d(x, y) where α ∈ S.
Then we have x∗ ∈ X with x∗ ∈ F (x∗) when x → D(x, F (x)) becomes lower semi-
continuous and (X, d) is complete.
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Consider β(t) = c, ∀ t ≥ 0 in the above Theorem 3.1. Then as a corollary, we get
Theorem 1.4 proved by Sahin et al. [15].

On the other side, Edelstein [5] first studied the presence of fixed point for uniformly
local contractions. Subsequently, Nadler [12] generalized this concept for set-valued
maps. Recently, Dinevari and Frigon [4] deduced a simple proof for ensuring the fixed
point of uniformly locally set-valued contractions using graph structure. Now, we
derive a different best proximity point result for non-self set-valued maps meeting the
condition (1.1) uniformly locally.

Theorem 3.6. Let A,B ⊆ X be non-empty closed sets having the P -property. As-
sume F : A → CB(B) satisfies F (A0) ⊆ B0 and for any u, v ∈ A0 with d(u, v) < ε
(where ε > 0)

H(F (u), F (v)) ≤ β(d(u, v))d(u, v) for some β ∈ S. (3.4)

Then F will have a best proximity point if (X, d) is complete and u0, u1 ∈ A0 occurs
fulfilling d(u0, u1) < ε and d(u1, v0) = dist(A,B) for some v0 ∈ F (u0).

Proof. Since v0 ∈ F (u0), there is v1 ∈ F (u1) meeting the condition

d(v1, v0) ≤ H(F (u1), F (u0)) + βl1(d(u1, u0)),

where l1 ∈ N satisfying βl1(d(u1, u0)) < (1 − β(d(u1, u0)))d(u1, u0). As we know
d(u0, u1) < ε, it appears from the above inequalities that

d(v1, v0) ≤ β(d(u1, u0))d(u1, u0) + βl1(d(u1, u0)) < d(u1, u0).

As v1 ∈ F (A0) ⊆ B0, we have d(u2, v1) = dist(A,B) for some u2 ∈ A0. As the
P -property holds for the pair (A,B), it occurs d(u2, u1) = d(v1, v0). Thus we observe
d(u2, u1) < ε and hence we can find v2 ∈ F (u2) meeting

d(v2, v1) ≤ β(d(u2, u1))d(u2, u1) + βl2(d(u2, u1)) < d(u2, u1),

where l2 > l1. In a similar fashion, we construct {un}n ∈ A and {vn}n ∈ B with
vn ∈ F (un), d(un+1, vn) = dist(A,B) for any n ≥ 1 and it meets the condition

d(vn, vn−1) ≤ β(cn)cn + βln(cn) < cn, (3.5)

where ln is a natural number with ln > ln−1 and cn = d(un, un−1). As d(un+1, vn) =
dist(A,B), n ∈ N, according to the P -property of (A,B) it occurs

cn+1 = d(un+1, un) = d(vn, vn−1) ∀n ∈ N. (3.6)

Hence by eqn. (3.5), it appears that {cn}n is monotone decreasing. Thus limn→∞ cn
exists and let the limit be c. Considering the fact that lim sups→c+ β(s) < 1, there
exist a real h ∈ [0, 1) and a natural number N satisfying β(cn) < h, for any n ≥ N .
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Therefore by eqns. (3.5) and (3.6) it appears for any n ≥ N ,

cn+1 ≤ β(cn)cn + βln(cn)

≤
n∏

q=0

β(cq)c0 +

n∑
s=1

(
n∏

q=s

β(cq)

)
βls(cs−1) + βln(cn)

≤ E1h
n +

n∑
s=1

 n∏
q=max {s,N}

β(cq)

βls(cs−1) + hn

≤ E1h
n + E2h

n +

n∑
s=N+1

hn−s+ls + hn

≤ E1h
n + E2h

n + E3h
n + hn ≤ Ehn,

in which E1, E2, E3, E are positive reals. Thus for m ∈ N and n ≥ N ,

d(un, un+m) ≤ cn+1 + cn+2 · · ·+ cn+m

≤ Ehn + Ehn+1 + · · ·+ Ehn+m−1 ≤ Ehn/(1− h).

