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1. Introduction

In this paper, as an initial value problem (IVP for short) we consider the general
nonlinear model with composite fractional derivative:

Dα,β
a+ y(x) = f(x, y), x > a, n− 1 < α ≤ n, 0 ≤ β ≤ 1,

dk

dxk
(In−γa+ y)(a+) = lim

x→a+
dk

dxk
(In−γa+ y)(x) = ck, ck ∈ R, (k = 0, 1, . . . , n− 1)

(1.1)

where γ = α + nβ − αβ. One may see that for the case n = 1, (1.1) is the prob-
lem investigated by Furati et al. [11]. From the historical background, we may see
that differentiation and integration of functions of fractional order are traditionally de-
fined utilizing Riemann-Liouville (R-L) operators Iαa+f and Dα

a+f , called the left-sided

343



344 EHSAN POURHADI, REZA SAADATI AND JUAN J. NIETO

Riemann-Liouville fractional integral of order α of f and left-sided Riemann-Liouville
fractional derivative of order α of f , respectively, as ([3, 10, 18, 24, 29]):

(Iαa+f)(x) =
1

Γ(α)

∫ x

a

f(t)

(x− t)1−α
dt, (α ∈ R, α > 0)

(Dα
a+f)(x) =

( d
dx

)n
(In−αa+ f)(x), (α ∈ R, α ≥ 0, n = bαc+ 1)

(1.2)

where a < x, f is locally integrable (i.e., f ∈ L1(a, b)). The operator Iαa+f is defined
on the space L1(a, b) of Lebesgue measurable functions f(x) on a finite interval [a, b]
(b > a) of the real line R:

L1(a, b) =

{
f : ‖f‖1 =

∫ b

a

|f(x)|dx <∞
}
.

Let AC([a, b]) be the space of real-valued functions f(x) which are absolutely con-
tinuous on [a, b]. For n ∈ N, by ACn([a, b]) we mean the following:

ACn([a, b]) =
{
f ∈ Cn−1([a, b]) : f (n−1) ∈ AC([a, b])

}
.

Very recently, in [13, 14, 15] an infinite family of fractional (R-L) derivatives having
the same order were introduced as follows.
Definition 1.1. The (right-hand side) fractional derivative Dα,β

a+ of order 0 < α < 1
and type 0 ≤ β ≤ 1 with respect to x is defined by

(Dα,β
a+ f)(x) =

(
I
β(1−α)
a+

d

dx
(I

(1−β)(1−α)
a+ f)

)
(x) (1.3)

whenever the right-hand side exists. This generalization gives the classical (R-L)
fractional differentiation operator if β = 0. For β = 1 it gives the fractional differential
operator introduced by Liouville ([20], page 10) but nowadays often named after
Caputo. Several researchers (see [10,11]) called (1.3) the Hilfer fractional derivative

or composite fractional derivative operator. Some applications of Dα,β
a+ can be found

in [12, 14, 16, 30, 31].
Recently (Hilfer et al. [17]), this definition for n − 1 < α ≤ n, n ∈ N, 0 ≤ β ≤ 1,

was rewritten in a more general form:

(Dα,β
a+ f)(x) =

(
I
β(n−α)
a+

dn

dxn
(I

(1−β)(n−α)
a+ f)

)
(x) =

(
I
β(n−α)
a+ Dα+nβ−αβ

a+ f
)

(x). (1.4)

The Hilfer fractional derivative can be considered as an interpolator between the
Riemann-Liouville and Caputo derivative (see Figure 1).

This paper is organized as follows. In Section 2, we give some basic definitions
and auxiliary facts together with a vital result which all will play important roles in
the next sections. By presenting a Volterra integral equation as the equivalent form
of (1.1), some attractivity results are established in Section 3 via the well-known
Krasnoselskii fixed point theorem for the case 0 < α < 1. Finally, in Section 4, using
the measure of noncompactness we derive some attractivity and stability results for
(1.1) related to the case n− 1 < α ≤ n. Finally, some examples are given illustrating
the obtained results in Section 5.
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Figure 1. Assume the function h(t) = t, let α = 1/2. The fractional
integral and the Riemann-Liouville fractional derivative of order α
are plotted. For β = 1/2, it is shown the Hilfer fractional derivative
of order α and type β. The same for h(t) = 1 (see [12]).

2. Some auxiliary facts

This section is dedicated to the study of existence and locally attractivity of solu-
tions of Eq. (1.1). The following fixed point theorem as the improvement of a fixed
point theorem of Krasnoselskii [19] due to Burton [7, 8] will be needed further on.
Theorem 2.1 (Krasnoselskii Fixed Point Theorem). Let S be a nonempty,
closed, convex and bounded subset of the Banach space X and let A : X → X and
B : S → X be two operators such that

(a) A is a contraction with constant L < 1,
(b) B is continuous, BS resides in a compact subset of X,
(c) [x = Ax+By, y ∈ S]⇒ x ∈ S.

Then the operator equation Ax+Bx = x has a solution in S.
From now on, unless otherwise specified, denoting Ra = [a,∞) let us assume that

Ω is a nonempty subset of the space BC(Ra) and Q is an operator defined on Ω with
values in BC(Ra).
Definition 2.2. The solution u(t) of IVP (1.1) is attractive if u(t)→ 0 as t→∞.

Consider the following operator equation:

u(t) = [Qu] (t), for all t ∈ Ra. (2.1)

Now we review the concept of attractivity of solutions for Eq. (2.1):
Definition 2.3. ([6]) We say that solutions of (2.1) are locally attractive if there
exists a closed ball B(u0, r) in the space BC(Ra) such that for arbitrary solutions
u = u(t) and v = v(t) of (2.1) belonging to B(u0, r) ∩ Ω we have that

lim
t→∞

(u(t)− v(t)) = 0. (2.2)



346 EHSAN POURHADI, REZA SAADATI AND JUAN J. NIETO

In the case when limit (2.2) is uniform with respect to set B[u0, r] ∩Ω, i.e., when for
each ε > 0 there exists T ≥ a such that

|u(t)− v(t)| ≤ ε for all u, v ∈ B[u0, r] ∩ Ω and t ≥ T, (2.3)

we will say that solutions of IVP (1.1) are uniformly locally attractive.
Definition 2.4. ([6]) The solution u = u(t) of Eq. (2.1) is said to be globally
attractive if (2.2) holds for each solution v = v(t) of Eq. (2.1) on Ω. In other words,
we may say that solutions of Eq. (2.1) are globally attractive if for arbitrary solutions
u(t) and v(t) of Eq. (2.1) on Ω, the condition (2.2) is satisfied. In the case when the
condition (2.2) is satisfied uniformly with respect to the set Ω, i.e., if for every ε > 0
there exists T ≥ a such that the inequality (2.3) is satisfied for all u, v ∈ Ω being the
solutions of Eq. (2.1) and for all t ≥ T , we will say that solutions of Eq. (2.1) are
uniformly globally attractive on Ra.
Remark 2.5. Obviously, as has been noted in [6], we observe that global attractivity
of solutions implies local attractivity, but the converse implication is not true.

