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1. Introduction

Let E be a nonempty subset of a metric space (X, d). For x ∈ X, we set

dist(x,E) := inf{d(x, y) : y ∈ E},
and

R(x,E) := sup{d(x, y) : y ∈ E}.
We denote by K(X) the family of nonempty compact subsets of X. Let H(·, ·) be the
Pompeiu-Hausdorff distance on K(X), that is,

H(A,B) = max

{
sup
a∈A

dist(a,B), sup
b∈B

dist(b, A)

}
for all A,B ∈ K(X).

A mapping T from E to K(X) is called a multi-valued mapping. In particular, if
T (x) is a singleton for every x in E then T is called a single-valued mapping. A point
x ∈ E is called a fixed point of T if x ∈ T (x). We denote by Fix(T ) the set of all
fixed points of T. A multi-valued mapping T : E → K(X) is said to be a contraction
if there exists a constant λ ∈ [0, 1) such that

H(T (x), T (y)) ≤ λd(x, y) for all x, y ∈ E. (1.1)
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If (1.1) is valid when λ = 1, then T is called nonexpansive.
Fixed point theory for multi-valued mappings has many useful applications in

applied sciences, for instance, in game theory and optimization theory. Thus, it is
natural to study the extensions of the known fixed point results for single-valued
mappings to the setting of multi-valued mappings. One of the fundamental results in
fixed point theory for multi-valued mappings which extends the well-known Banach
contraction principle was proved by Nadler [16]. He showed that every multi-valued
contraction on a complete metric space always has a fixed point.

In 2007, Berinde and Berinde [2] extended the concept of multi-valued contractions
to a general concept of mappings in the following way: a mapping T : E → K(X) is
called a weak contraction if there exist two constants λ ∈ [0, 1) and L ∈ [0,∞) such
that

H(T (x), T (y)) ≤ λd(x, y) + Ldist(x, T (x)) for all x, y ∈ E.
In 2019, Bunlue and Suantai [3] introduced the concept of Berinde nonexpansive

mappings in the following manner: a multi-valued mapping T : E → K(X) is called
a Berinde nonexpansive mapping if there exists a constant µ ≥ 0 such that

H(T (x), T (y)) ≤ d(x, y) + µdist(x, T (x)) for all x, y ∈ E.

In [3], the authors also obtained fixed point theorems and convergence theorems
for Berinde nonexpansive mappings in uniformly convex Banach spaces and Banach
spaces which satisfy the Opial’s condition.

The concept of endpoints (or strict fixed points) for multi-valued mappings is an
important concept which lies between the concept of fixed points for single-valued
mappings and the concept of fixed points for multi-valued mappings. In 1986, Corley
[6] proved that a maximization with respect to a cone is equivalent to the problem
of finding an endpoint of a certain multi-valued mapping. Moreover, Tarafdar and
Yuan [29] proved an endpoint theorem and applied it to obtain the existence of Pareto
optima for multi-valued mappings in ordered Banach spaces. For more details and
further applications of the endpoint theory, the reader is referred to [10, 22, 28].

In 2015, Panyanak [20] and Esṕınola et al. [8] proved the existence of endpoints for
multi-valued nonexpansive mappings in certain classes of Banach spaces. After that,
Saejung [23] obtained endpoint theorems for some generalized multi-valued nonexpan-
sive mappings in uniformly convex Banach spaces and Banach spaces which satisfy
the Opial’s condition. Since then endpoint results for some generalized multi-valued
nonexpansive mappings in several classes of metric and Banach spaces have been de-
veloped and many papers have appeared (see, e.g., [4, 5, 12, 13, 17, 21]). But, there
is no result regarding the existence of endpoints for Berinde nonexpansive mappings.