Therefore {un}n ∈ A is Cauchy and thus convergent. Let limn→∞ un = u∗.
Hence and from eqn. (3.6) it can be concluded that limn→∞ vn exists and let
it be v∗. Moreover for n ≥ 1, d(un+1, vn) = dist(A,B) and hence it occurs
d(u∗, v∗) = limn→∞ d(un+1, vn) = dist(A,B). If we are able to prove that v∗ ∈ F (u∗),
then we are done. Since un → u∗, d(un, u

∗) < ε ∀n ≥M (where M is a natural num-
ber). Thus for n ≥M ,

D(vn, F (u∗) ≤ H(F (un), F (u∗) ≤ β(d(un, u
∗))d(un, u

∗).

Thus we have limn→∞D(vn, F (u∗) = 0 and hence v∗ ∈ F (u∗). Therefore it appers
D(u∗, F (u∗)) = dist(A,B). �

Remark 3.7. We have noticed that the above stated theorem extends Theorem 1.3
proved by Akbar and Gabeleh [1]. Indeed, let us suppose that F meets the conditions
of Theorem 1.3. Then ∃x0 ∈ A0 because of A0 6= ∅. Since F (A0) ⊆ B0, the
elements y0 ∈ F (x0), x1 ∈ A0 occur with d(x1, y0) = dist(A,B). Let ε be a real
where 0 < ε < d(x1, y0). For this chosen ε, the map F meets the condition (3.4). At
the end, by taking β(t) = k for all t ≥ 0, we are able to see F fulfills the assumptions
of the above Theorem 3.6. The converse may not true which we can observe below.

Example 3.8. Let X = l1 with the metric

d(x, y) =

∞∑
j=1

|xj − yj |.

Take

A =

{
(0,

1

2
, 0, 0, · · · ), (0, 0, 1

22
, 0, · · · ), (0, 0, 0, 1

23
, 0, · · · ), · · ·

}
∪ {(0, 0, 0, · · · ), (0, 1, 0, 0, · · · )}
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and

B =

{
(1,

1

2
, 0, 0, · · · , 0, · · · ), (1, 0, 1

22
, 0, · · · , 0, · · · ), (1, 0, 0, 1

23
, 0, · · · , 0, · · · ), · · ·

}
∪ {(1, 0, 0, 0 · · · , 0, · · · ), (1, 1, 0, 0 · · · , 0, · · · )} .

It is evident that A,B are closed sets where dist(A,B) = 1, A0 coincides with A and
B0 coincides with B. Construct a map F : A→ CB(B) as

F (x) =


{

(1, 0, 0, 0 · · · ),
(
1, 12 , 0, 0, · · ·

)}
for x = (0, 0, 0, 0, · · · ){

(1, 0 · · · , 1
2n+1 , 0, · · · ), (1, 12 , 0, 0 · · · )

}
for x = (0, · · · , 1

2n , 0, · · · ), n ≥ 1

{(1, 1, 0, 0, · · · )} for x = (0, 1, 0, 0, · · · ).

For choosing ε = 1
2 , it is easy to see that F meets the condition (3.4) of Theorem 3.6

for the map β defined by β(s) = 1/2, s ≥ 0. We observe that best proximity points
of F are {

(0, 0, 0, 0, · · · , 0, · · · ), (0, 1

2
, 0, 0, · · · , 0, · · · ), (0, 1, 0, 0, · · · , 0 · · · )

}
.

Indeed,

H(F ((0, 0, 0, 0, · · · )), F ((0, 1, 0, 0, · · · )) = 1 = d((0, 0, 0, 0, · · · ), (0, 1, 0, 0, · · · )).
Hence the condition (1.3) of Theorem 1.3 fails to occur.
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