3. Uniformly locally attractivity for the case 0 < α < 1

In this section, as an equivalent form we establish that the Cauchy type problem
(1.1) can be reduced to the following nonlinear Volterra integral equation of the second
kind:

y(x) =

n−1∑
k=0

ck
(x− a)k−(n−α)(1−β)

Γ(k − (n− α)(1− β) + 1)

+
1

Γ(α)

∫ x

a

(x− t)α−1f(t, y(t))dt, x > a. (3.1)

We remark that for the case n = 1, one can see that (3.1) is precisely the Volterra
integral equation (5) in [11].

Throughout this section we investigate the attractivity and existence of solutions
for (1.1) with n = 1.
Lemma 3.1. ([18]) The Riemann-Liouville fractional integral operator Iαa+ of order
α ∈ R, α > 0, is bounded in the space L1(a, b) and

‖Iαa+ϕ‖1 ≤ A‖ϕ‖1, A =
(b− a)α

α|Γ(α)|

for any ϕ ∈ L1(a, b).
Lemma 3.2. ([18]) If α, β ∈ R (α, β > 0), then the semigroup property

Iαa+I
β
a+f = Iα+βa+ f (3.2)

holds for any f ∈ L1(a, b).
Lemma 3.3. ([18]) If α ∈ R (α > 0), the compositional property

Dα
a+I

α
a+f = f (3.3)

holds for any summable function f ∈ L1(a, b).
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If In−αa+ f ∈ ACk([a, b]) (n− 1 < α ≤ n, 0 ≤ k ≤ n− 1) then

(Iαa+D
α
a+f)(x) = f(x)−

n−1∑
k=0

(x− a)α−n+k

Γ(α− n+ k + 1)
lim
x→a+

dk

dxk
(In−αa+ f)(x) (3.4)

holds for any summable function f ∈ L1(a, b). Furthermore, if

f(x) ∈ Iαa+(L1(a, b)) = {f : f = Iαa+ϕ, ϕ ∈ L
1(a, b)},

then

(Iαa+D
α
a+f)(x) = f(x). (3.5)

Proposition 3.4. Let U be an open set in R and let f : [a, b]×U → R be a function
such that f(x, y) ∈ L1(a, b) and f(·, y(·)) ∈ ACn([a, b]). If y ∈ L1(a, b), n−1 < α ≤ n,

n ∈ N, 0 ≤ β ≤ 1, I
(n−α)(1−β)
a+ y ∈ ACk([a, b]), 0 ≤ k ≤ n − 1 then y(x) satisfies a.e.

the Eq. (1.1) if and only if y(x) satisfies a.e. the integral equation (3.1).
Proof. Necessity. Suppose that y(x) ∈ L1(a, b) fulfills a.e. the relation (1.1). Making
use of the fact that f(x, y) ∈ L1(a, b), by the Eq. (1.1) it follows that the fractional

derivative (Dα,β
a+ y)(x) ∈ L1(a, b) exists a.e. on [a, b]. By Lemma 3.1 the integral

Iαa+f(x, y(x)) ∈ L1(a, b) exists a.e. on [a, b]. On the other hand, using the represen-
tation (1.4) together with the compositional properties (3.2) and (3.4) we get

(Iαa+D
α,β
a+ y)(x) =

(
Iαa+I

β(n−α)
a+ Dα+nβ−αβ

a+ y
)

(x) =
(
I
α+β(n−α)
a+ D

α+β(n−α)
a+ y

)
(x)

= y(x)−
n−1∑
k=0

(x− a)k−(n−α)(1−β)

Γ(k − (n− α)(1− β) + 1)
lim
x→a+

dk

dxk
(I

(n−α)(1−β)
a+ y)(x), (3.6)

for x > a. Now, applying the integral operator Iαa+ to both sides of Eq. (1.1) and
utilizing the relation (3.6) we obtain Eq. (3.1) and thus the necessity is easily con-
cluded.
Sufficiency. Assume y(x) ∈ L1(a, b) satisfies a.e. Eq. (3.1). In view of the property
of commutativity of operators integration of fractional order α and differentiation of
order n, i.e.,

dn

dxn
Iαa+ϕ(x) = Iαa+ϕ

(n)(x), <(α) > 0, n ∈ N

for any n-times differentiable function ϕ together with (3.2), (3.5) and f(·, y(·)) ∈
ACn([a, b]) one can see that

(Dα,β
a+ Iαa+f [t, y(t)])(x) =

(
I
β(n−α)
a+

dn

dxn
(I

(1−β)(n−α)
a+ Iαa+f [t, y(t)])

)
(x)

=
(
I
β(n−α)
a+

dn

dxn
(I
n−β(n−α)
a+ f [t, y(t)])

)
(x)

=
(
I
β(n−α)
a+ (I

n−β(n−α)
a+ f (n)[t, y(t)])

)
(x)

= (Ina+f
(n)[t, y(t)])(x)

= (Ina+D
n
a+f [t, y(t)])(x)

= f(x, y(x)).

(3.7)
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Using the fact (Dα,β
a+ (t − a)k−(n−α)(1−β))(x) = 0 for x > a and 0 ≤ k ≤ n − 1, and

(3.7), and applying the operator Dα,β
a+ to both sides of (3.1), we obtain

(Dα,β
a+ y)(x) =

n−1∑
k=0

ck
(Dα,β

a+ (t− a)k−(n−α)(1−β))(x)

Γ(k − (n− α)(1− β) + 1)

+ (Dα,β
a+ Iαa+f [t, y(t)])(x) = f(x, y(x)). (3.8)

Now we must prove the second equality in (1.1). To do this, let us apply the operator

In−γa+ to both sides of (3.1), then

(In−γa+ y)(x) =

n−1∑
k=0

ck
(In−γa+ (t− a)k−n+γ)(x)

Γ(k − n+ γ + 1)
+ (In−γa+ Iαa+f [t, y(t)])(x). (3.9)

Now the relation

[Ira+(t− a)s−1](x) =
Γ(s)

Γ(r + s)
(t− a)r+s−1, x > a, r ≥ 0, s > 0,

yields that

(In−γa+ y)(x) =

n−1∑
j=0

cj
j!

(x− a)j + (Iα+n−γa+ f [t, y(t)])(x). (3.10)

Moving forward, if 0 ≤ k ≤ n− 1, then

dk

dxk
(In−γa+ y)(x) =

n−1∑
j=k

cj
(j − k)!

(x− a)j−k +
dk

dxk
(Iα+n−γa+ f [t, y(t)])(x)

=

n−1∑
j=k

cj
(j − k)!