In this paper, we introduce the class of generalized Berinde nonexpansive mappings
and show that it contains the class of Berinde nonexpansive mappings as a proper sub-
class. We also give sufficient conditions for the existence of endpoints of a generalized
Berinde nonexpansive mapping in a uniformly convex hyperbolic space. Moreover,
we also prove strong and ∆−convergence theorems of the Ishikawa iteration process
for the class of semi-nonexpansive mappings which includes the class of generalized
Berinde nonexpansive mappings as well. Our results extend and improve the results
in [13, 18, 30] and many others.
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2. Preliminaries

Throughout this paper, N stands for the set of natural numbers and R stands for
the set of real numbers. Let E be a nonempty subset of a metric space (X, d) and
T : E → K(X) be a multi-valued mapping. A point x in E is called an endpoint (or a
strict fixed point) of T if T (x) = {x}. We denote by End(T ) the set of all endpoints
of T. A multi-valued mapping T : E → K(X) is said to satisfy the endpoint condition
[26] if End(T ) = Fix(T ). A sequence {xn} in E is called an approximate endpoint
sequence for T [1] if lim

n→∞
R(xn, T (xn)) = 0.

Definition 2.1. A multi-valued mapping T : E → K(X) is said to be
(i) quasi-nonexpansive if Fix(T ) 6= ∅ and

H(T (x), T (p)) ≤ d(x, p) for all x ∈ E and p ∈ Fix(T );

(ii) semi-nonexpansive if End(T ) 6= ∅ and

H(T (x), T (q)) ≤ d(x, q) for all x ∈ E and q ∈ End(T ).

The following proposition can be found in [19].

Proposition 2.2. The following statements hold.
(i) If T is nonexpansive and Fix(T ) 6= ∅, then T is quasi-nonexpansive.
(ii) If T is quasi-nonexpansive and End(T ) 6= ∅, then T is semi-nonexpansive.
(iii) The converse of (ii) is true if T satisfies the endpoint condition.

Now, we give the definition of generalized Berinde nonexpansive mapping.

Definition 2.3. A multi-valued mapping T : E → K(X) is said to be generalized
Berinde nonexpansive if there exists µ ≥ 0 such that

H(T (x), T (y)) ≤ d(x, y) + µR(x, T (x)) for all x, y ∈ E. (2.1)

The following proposition is easy to establish.

Proposition 2.4. The following statements hold.
(i) If T is Berinde nonexpansive, then T is generalized Berinde nonexpansive.
(ii) If T is generalized Berinde nonexpansive and End(T ) 6= ∅, then T is semi-

nonexpansive.

The folowing examples show that the converses of (i) and (ii) in Proposition 2.4
are not true.

Example 2.5. Let X = R, E = [1, 2] and T : E → K(X) be defined by

T (x) = [x, x+
√
x] for all x ∈ E.

Put x = 1 and y = 2. Then T (x) = [1, 2] and T (y) = [2, 2 +
√

2]. This implies that

H(T (x), T (y)) =
√

2 > 1 = |x− y|+ µdist(x, T (x)) for all µ ≥ 0.

Hence T is not Berinde nonexpansive. Next, we shows that T is generalized Berinde
nonexpansive. Choose µ = 1 and let x, y ∈ E. Without loss of generality, we may
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assume that x < y. This implies that

H(T (x), T (y)) = (y +
√
y)− (x+

√
x)

= |x− y|+ (
√
y −
√
x)

≤ |x− y|+√y
= |x− y|+ µR(y, T (y)),

and

H(T (x), T (y)) = (y +
√
y)− (x+

√
x)

= |x− y|+ (
√
y −
√
x)

≤ |x− y|+
√
x

= |x− y|+ µR(x, T (x)).

Hence T is generalized Berinde nonexpansive.

Example 2.6. Let X = R, E = [0, 1] and T : E → K(X) be defined by

T (x) =

{[∣∣x(1− x) sin( 1
x )
∣∣, ∣∣ x

1+x sin( 1
x )
∣∣] if x 6= 0;

{0} if x = 0.

It is easy to see that End(T ) = {0}. For x ∈ (0, 1], we have

H(T (x), T (0)) =

∣∣∣∣ x

1 + x
sin(

1

x
)

∣∣∣∣ ≤ ∣∣∣∣ x

1 + x

∣∣∣∣ ≤ |x− 0|. (2.2)

This implies that T is a semi-nonexpansive mapping. For each n ∈ N, we set

xn :=
1

2πn+ π/2
and yn :=

1

2πn
.