(x− a)j−k + (Iα+n−γ−ka+ f [t, y(t)])(x)

=

n−1∑
j=k

cj
(j − k)!

(x− a)j−k

+
1

Γ(α+ n− γ − k)

∫ x

a

f(t)

(x− t)1−α−n+γ+k
dt. (3.11)

Taking x→ a+ a.e., we derive the second relation of (1.1). Therefore, the sufficiency
is proved, which completes the proof of theorem. �

Here, we focus on the Eq. (1.1) for n = 1. Our considerations are based on the
following assumptions:

(C1) The function f(x, u(x)) is Lebesgue measurable with respect to x on Ra and

there exists a constant α1 ∈ (0, α) such that f(x, u(x)) ∈ L
1
α1 (a, b) for all

b ∈ Ra and u ∈ C(Ra,R) and f(x, u(x)) is continuous with respect to u on
Ra.

(C2) |f(x, u(x))| ≤M(x−a)−β1 , ∀x > a, u(x) ∈ C(Ra,R), M ≥ 0 and α < β1 < 1.
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By the equivalent Volterra integral equation of the second kind of (1.1), that is Eq.
(3.1), we define the following operators:

[Fu] (x) = c0
(x− a)γ−1

Γ(γ)
+

1

Γ(α)

∫ x

a

(x− t)α−1f(t, u(t))dt,

[A u] (x) = c0
(x− a)γ−1

Γ(γ)
,

[Bu] (x) =
1

Γ(α)

∫ x

a

(x− t)α−1f(t, u(t))dt, x > a

for all u ∈ C(Ra,R).
It is obvious that u(x) is a solution of (1.1) if it is a fixed point of the operator F ,

and the operator A is a contraction with constant L = 0.
Now we are in a position to formulate our main result as follows.

Lemma 3.5. Suppose the assumptions (C1)–(C2) fulfill. Then the operator B is
continuous and BS resides in a compact subset of C(Ra,R) for x ≥ a+ θ1, where

S = {u : u(x) ∈ C(Ra,R) and |u(x)| ≤ (x− a)−γ1 for all x ≥ a+ θ1},

γ1 = c(β1 − α) for arbitrary 0 < c < 1, and θ1 satisfies the following

c0
θγ−11

Γ(γ)
+

MΓ(1− β1)

Γ(1 + α− β1)
θ
(1−c)(α−β1)
1 ≤ 1. (3.12)

Proof. First, we prove that B maps S into S for x ≥ a+ θ1.
From the above assumption of S, it is easy to see that S is a closed, bounded and

convex subset of C(Ra,R). Applying condition (C1) and recalling the Euler’s Beta
function, for x ≥ a, we derive

|[Bu] (x)| ≤ 1

Γ(α)

∫ x

a

(x− t)α−1|f(t, u(t))|dt

≤ 1

Γ(α)

∫ x

a

(x− t)α−1M(t− a)−β1dt

≤ MΓ(1− β1)

Γ(1 + α− β1)
(x− a)−(β1−α).

Now since β1 > α for x ≥ a+ θ1, the inequality (3.12) implies that

MΓ(1− β1)

Γ(1 + α− β1)
(x− a)(1−c)(α−β1) ≤ MΓ(1− β1)

Γ(1 + α− β1)
θ
(1−c)(α−β1)
1 ≤ 1,

which yields that

|[Bu] (x)| ≤
[
MΓ(1− β1)

Γ(1 + α− β1)
(x− a)(1−c)(α−β1)

]
(x− a)c(α−β1) ≤ (x− a)−γ1

which shows that BS lies in S for x ≥ a+ θ1.
In the second step, we must show that B is continuous. To do this, let uk(x),

u(x) ∈ S, k = 1, 2, · · · with limk→∞ uk(x) = u(x), then from (C1) we get
limk→∞ f(x, uk(x)) = f(x, u(x)) for any x ≥ a+ θ1.
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Let ε > 0 be given, fix θ > a+ θ1 so that

MΓ(1− β1)

Γ(1 + α− β1)
(θ − a)−(β1−α) <

ε

2
.

Assume that ρ = (α− 1)(1− α1)−1, then ρ+ 1 > 0 since 0 < α1 < α < 1.
For a+ θ1 ≤ x ≤ θ, using Hölder’s inequality we get

|[Buk] (x)− [Bu] (x)| ≤ 1

Γ(α)

∫ x

a

(x− t)α−1|f(t, uk(t))− f(t, u(t))|dt

≤ 1

Γ(α)

{∫ x

a

(x− t)ρdt
}1−α1

{∫ x

a

|f(t, uk(t))− f(t, u(t))|
1
α1 dt

}α1

≤ 1

Γ(α)

(
1

ρ+ 1
(θ − a)ρ+1

)1−α1

(θ − a)α1 sup
t∈[a,θ]

|f(t, uk(t))− f(t, u(t))|

which vanishes when k →∞. For x > θ, we see that

|[Buk] (x)− [Bu] (x)| ≤ 1

Γ(α)

∫ x

a

(x− t)α−1|f(t, uk(t))− f(t, u(t))|dt

≤ 1

Γ(α)

∫ x

a

(x− t)α−1[|f(t, uk(t))|+ |f(t, u(t))|]dt

≤ 1

Γ(α)

∫ x

a

(x− t)α−1(2M(t− a)−β1)dt

≤ 2MΓ(1− β1)

Γ(1 + α− β1)
(x− a)−(β1−α)

≤ 2MΓ(1− β1)

Γ(1 + α− β1)
(θ − a)−(β1−α)

≤ ε

which shows that for any x ≥ a+ θ1,

|[Buk] (x)− [Bu] (x)| → 0

as k →∞. Hence, B is continuous.
Eventually, we claim that BS is equicontinuous.
Suppose that ε > 0 is given. Since the function (x − a)α−β1 vanishes at infinity,

there is a θ′, sufficiently large, such that (x− a)α−β1 < ε
2 for all x > θ′. Let us take

x1, x2 so that x2 > x1 ≥ a+ θ1. If x1, x2 ∈ [a+ θ1, θ
′], then in view of the hypothesis

f(x, u(x)) ∈ L
1
α1 (a, θ′)
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we get

|[Bu] (x2)− [Bu] (x1)|

≤ 1

Γ(α)

∣∣∣∣ ∫ x2

a

(x2 − t)α−1f(t, u(t))dt−
∫ x1

a

(x1 − t)α−1f(t, u(t))dt

∣∣∣∣
≤ 1

Γ(α)

(∫ x1

a

[(x1 − t)α−1 − (x2 − t)α−1]|f(t, u(t))|dt

+

∫ x2

x1

(x2 − t)α−1|f(t, u(t))|dt
)

≤
‖f(t, x(t)‖

L
1
α1 (a,x2)

Γ(α)

[(∫ x1

a

[(x1 − t)α−1 − (x2 − t)α−1]
1

1−α1 dt

)1−α1

+

(∫ x2

x1

(x2 − t)
α−1
1−α1 dt

)1−α1
]

≤
‖f(t, x(t)‖

L
1
α1 (a,θ′)

Γ(α)

[(
(x1 − a)1+ρ − (x2 − a)1+ρ + (x2 − x1)1+ρ

1 + ρ

)1−α1

+

(
(x2 − x1)1+ρ

1 + ρ

)1−α1
]
−→ 0 as x2 → x1.