From (2.2), we get that R(xn, T (xn)) = xn − xn(1− xn) = x2
n. Thus

H(T (xn), T (yn))− |xn − yn|
R(xn, T (xn))

=
xn

1+xn
− (yn − xn)

x2
n

=
1

(1 + xn)xn
− (yn − xn)

x2
n

=
(2πn+ π/2)2

2πn+ π/2 + 1
− 2πn+ π/2

4n
→ ∞.

This implies that T is not generalized Berinde nonexpansive.

In 1970, Takahashi [27] introduced the concept of convex metric spaces which
is more general than the concept of convexity in Banach spaces. His concept was
specialized to hyperbolic spaces by Leuştean [14] in 2007.

Definition 2.7. A hyperbolic space is a metric space (X, d) together with a function
W : X ×X × [0, 1]→ X such that for all x, y, z, w ∈ X and s, t ∈ [0, 1], we have

(i) d(z,W (x, y, t)) ≤ (1− t)d(z, x) + td(z, y);
(ii) d (W (x, y, s),W (x, y, t)) = |s− t|d(x, y);
(iii) W (x, y, t) = W (y, x, 1− t);
(iv) d(W (x, z, t),W (y, w, t)) ≤ (1− t)d(x, y) + td(z, w).
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If x, y ∈ X and t ∈ [0, 1], then we use the notation (1 − t)x ⊕ ty for W (x, y, t). A
nonempty subset E of X is said to be convex if (1 − t)x ⊕ ty ∈ E for all x, y ∈ E
and t ∈ [0, 1]. The hyperbolic space (X, d,W ) is said to be uniformly convex if for
any r ∈ (0,∞) and ε ∈ (0, 2] there exists δ ∈ (0, 1] such that for all x, y, z ∈ X with
d(x, z) ≤ r, d(y, z) ≤ r and d(x, y) ≥ rε, we have

d

(
1

2
x⊕ 1

2
y, z

)
≤ (1− δ)r.

A function η : (0,∞) × (0, 2] → (0, 1] providing such a δ := η(r, ε) for given
r ∈ (0,∞) and ε ∈ (0, 2] is called a modulus of uniform convexity. Moreover, we call
η monotone if it is a nonincreasing function of r for every fixed ε.

Definition 2.8. Let (X, d) be a uniformly convex hyperbolic space. For each r ∈
(0,∞) and ε ∈ (0, 2], we define

Ψ(r, ε) := inf

{
1

2
d2(x, z) +

1

2
d2(y, z)− d2(

1

2
x⊕ 1

2
y, z)

}
,

where the infimum is taken over all x, y, z ∈ X such that d(x, z) ≤ r, d(y, z) ≤ r, and
d(x, y) ≥ rε. We say that (X, d) is 2-uniformly convex if

cM := inf

{
Ψ(r, ε)

r2ε2
: r ∈ (0,∞), ε ∈ (0, 2]

}
> 0.

In [13], the authors prove that

d2((1− t)x⊕ ty, z) ≤ (1− t)d2(x, z) + td2(y, z)− 4cM t(1− t)d2(x, y), (2.3)

for all x, y, z ∈ X and t ∈ [0, 1].

Example 2.9. (1) If X is a CAT(0) space, then it is a 2-uniformly convex hyperbolic
space with cM = 1

4 (see [9]).
(2) Every uniformly convex Banach space is a 2-uniformly convex hyperbolic space.

To see this, we suppose thatX is a uniformly convex Banach space. Let r ∈ (0,∞) and
ε ∈ (0, 2] and x, y, z ∈ X be such that ‖x− z‖ ≤ r, ‖y− z‖ ≤ r and ‖x− y‖ ≥ rε. Set
u = x−z

rε and v = y−z
rε . Then ‖u‖ ≤ 1

ε , ‖v‖ ≤
1
ε and ‖u−v‖ ≥ 1. By Theorem 2 of [31],

there exists a continuous, strictly increasing and convex function g : [0,∞)→ [0,∞)
such that g(0) = 0 and∥∥∥∥1

2
u+

1

2
v

∥∥∥∥2

≤ 1

2
‖u‖2 +

1

2
‖v‖2 − 1

4
g(‖u− v‖).