If x1, x2 > θ′, then we observe that

|[Bu] (x2)− [Bu] (x1)| ≤ 1

Γ(α)

∫ x2

a

(x2 − t)α−1|f(t, u(t))|dt

+
1

Γ(α)

∫ x1

a

(x1 − t)α−1|f(t, u(t))|dt

≤ Γ(1− β1)

Γ(1 + α− β1)

[
(x1 − a)−(β1−α) + (x2 − a)−(β1−α)

]
≤ ε · Γ(1− β1)

Γ(1 + α− β1)
as x2 → x1.

Now consider the case a+ θ1 ≤ x1 < θ′ < x2 then we have the following implication:

(x2 → x1) =⇒ (x2 → θ′) ∧ (θ′ → x1)

which according to the above discussion yields that

|[Bu] (x2)− [Bu] (x1)| ≤ |[Bu] (x2)− [Bu] (θ′)|+ |[Bu] (θ′)− [Bu] (x1)| −→ 0

as x2 → x1.
Thus, it is obvious that |[Bu] (x2) − [Bu] (x1)| → 0 as x2 → x1. Therefore BS
is equicontinuous and thus BS is contained in a compact subset of C(Ra,R) for
x ≥ a+ θ1. �

Now we are ready to formulate our main existence result.
Theorem 3.6. Suppose that conditions (C1)–(C2) are satisfied, then IVP (1.1)
admits at least one attractive solution in C(Ra,R) in the sense of Definition 2.2.
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Proof. Based on Lemma 3.5, since the operator A is a contraction with constant
L = 0, one can easily see that all conditions of Krasnoselskii’s fixed point theorem
are satisfied and so Eq. (1.1) has at least one solution belonging to S. On the other
hand, in order to prove the attractivity, using the structure of set S given in Lemma
3.5, we see that all functions in Lemma 3.5 vanish at infinity and thus the solution of
Eq. (1.1) tends to zero as t→∞. This completes the proof. �
Remark 3.7. It is worth mentioning that conclusion of Theorem 3.6 does not imply
globally attractivity of solutions in the sense of Definition 2.2.

4. Attractivity for the case n− 1 < α ≤ n
via the measure of noncompactness

This section is dedicated to the study of solutions of Eq. (1.1) in Banach space
BC(Ra) consisting of all real functions defined, continuous and bounded on the in-
terval Ra, via the technique of measure of noncompactness. This tool enables us to
construct some sufficient conditions (quite distinct from the comparable ones in pre-
vious results) for solvability of Eq. (1.1). Indeed, we seek for assumptions concerning
the functions involved in Eq. (1.1) which assure that this equation has solutions be-
longing to BC(Ra) and also being locally attractive on Ra. In the sequel, we gather
some definitions and auxiliary facts which will be needed further on.

Let E be a Banach space, X and ConvX stand for the closure and the convex
closure of X as a subset of E, respectively. Further, denote by ME the family of all
nonempty bounded subsets of E and by NE its subfamily consisting of all relatively
compact sets. Also suppose that B(x, r) is the closed ball centered at x with radius
r and the symbol Br stands for the ball B(θ, r) such that θ is the zero element of the
Banach space E.

In the following definition we recall the notion of measure of noncompactness which
has been initially introduced by Banaś and Goebel [5].
Definition 4.1. ([5]) A mapping µ : ME −→ R+ is said to be a measure of noncom-
pactness in E if it satisfies the following conditions:

(i) The family kerµ = {X ∈ME : µ(X) = 0} is nonempty and kerµ ⊂ NE .
(ii) X ⊂ Y ⇒ µ(X) ≤ µ(Y ).

(iii) µ(X) = µ(X).
(iv) µ(ConvX) = µ(X).
(v) For all λ ∈ [0, 1],

µ(λX + (1− λ)Y ) ≤ λµ(X) + (1− λ)µ(Y ).

(vi) If (Xn)n∈N is a sequence of closed sets from ME such that

Xn+1 ⊂ Xn for all n = 1, 2, . . . and lim
n→∞

µ(Xn) = 0,

then the intersection set

X∞ =

∞⋂
n=1

Xn is nonempty.

The family kerµ described in (i) is said to be the kernel of the measure of noncom-
pactness µ.
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Definition 4.2. Let µ be a measure of noncompactness in E. The mapping T : C ⊆
E −→ E is said to be a µE-contraction if there exists a constant 0 < k < 1 such that

µ(T (W )) ≤ k µ(W ), (4.1)

for any bounded closed subset W ⊆ C.
As a generalization of the well-known Schauder fixed point principle and based on

measure of noncompactness, the Darbo fixed point theorem, was formulated:
Theorem 4.3 (Darbo-Sadovskii). ([5]) Let C be a nonempty, bounded, closed, and
convex subset of a Banach space E and let the continuous mapping T : C −→ C be a
µE-contraction. Then T has at least one fixed point in C.

Making a historical flashback for this tool, we remark that Darbo [9] initially intro-
duced condition (4.1) for any arbitrary measure of noncompactness µ and presented a
similar result if the continuous mapping T is being a µ-contraction. Recently Aghajani
and Pourhadi [1] have extended the Darbo’s fixed point theorem using some control
functions and presented a new result with a more complicated contraction which is
applied in this section. Denote by Φ the class of functions φ : [0,+∞) → [0,+∞)
such that

lim inf
n→∞

φ(an) = 0, if lim
n→∞

an = 0

where {an} is a nonnegative sequence.
For φ ∈ Φ, let functions ψ : [0,+∞) −→ [0,+∞) satisfy the following conditions:

(a) ψ is a lower semi-continuous function with ψ(t) = 0 if and only if t = 0,
(b) lim infn→∞ φ(an) < ψ(a) if limn→∞ an = a > 0.

We denote the class of all such functions by Ψφ.
Definition 4.4. Let T : W ⊆ E → E be an arbitrary mapping. We say that T is
(α, φ, ψ)-µ-condensing if there exist functions α : ME → [0,+∞), φ ∈ Φ and ψ ∈ Ψφ

such that

α(Ω)ψ(µ(TΩ)) ≤ φ(µ(Ω)) for Ω ⊆W,
where Ω and its image TΩ belong to ME .