This implies

g(1)

4
≤ g(‖u− v‖)

4
≤ 1

2
‖u‖2 +

1

2
‖v‖2 −

∥∥∥∥1

2
u+

1

2
v

∥∥∥∥2

,

which yields

g(1)

4
≤ 1

2

∥∥∥∥x− zrε

∥∥∥∥2

+
1

2

∥∥∥∥y − zrε

∥∥∥∥2

−
∥∥∥∥x− z2rε

+
y − z
2rε

∥∥∥∥2

.

Thus, g(1)
4 ≤ Ψ(r,ε)

r2ε2 and hence 0 < g(1)
4 ≤ cM . Therefore, X is a 2-uniformly convex

hyperbolic space.
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From now on, X stands for a complete 2-uniformly convex hyperbolic space with a
monotone modulus of uniform convexity. Let E be a nonempty subset of X and {xn}
be a bounded sequence in X. The asymptotic radius of {xn} relative to E is defined
by

r(E, {xn}) := inf
{

lim sup
n→∞

d(xn, x) : x ∈ E
}
.

The asymptotic center of {xn} relative to E is the set

A(E, {xn}) :=
{
x ∈ E : lim sup

n→∞
d(xn, x) = r(E, {xn})

}
.

It is known from [15] that if E is a nonempty closed convex subset of X, then
A(E, {xn}) consists of exactly one point.

Now, we give the concept of ∆−convergence and collect some of its basic properties.

Definition 2.10. Let E be a nonempty closed convex subset of X and x ∈ E. Let
{xn} be a bounded sequence inX.We say that {xn}∆−converges to x ifA(E, {un}) =

{x} for every subsequence {un} of {xn}. In this case we write xn
∆−→ x and call x the

∆−limit of {xn}.

It is known from [11] that every bounded sequence in X has a ∆−convergent
subsequence. The following fact can be found in [7].

Lemma 2.11. Let E be a nonempty closed convex subset of X and {xn} be a
bounded sequence in X. If A(E, {xn}) = {x} and {un} is a subsequence of {xn}
with A(E, {un}) = {u} and the sequence {d(xn, u)} converges, then x = u.

Definition 2.12. Let E be a nonempty closed convex subset of X and T : E → K(E).
Let I be the identity mapping on E. We say that

(i) T is continuous if H(T (xn), T (x))→ 0 whenever xn → x;

(ii) I − T is semiclosed if for any sequence {xn} in E such that xn
∆−→ x and

R(xn, T (xn))→ 0, one has T (x) = {x}.

Lemma 2.13. Let E be a nonempty subset of X and T : E → K(E). Then the
following statements hold.

(i) If E is convex and T is semi-nonexpansive, then End(T ) is convex.
(ii) If E is closed and convex and I − T is semiclosed, then End(T ) is closed.

Proof. (i) Let x, y ∈ End(T ) and z = αx ⊕ (1 − α)y for some α ∈ (0, 1). We show
that z ∈ End(T ). Suppose there exists w ∈ T (z) such that w 6= z. Let u = 1

2z ⊕
1
2w.

Then by (2.3) we have

d2(x, u) ≤ 1

2
d2(x, z) +

1

2
d2(x,w)− cMd2(z, w)

<
1

2
d2(x, z) +

1

2
H2(T (x), T (z))

≤ d2(x, z).

Thus, d(x, u) < d(x, z). Similarly, we can show that d(y, u) < d(y, z). These imply
that

d(x, y) ≤ d(x, u) + d(u, y) < d(x, z) + d(z, y) = d(x, y),
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a contradiction. Hence, T (z) = {z} and therefore End(T ) is convex.
(ii) Let {xn} be a sequence in End(T ) such that lim

n→∞
xn = x. Then R(xn, T (xn)) =

0 for all n ∈ N. It follows from the semiclosedness of I − T that T (x) = {x}, and
hence x ∈ End(T ). This shows that End(T ) is closed. �

3. Endpoint theorems

This section is begun by proving the semiclosed principle for generalized Berinde
nonexpansive mappings in uniformly convex hyperbolic spaces. Notice that it is an
extension of Lemma 4.6 in [20].

Theorem 3.1. Let E be a nonempty closed convex subset of X, and I the identity
mapping on E, and T : E → K(E) a generalized Berinde nonexpansive mapping.
Then I − T is semiclosed.