Notice that if a mapping T : W ⊆ E → E satisfies the Darbo condition with
respect to a constant k ∈ [0, 1) and a measure µ, that is,

µ(TΩ) ≤ kµ(Ω), for Ω ⊆W and Ω, TΩ ∈ME ,

then T is an (α, φ, ψ)-µ-condensing operator, where α(Ω) = 1 for any set Ω ⊆W such
that Ω ∈ME , ψ is the identity mapping and φ(t) = kt for all t ≥ 0. For this case, T
is called µ-contraction.
Definition 4.5. Let T : W ⊆ E → E and α : ME → [0,+∞) be given mappings.
We say that T is α-admissible if we have

α(Ω) ≥ 1 =⇒ α(ConvTΩ) ≥ 1, Ω ⊆W, Ω, TΩ ∈ME .

Theorem 4.6. ([1]) Let C ∈ ME be a closed and convex subset of a Banach space
E and T : C → C be a continuous (α, φ, ψ)-µ-condensing operator, where µ is an
arbitrary measure of noncompactness. Suppose that T is α-admissible and α(C) ≥ 1.
Then T has at least one fixed point which belongs to kerµ.
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By taking α = 1, ψ = id we have the following immediate consequence:
Corollary 4.7. Let C be a nonempty, bounded, closed, and convex subset of a Banach
space E and let T : C → C be a continuous function satisfying

µ(TΩ) ≤ ϕ(µ(Ω))

for each Ω ⊆ C, where µ is an arbitrary measure of noncompactness and ϕ : R+ → R+

is a nondecreasing upper semi-continuous function with limn→∞ ϕn(t) = 0 for all
t ≥ 0. Then T has at least one fixed point in C.
Remark 4.8. Following the assumptions of Corollary 4.7, we note that condition (b)
is obtained by limn→∞ ϕn(t) = 0 for t > 0. For the sake of enlightening the reader, if
limn→∞ an = a > 0 then

lim inf
n→∞

ϕ(an) ≤ lim sup
n→∞

ϕ(an) ≤ ϕ(a) < a.

Measure of noncompactness has been applied in some classes of fractional dif-
ferential equations in several papers. For instance, Aghajani, Pourhadi and Tru-
jillo [2] have utilized this tool for Cauchy problem as a classic fractional differential
equations in Banach spaces (see also [4, 6, 25]). It is worth mentioning that the
measure of noncompactness has been also successfully employed in the study of infi-
nite systems of differential equations in the Banach sequence spaces (see for example
[1, 21, 26, 27]). Utilizing the Schauder fixed point theorem, we remark that Losada,
Nieto and Pourhadi [22] applied this well-known theorem together with the measure
of noncompactness to investigate the attractivity of solutions for a class of multi-
term fractional functional differential equations. Very recently, Saadati, Pourhadi
and Samet [28] studied the PC-mild solutions of some abstract fractional evolution
equations with non-instantaneous impulses via the measure of noncompactness.

In what follows, we will work in the Banach space BC(Ra), where a ∈ R
is given as in (1.1). Such functional space is furnished with the standard norm
‖y‖ = sup {|y(t)| : t ≥ a}. For further purposes, we introduce a measure of non-
compactness in the space BC(Ra), which is constructed by the similar reasoning
process for the one in the space BC(R+) (for more information see [5, Chapter 9] and
references therein).

To do this, let B be a bounded subset of BC(Ra) and T > a given. For u ∈ B
and ε > 0 we denote by ωTa (u, ε) the modulus of continuity of the function u on the
interval [a, T ], i.e.

ωTa (u, ε) = sup {|u(t)− u(s)| : t, s ∈ [a, T ], |t− s| ≤ ε}.

Now, let us take

ωTa (B, ε) = sup {ωTa (u, ε) : u ∈ B},
ωTa (B) = lim

ε→0
ωTa (B, ε),

ωa(B) = lim
T→∞

ωTa (B).

If t ≥ a is a fixed number, let us denote

B(t) = {u(t) : u ∈ B}
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and

diamB(t) = sup {|u(t)− v(t)| : u, v ∈ B}.
Finally, consider the mapping µ defined on the family MBC(Ra) by the formula

µ(B) = ωa(B) + lim sup
t→∞

diamB(t). (4.2)

Similarly to the measure of noncompactness constructed for BC(R+), one can show
that the mapping µ is a measure of noncompactness in the space BC(Ra) (see also
[5]).

It is worth mentioning that, as we will show, information about kerµ is very helpful.
In this case, the kerµ consists of nonempty and bounded sets X of functions such
that functions belonging to X are locally equicontinuous on R+ and the thickness of
the bundle formed by functions from X tends to 0 at infinity.

In this section, we study the problem (1.1) for n ≥ 1 and γ > 1 with the following
condition:

n− γ < k ≤ n− 1 =⇒ ck = 0. (4.3)

Consider the following hypotheses:
(i) There exist a continuous function h : Ra → R+ and a nondecreasing upper

semi-continuous function ϕ : R+ → R+ with ϕ(0) = 0 such that

|f(t, u)− f(t, v)| ≤ h(t)ϕ(|u− v|), for any u, v ∈ R, t ∈ Ra,

λ := sup
x∈Ra

1

Γ(α)

∫ x

a

(x− t)α−1h(t)dt.

(ii) ξ := sup
x∈Ra

1

Γ(α)

∫ x

a

(x− t)α−1|f(t, 0)|dt <∞.

(iii) There exists a positive solution r0 of the inequality

Aθ + λϕ(r) + ξ ≤ r (4.4)

where θ > 0 is arbitrarily fixed,

Aθ :=

bn−γc∑
k=0

|ck|
θk−n+γ

|Γ(k − n+ γ + 1)|
.

(iv) lim
n→∞

λnϕn(t) = 0 for all t > 0.

Theorem 4.9. Under the assumptions (i)–(iv), IVP (1.1) has at least one solution
in BC(Ra+θ) for any fixed θ > 0.
Proof. According to (4.3), we first define operator F for any u ∈ BC(Ra+θ) by

[Fu] (x) =

bn−γc∑
k=0

ck
(x− a)k−n+γ

Γ(k − n+ γ + 1)
+

1

Γ(α)

∫ x

a

(x− t)α−1f(t, u(t))dt, x ≥ a+ θ.