Proof. Let {xn} be a sequence in E such that xn
∆−→ x and R(xn, T (xn)) → 0. For

each n ∈ N, we can choose yn ∈ T (xn) and zn ∈ T (x) such that

d(xn, yn) = R(xn, T (xn)) and d(yn, zn) = dist(yn, T (x)).

Since T (x) is compact, there exists a subsequence {znk
} of {zn} such that lim

k→∞
znk

= v

for some v ∈ T (x). By (2.1), we have

d(xnk
, v) ≤ d(xnk

, ynk
) + d(ynk

, znk
) + d(znk

, v)

≤ R(xnk
, T (xnk

)) +H(T (xnk
), T (x)) + d(znk

, v)

≤ (1 + µ)R(xnk
, T (xnk

)) + d(xnk
, x) + d(znk

, v).

This implies that lim sup
k→∞

d(xnk
, v) ≤ lim sup

k→∞
d(xnk

, x). Therefore, v ∈ A(E, {xnk
}) =

{x} and hence x = v ∈ T (x). Let w ∈ T (x). For each k, there exists unk
in T (xnk

)
such that d(w, unk

) = dist(w, T (xnk
)). By (2.1), we have

d(xnk
, w) ≤ d(xnk

, unk
) + d(unk

, w)

≤ R(xnk
, T (xnk

)) +H(T (xnk
), T (x))

≤ (1 + µ)R(xnk
, T (xnk

)) + d(xnk
, x).

This implies that lim sup
k→∞

d(xnk
, w) ≤ lim sup

k→∞
d(xnk

, x), and hence w ∈ A(E, {xnk
}) =

{x}. Therefore w = x for all w ∈ T (x). Thus T (x) = {x}. �

As a consequence of Theorem 3.1, we can obtain the following result. Notice that
it is an extension of Theorem 3.4 in [17].

Theorem 3.2. Let E be a nonempty closed convex subset of X and T : E → K(E)
a generalized Berinde nonexpansive mapping. Then T has an endpoint if and only if
T has a bounded approximate endpoint sequence in E.

Proof. The necessity is clear. For the sufficiency, we suppose that T has a bounded
approximate endpoint sequence {xn} in E. As we have observed, there exists a sub-

sequence {xnk
} of {xn} such that xnk

∆−→ x ∈ E. By Theorem 3.1, x is an endpoint
of T. �
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We also obtain a common endpoint theorem as the following result.

Theorem 3.3. Let E be a nonempty closed convex subset of X and let S, T : E →
K(E) be two generalized Berinde nonexpansive mappings. If S has a bounded approx-
imate endpoint sequence in End(T ), then S and T have a common endpoint.

Proof. Let {xn} be a bounded approximate endpoint sequence for S in End(T ). Then,

there exists a subsequence {xnk
} of {xn} such that xnk

∆−→ x ∈ E. By Theorem 3.1,
x ∈ End(S). Let w ∈ T (x). Then

d(w, xnk
) = dist(w, T (xnk

))

≤ H(T (x), T (xnk
))

≤ d(x, xnk
) + µR(xnk

, T (xnk
)).

This implies that lim sup
k→∞

d(w, xnk
) ≤ lim sup

k→∞
d(x, xnk

), and hence w ∈ A(E, {xnk
}) =

{x}. Therefore w = x for all w ∈ T (x). Thus x ∈ End(T ). �

The following example shows that Theorem 3.3 may not be true if S does not have
an approximate endpoint sequence in End(T ).

Example 3.4. Let X = R, E = [0, 1] and S : E → K(E) be defined by

S(x) =
[
0,
x

2

]
for all x ∈ E.

Let T : E → K(E) be defined by

T (x) = [x, 1] for all x ∈ E.

Then S and T are generalized Berinde nonexpansive with End(S) = {0} and
End(T ) = {1}. Notice that S does not have an approximate endpoint sequence in
End(T ), and vice versa. Obviously, S and T do not have a common endpoint.

4. Convergence theorems

In this section, we prove strong and ∆−convergence theorems of the Ishikawa
iteration process for semi-nonexpansive mappings. Let E be a nonempty convex
subset of X, and {αn}, {βn} be sequences in [0, 1], and T : E → K(E) be a multi-
valued mapping. The sequence of Ishikawa iteration is defined by x1 ∈ E,

yn = (1− βn)xn ⊕ βnzn, n ∈ N,

where zn ∈ T (xn) such that d(xn, zn) = R(xn, T (xn)), and

xn+1 = (1− αn)xn ⊕ αnz
′
n, n ∈ N, (4.1)

where z′n ∈ T (yn) such that d(yn, z
′
n) = R(yn, T (yn)).

A sequence {xn} in X is said to be Fejér monotone with respect to E if

d(xn+1, p) ≤ d(xn, p) for all p ∈ E and n ∈ N.

The following lemma shows that the sequence of Ishikawa iteration defined by (4.1)
is Fejér monotone with respect to the endpoint set of semi-nonexpansive mapping.
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Lemma 4.1. Let E be a nonempty convex subset of X and T : E → K(E) a semi-
nonexpansive mapping. Let {xn} be the sequence of Ishikawa iteration defined by
(4.1). Then {xn} is Fejér monotone with respect to End(T ).

Proof. Let p ∈ End(T ). For each n ∈ N, we have

d(yn, p) ≤ (1− βn)d(xn, p) + βnd(zn, p)

≤ (1− βn)d(xn, p) + βnH(T (xn), T (p))

≤ d(xn, p).

This implies that

d(xn+1, p) ≤ (1− αn)d(xn, p) + αnd(z′n, p)

≤ (1− αn)d(xn, p) + αnH(T (yn), T (p))

≤ (1− αn)d(xn, p) + αnd(yn, p)

≤ d(xn, p).

Thus {xn} is Fejér monotone with respect to End(T ). �

The following fact can be found in [5, 24].

Lemma 4.2. Let E be a nonempty closed subset of X and {xn} a Fejér monotone
sequence with respect to E. Then {xn} converges strongly to an element of E if and
only if lim

n→∞
dist(xn, E) = 0.

The following fact is also needed.

Lemma 4.3. Let E be a nonempty closed convex subset of X and T : E → K(E) a
mapping such that I − T is semiclosed. If {xn} is a bounded sequence in E such that
lim

n→∞
R(xn, T (xn)) = 0 and {d(xn, v)} converges for all v ∈ End(T ), then ωw(xn) ⊆

End(T ). Here ωw(xn) :=
⋃
A(E, {un}) where the union is taken over all subsequences

{un} of {xn}. Moreover, ωw(xn) consists of exactly one point.

Proof. Let u ∈ ωw(xn), then there exists a subsequence {un} of {xn} such that
A(E, {un}) = {u}. Since {un} is bounded, there exists a subsequence {vn} of {un}
such that vn

∆−→ v ∈ E. It follows from Lemma 2.11 and the semiclosedness of I − T
that u = v ∈ End(T ), which implies ωw(xn) ⊆ End(T ). Next, we show that ωw(xn)
consists of exactly one point. Let {un} be a subsequence of {xn} with A(E, {un}) =
{u} and let A(E, {xn}) = {x}. Since u ∈ ωw(xn) ⊆ End(T ), {d(xn, u)} converges.
By Lemma 2.11, x = u. This completes the proof. �

Now, we prove ∆−convergence theorem.

Theorem 4.4. Let E be a nonempty closed convex subset of X and T : E → K(E)
a semi-nonexpansive mapping such that I − T is semiclosed. Let αn, βn ∈ [a, b] ⊂
(0, 1) and {xn} be the sequence of Ishikawa iteration defined by (4.1). Then {xn}
∆−converges to an endpoint of T.
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Proof. Let p ∈ End(T ). It follows from (2.3) that

d2(yn, p) ≤ (1− βn)d2(xn, p) + βnd
2(zn, p)− 4cMβn(1− βn)d2(xn, zn)

≤ (1− βn)d2(xn, p) + βnH
2(T (xn), T (p))− 4cMβn(1− βn)d2(xn, zn)

≤ d2(xn, p)− 4cMβn(1− βn)d2(xn, zn),

which yields

d2(xn+1, p) ≤ (1− αn)d2(xn, p) + αnd
2(z′n, p)− 4cMαn(1− αn)d2(xn, z

′
n)

≤ (1− αn)d2(xn, p) + αnH
2(T (yn), T (p))− 4cMαn(1− αn)d2(xn, z

′
n)

≤ (1− αn)d2(xn, p) + αnd
2(yn, p)

≤ d2(xn, p)− 4cMαnβn(1− βn)d2(xn, zn).