By considering the conditions of theorem we infer that Fu is continuous on Ra+θ
for any u ∈ BC(Ra+θ). By using conditions (i)-(iii), taking an arbitrary function
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u ∈ BC(Ra+θ,R), for a fixed x ∈ Ra+θ, one has

|[Fu] (x)| ≤
bn−γc∑
k=0

|ck|
(x− a)k−n+γ

|Γ(k − n+ γ + 1)|
+

1

Γ(α)

∫ x

a

(x− t)α−1|f(t, u(t))|dt

≤
bn−γc∑
k=0

|ck|
θk−n+γ

|Γ(k − n+ γ + 1)|
+

1

Γ(α)

∫ x

a

(x− t)α−1
[
h(t)ϕ(|u(t)|) + |f(t, 0)|

]
dt

≤ Aθ + λϕ(‖u‖) + ξ (4.5)

which is clearly bounded.
Inequality (4.5) yields that F transforms the ball Br0 into itself where r0 is a

positive solution of (4.4).
Take an arbitrary function u ∈ BC(Ra+θ) and fix T > a+ θ, ε > 0. Next assume

that x1, x2 ∈ [a + θ, T ] such that |x1 − x2| < ε. Without loss of generality one can
assume that x1 < x2. Then, in view of imposed assumptions, one has

|[Fu] (x2)− [Fu] (x1)| ≤
bn−γc∑
k=0

|ck|
Φ(ε)

|Γ(k − n+ γ + 1)|

+
1

Γ(α)

∫ x1

a

[
(x2 − t)α−1 − (x1 − t)α−1

]
|f(t, u(t))|dt

+
1

Γ(α)

∫ x2

x1

(x2 − t)α−1|f(t, u(t))|dt

≤
bn−γc∑
k=0

|ck|
Φ(ε)

|Γ(k − n+ γ + 1)|

+
1

Γ(α)

∫ x1

a

[
(x2 − t)α−1 − (x1 − t)α−1

]
×
[
h(t)ϕ(|u(t)|) + |f(t, 0)|

]
dt

+
1

Γ(α)

∫ x2

x1

(x2 − t)α−1
[
h(t)ϕ(|u(t)|) + |f(t, 0)|

]
dt

≤
bn−γc∑
k=0

|ck|
Φ(ε)

|Γ(k − n+ γ + 1)|

+
H(t1)ϕ(‖u‖) + F (t1)

Γ(α+ 1)

[
(x2 − a)α − (x2 − x1)α − (x1 − a)α

]
+
H(t2)ϕ(‖u‖) + F (t2)

Γ(α+ 1)
(x2 − x1)α,

where

F (t) = sup{|f(x, 0)| : a ≤ x ≤ t}, H(t) = sup{|h(x)| : a ≤ x ≤ t},

Φ(ε) = sup{|(x2 − a)k−n+γ − (x1 − a)k−n+γ | : |x1 − x2| < ε}.
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Moving forward, by the fact that

(x2 − a)α = (x1 − a)α + α(x2 − x1)(η − a)α−1, for some η := η(x1, x2) ∈ (x1, x2)

we obtain

|[Fu] (x2)− [Fu] (x1)| ≤
bn−γc∑
k=0

|ck|
Φ(ε)

|Γ(k − n+ γ + 1)|

+
H(t1)ϕ(‖u‖) + F (t1)

Γ(α+ 1)

[
αε(η − a)α−1

]
+
H(t2)ϕ(‖u‖) + F (t2)

Γ(α+ 1)
εα

≤
bn−γc∑
k=0

|ck|
Φ(ε)

|Γ(k − n+ γ + 1)|

+
H(T )ϕ(‖u‖) + F (T )

Γ(α+ 1)

[
αε(T − a)α−1 + εα

]
.

(4.6)

Now, by the estimation (4.6) one can infer that the function Fu is continuous on the
interval [a+ θ, T ] for any T > a+ θ. This yields the continuity of Fu on Ra+θ.
In view of (4.6), for any X ⊆ Br0 , we see that

ωTa+θ(FX, ε) ≤
bn−γc∑
k=0

|ck|
Φ(ε)

|Γ(k − n+ γ + 1)|

+
H(T )ϕ(supu∈X ‖u‖) + F (T )

Γ(α+ 1)

[
αε(T − a)α−1 + εα

]

≤
bn−γc∑
k=0

|ck|
Φ(ε)

|Γ(k − n+ γ + 1)|

+
H(T )ϕ(r0) + F (T )

Γ(α+ 1)

[
αε(T − a)α−1 + εα

]
which shows that

ωa+θ(FX) = lim
T→∞

lim
ε→0

ωTa+θ(FX, ε) = 0. (4.7)

On the other hand, by taking u, v ∈ X ⊆ Br0 and x ∈ Ra+θ one gets

|[Fu] (x)− [Fv] (x)| ≤ 1

Γ(α)

∫ x

a

(x− t)α−1
∣∣∣∣f(t, u(t))− f(t, v(t))

∣∣∣∣dt
≤ 1

Γ(α)

∫ x

a

(x− t)α−1h(t)ϕ

(∣∣∣∣u(t)− v(t)

∣∣∣∣)dt
≤ 1

Γ(α)

∫ x

a

(x− t)α−1h(t)ϕ

(
diam X(t)

)
dt
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which implies that

lim sup
t→∞

diam [FX] (t) ≤ λ·lim sup
t→∞

ϕ

(
diamX(t)

)
≤ λ·ϕ

(
lim sup
t→∞

diamX(t)

)
. (4.8)

Now Eqs. (4.7) and (4.8) yield the following

µ(FX) = ωa+θ(FX) + lim sup
t→∞

diam [FX] (t)

≤ λ · ϕ
(

lim sup
t→∞

diam X(t)

)
≤ λ · ϕ(µ(X))

(4.9)

for any X ⊆ Br0 . Now, since µ as given by (4.2) defines a measure of noncompactness
on BC(Ra+θ) then, the recent inequality together with (iv) implies that all conditions
of Corollary 4.7 are fulfilled. Therefore, Eq. (1.1) has a solution in Banach space
BC(Ra+θ). �
Theorem 4.10. Under the assumptions (i)–(iv), all the solutions of IVP (1.1) are
uniformly locally attractive in BC(Ra+θ) for θ > 0.
Proof. First, linking the facts established before, IVP (1.1) has at least one solution
in BC(Ra+θ). To prove that all solutions of Eq. (1.1) are uniformly locally attractive
in the sense of Definition 2.3, let us consider B1

r0 = ConvF (Br0), B2
r0 = ConvF (B1

r0)
and so on, where Br0 is the ball with radius r0 as given in (iii) and centre zero in
the space BC(Ra+θ). Obviously, one can see that B1

r0 ⊆ Br0 and Bn+1
r0 ⊆ Bnr0 for

n = 1, 2, . . . and also the sets of this sequence are closed, convex and nonempty.
Moreover, in view of the inequality (4.9) we derive that

µ(Bnr0) ≤ λnϕn(µ(Br0)), for any n = 1, 2, . . . .

Mixing the fact that µ(Br0) ≥ 0 and condition (iv) with the above inequality we get

lim
n→∞

µ(Bnr0) = 0.

Thus, applying the definition of measure of noncompactness we infer that the

B∞r0 :=

∞⋂
n=1

Bnr0

is nonempty, bounded, and convex. The set B∞r0 is F -invariant and the operator F
is continuous on such set. Furthermore, bringing into mind that B∞r0 ∈ kerµ and the
characterization of sets belonging to kerµ we conclude that all solutions of Eq. (1.1)
are uniformly locally attractive in the sense of Definition 2.3. This completes the
proof. �

We now study the global attractivity of the solutions of (1.1) utilizing the function
µ∗ defined on the family of functions included in BC(Ra+θ) by the formula

µ∗(X) = max{ωa+θ(X), δ∗(X)}

where

δ∗(X) = lim sup
t→∞

diamX(t).

For a fixed real number c, denote

X(t)− c = {x(t)− c x ∈ X}, δc(X) = lim sup
t→∞

|X(t)− c|,
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then define function

µc(X) = max{ωa+θ(X), δc(X)}.

It has been shown as in Banás and Goebel [5] that the functions µ∗ and µc are
measures of noncompactness in the space BC(R+), and similarly it can be concluded
same facts concerning with the functions as above in the setting BC(Ra+θ).
Remark 4.11. The kernel kerµ∗ of the measure µ∗ consists of nonempty and bounded
subsets X of BC(Ra+θ) such that functions from X are locally equicontinuous on
Ra+θ and the thickness of the bundle formed by functions from X tends to zero at
infinity. This particular characteristic of kerµ∗ is helpful in order to prove the global
attractivity of class of solutions in functional spaces. Similarly, the kernel kerµc of
the measure µc consists of nonempty and bounded subsets X of BC(Ra+θ) such that
functions from X are locally equicontinuous on Ra+θ and the thickness of the bundle
formed by functions from X around the line u(x) = c (which come closer along a line
u(x) = c) tends to zero at infinity. This particular characteristic of kerµc is effective
in establishing the global asymptotic attractivity and stability of the solutions for the
considered problems.

Suppose the following hypothesis holds:
(v) There exist a real number c and a function fc : Ra → R defined by

fc(x) =
1

Γ(α)

∫ x

a

(x− t)α−1f(t, c)dt

in which fc(x)→ c as x→∞.
Theorem 4.12. Under the assumptions (i)–(v), all the solutions of IVP (1.1) are
uniformly globally attractive in BC(Ra+θ) for θ > 0. Moreover, all the solutions of
the equation (1.1) are uniformly globally ultimately asymptotically stable to the line
u(t) = c defined on Ra+θ.
Proof. For the existence of solution, the process of proof is similar to one in Theorem
4.9. To establish the uniformly globally attractivity of solutions we only need to use
the last part of proof in previous result. To do this, using Eqs. (4.8) and (4.9) we
apply the measure of noncompactness µ∗. That is, for any X ⊆ Br0 , we have

δ∗(FX) ≤ λ · ϕ(δ∗(X)), ωa+θ(FX) = 0

=⇒ µ∗(FX) ≤ λ · ϕ(δ∗(X)) ≤ λ · ϕ(µ∗(X)).

Now, following the proof of Theorem 4.10 we see that there exists B∞r0 which belongs
to the family kerµ∗. Now, taking into account the description of sets belonging to
kerµ∗ we deduce that all solutions of problem (1.1) are uniformly globally ultimately
attractive on Ra+θ. Thus we get the required result.

Now, to prove the next claim we show that all the solutions of (1.1) are uniformly
globally ultimately asymptotically stable to the line u(x) = c. By taking into account
our assumptions, for arbitrarily fixed x ∈ Ra+θ and for the solution u ∈ X we deduce
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the following estimate:

|(Fu)(x)− c|

≤
bn−γc∑
k=0

|ck|
(x− a)k−n+γ

Γ(k − n+ γ + 1)
+

1

Γ(α)

∫ x

a

(x− t)α−1|f(t, u(t))− f(t, c)|dt

+ |fc(x)− c|

≤
bn−γc∑
k=0

|ck|
(x− a)k−n+γ

Γ(k − n+ γ + 1)
+

1

Γ(α)

∫ x

a

(x− t)α−1h(t)ϕ(|u(t)− c|)dt

+ |fc(x)− c|

≤
bn−γc∑
k=0

|ck|
(x− a)k−n+γ

Γ(k − n+ γ + 1)
+

1

Γ(α)

∫ x

a

(x− t)α−1h(t)ϕ(lim sup
t→∞

‖X(t)− c‖)dt

+ |fc(x)− c|

=

bn−γc∑
k=0

|ck|
(x− a)k−n+γ

Γ(k − n+ γ + 1)
+ λ · ϕ(lim sup

t→∞
‖X(t)− c‖) + |fc(x)− c|

for each x ∈ Ra+θ. Taking limit superior over x→∞ and using (v) we get

δc(FX) = lim sup
x→∞

‖(FX)(x)− c‖ ≤ λ · ϕ(lim sup
t→∞

‖X(t)− c‖) = λ · ϕ(δc(X)).

This together with the fact that ωa+θ(FX) = 0 (see (4.7)) implies that

µc(FX) = max{ωa+θ(FX), δc(FX)} ≤ λ · ϕ(δc(X)) ≤ λ · ϕ(µc(X)).

Similar to the previous part, there is a set belonging to the family kerµc. Now, taking
into account the description of sets belonging to kerµc we derive that all solutions
of problem (1.1) are uniformly globally ultimately asymptotically stable to the line
u(x) = c and so the consequence follows. �
Remark 4.13. We notice that since the results of this section hold in the setting
of BC(Ra+θ) for any arbitrarily fixed θ > 0, the existence of the solutions with
mentioned properties defined a.e. in BC(Ra) are established in the corresponding
results. Furthermore, for the case 0 < α < 1, according to the hypothesis (4.3)
and the Volterra integral equation (3.1) since the coefficient c0 = 0 then there is no
difficulty to obtain all results of this section in the setting of BC(Ra) without using
the parameter θ; this is indeed because of the fact that Aθ = 0 in condition (iii) and
so all the conditions are not related to the parameter θ.

5. Examples

Below we indicate two examples for the realization of the abstract theory we have
developed in this paper. First, we give an example illustrating the main result of
Section 3.
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Example 5.1. Consider the fractional differential equation as follows{
D

1
2 ,

1
2

3+ y(x) = f(x, y(x)), x > 3,

(I
3
4

3+y)(3+) = r ∈ R.
(5.1)

where

f(x, y(x)) =
e1−x−|y(x)| sin y(x)

(x+ 1)
3
4

.

By the continuity of functions involved in f , it is easy to show that condition (C1)
holds. On the other hand,

|f(x, y(x))| ≤ e−2

(x+ 1)
3
4

≤M(x− 3)−β1 , x > a, y(x) ∈ C(R3,R),

where M = e−2, β1 = 3
4 ∈ ( 1

2 , 1) and R3 := [3,∞). Therefore, Theorem 3.6 implies
that IVP (5.1) admits at least one attractive solution in C(R3,R) in the sense of
Definition 2.2.
Now, considering the imposed conditions in Section 4 we see that

|f(t, u)− f(t, v)| ≤ e1−t

(t+ 1)
3
4

∣∣∣∣e−|u| sinu− e−|v| sin v∣∣∣∣
≤ e1−t

(t+ 1)
3
4

(
e−|u|

∣∣∣∣ sinu− sin v

∣∣∣∣+ | sin v| ·
∣∣∣∣e−|u| − e−|v|∣∣∣∣)

≤ e1−t

(t+ 1)
3
4

(
e−|u| + e−|η|

)
|u− v|

≤ 2e1−t

(t+ 1)
3
4

|u− v|

:= h(t)ϕ(|u− v|), for any u, v ∈ R, t ∈ R3

where ϕ is the identity mapping and h is defined by

h(t) =
2e1−t

(t+ 1)
3
4

, t ∈ R3.

To complete the verification of (i) using the Euler’s Beta function we find that

1

Γ( 1
2 )

∫ x

3

(x− t)− 1
2

2e1−t

(t+ 1)
3
4

dt ≤ 2e−2

Γ( 1
2 )

∫ x

3

(x− t)− 1
2

1

(t+ 1)
3
4

dt

≤ 2e−2

Γ( 1
2 )

∫ x

0

(x− t)− 1
2 t
−3
4 dt

≤ 2e−2

Γ( 1
2 )
x
−1
4

Γ( 1
2 )Γ( 1

4 )

Γ( 3
4 )

≤
2e−2Γ( 1

4 )

Γ( 3
4 )

x
−1
4
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and hence followed by Euler’s reflection formula we get

λ := sup
x∈R3

1

Γ( 1
2 )

∫ x

3

(x− t)− 1
2

2e1−t

(t+ 1)
3
4

dt

≤
2e−2Γ( 1

4 )

Γ( 3
4 ) 4
√

3

=

√
2e−2Γ2( 1

4 )
4
√

3π
∼= 0.6084 < 1

which means that (i) is satisfied. Also, f(t, 0) = 0 implies that ξ = 0 and so the
condition (ii) is held. (iii) is obvious. Since λ < 1 and ϕ = id, the condition (iv) is
also clearly satisfied. Thus, all conditions of Theorems 4.9 and 4.10 are satisfied and
all solutions of (5.1) are uniformly locally attractive.
By the following inequalities

0 ≤ lim
x→∞

|fc(x)| ≤ lim
x→∞

e−|c|| sin c|
Γ( 1

2 )

∫ x

3

(x− t)− 1
2

e1−t

(t+ 1)
3
4

dt

≤ lim
x→∞

e−2−|c|| sin c|Γ( 1
4 )

Γ( 3
4 )

x
−1
4 = 0

one can observe that c = limx→∞ fc(x) = 0 and all solutions of (5.1) are uniformly
globally ultimately asymptotically stable to the line u(x) = 0 (see Theorem 4.12).

Now, to show the effectiveness of main results of Section 4 we provide the following
example.
Example 5.2. Consider the following initial value problem of the form

D
3
2 ,

1
2

1+ y(x) =
π(x− 1) tan−1 y(x)π

x3 + 1
, x > 1,

(I
1
4

1+y)(1+) = c0 ∈ R,
d

dx
(I

1
4

1+y)(1+) = 0.

(5.2)

First, it is easy to see that

|f(t, u)− f(t, v)| ≤ π(t− 1)

t3 + 1
| tan−1

u

π
− tan−1

v

π
|

≤ π2(t− 1)

(t3 + 1)(π2 + η2)
|u− v|

≤ h(t)ϕ(|u− v|),

for any u, v ∈ R, t ∈ R1 := [1,∞), and some η := ηu,v ∈ (u, v), u < v. Also, we have
denoted

h(t) =
t− 1

t3 + 1
, ϕ(x) =

π2x

π2 + 1
, t ∈ R1, x ∈ R+.
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Moreover, by Cauchy-Schwarz inequality and the convexity of h2(t) we have∫ x

1

√
x− t · h(t)dt ≤

(∫ x

1

(x− t)dt
) 1

2

·
(∫ x

1

h2(t)dt

) 1
2

≤
(∫ x

1

(x− t)dt
) 1

2

·
(

(x− 1)
h2(x) + h2(1)

2

) 1
2

=
(x− 1)

5
2

2(x3 + 1)

=: g(x)

(5.3)

where here the Hermite-Hadamard inequality has been utilized (see [23, Theorem
1.5.1]). Now, moving forward, we get

λ := sup
x∈R1

1

Γ( 3
2 )

∫ x

1

√
x− t · h(t)dt ≤ 1

Γ( 3
2 )

sup
x∈R1

g(x) =
g(x∗)

Γ( 3
2 )
∼=

0.12882
√
π
2

< 1

where x∗ ∼= 6.133 is the global maximum point of g defined on R1. Hence, the
condition (i) is satisfied. The condition (ii) is also fulfilled since f(t, 0) = 0, then
ξ = 0.

To verify hypothesis (iii), take an r0 holding in

r0 ≥
|c0|θ

−1
4

Γ( 3
4 )(1− λ)

where θ > 0 is arbitrarily fixed. Then, the condition (iii) is satisfied. Concerning with
the condition (iv), since λ < 1 by the definition of control function ϕ we derive the
followings

lim
n→∞

λnϕn(t) = lim
n→∞

(
π2λ

π2 + 1

)n
(t) = 0 for all t > 0.

Therefore, by Theorem 4.9 the problem (5.2) has at least one solution in BC(R1+θ)
for any fixed θ > 0. Moreover, based on Theorem 4.10, all the solutions of Eq. (5.2)
are uniformly locally attractive.

In view of the fact that

0 ≤ lim
x→∞

|fc(x)| ≤ lim
x→∞

1

Γ( 3
2 )

∫ x

1

√
x− t|f(t, c)|dt ≤ lim

x→∞

π| tan−1 c
π |

Γ( 3
2 )

g(x) = 0

one can see that c = 0 and then all the solutions of Eq. (5.2) are uniformly globally
ultimately asymptotically stable to the line u(x) = 0 which is obeyed by Theorem
4.12.
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[17] R. Hilfer, Y. Luchko, Ž. Tomovski, Operational method for the solution of fractional differential

equations with generalized Riemann-Liouville fractional derivatives, Fract. Calc. Appl. Anal.,
12(2009), no. 3, 299-318.

[18] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential

Equations, vol. 204, Elsevier, North Holland, 2006.
[19] M.A. Krasnoselskii, Topological Methods in the Theory of Nonlinear Integral Equations, Perg-

amon Press, New York, 1964.
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