Thus
∞∑

n=1

a2(1− b)d2(xn, zn) ≤
∞∑

n=1

αnβn(1− βn)d2(xn, zn) <∞. (4.2)

This implies that lim
n→∞

d2(xn, zn) = 0, and hence

lim
n→∞

R(xn, T (xn)) = lim
n→∞

d(xn, zn) = 0. (4.3)

By Lemma 4.1, {d(xn, v)} converges for all v ∈ End(T ). By Lemma 4.3, ωw(xn)
consists of exactly one point and is contained in End(T ). This shows that {xn}
∆−converges to an element of End(T ). �

As a consequence of Theorems 3.1 and 4.4, we can obtain the following result.

Corollary 4.5. Let E be a nonempty closed convex subset of X and T : E → K(E)
a generalized Berinde nonexpansive mapping such that End(T ) 6= ∅. Let αn, βn ∈
[a, b] ⊂ (0, 1) and {xn} be the sequence of Ishikawa iteration defined by (4.1). Then
{xn} ∆−converges to an endpoint of T.

Next, we prove strong convergence theorems. Recall that a mapping T : E → K(E)
is said to satisfy condition (J) if End(T ) 6= ∅ and there exists a nondecreasing function
g : [0,∞)→ [0,∞) with g(0) = 0, g(r) > 0 for r ∈ (0,∞) such that

R(x, T (x)) ≥ g(dist(x,End(T ))) for all x ∈ E.

The mapping T is said to be semicompact if for any sequence {xn} in E such that

lim
n→∞

R(xn, T (xn)) = 0,

there exists a subsequence {xnk
} of {xn} such that lim

k→∞
xnk

= q ∈ E.

The following fact is also needed.

Lemma 4.6. ([25]) Let {αn}, {βn} be two real sequences in [0, 1) such that βn → 0
and

∑
αnβn =∞. Let {γn} be a nonnegative real sequence such that∑

αnβn(1− βn)γn <∞.

Then {γn} has a subsequence which converges to zero.
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Theorem 4.7. Let E be a nonempty closed convex subset of X and T : E → K(E) a
semi-nonexpansive mapping such that I − T is semiclosed. Let αn, βn ∈ [a, b] ⊂ (0, 1)
and {xn} be the sequence of Ishikawa iteration defined by (4.1). If T satisfies condition
(J), then {xn} converges strongly to an endpoint of T.

Proof. By Lemma 2.13, End(T ) is closed. Since T satisfies condition (J), by (4.3)
we get that lim

n→∞
dist(xn, End(T )) = 0. By Lemma 4.1, {xn} is Fejér monotone with

respect to End(T ). The conclusion follows from Lemma 4.2. �

Theorem 4.8. Let E be a nonempty convex subset of X and T : E → K(E) a semi-
nonexpansive mapping. Let αn, βn ∈ [0, 1) be such that βn → 0 and

∑
αnβn =∞ and

let {xn} be the sequence of Ishikawa iteration defined by (4.1). If T is semicompact
and continuous, then {xn} converges strongly to an endpoint of T.

Proof. From (4.2), we get that
∞∑

n=1

αnβn(1− βn)d2(xn, zn) <∞.

By Lemma 4.6, there exists a subsequence {d2(xnk
, znk

)} of {d2(xn, zn)} such that
lim
k→∞

d2(xnk
, znk

) = 0, and hence

lim
k→∞

R(xnk
, T (xnk

)) = lim
k→∞

d(xnk
, znk

) = 0. (4.4)

Since T is semicompact, by passing to a subsequence, we may assume that xnk
→ q ∈

E. Since T is continuous,

dist(q, T (q)) ≤ d(q, xnk
) + dist(xnk

, T (xnk
)) +H(T (xnk

), T (q))→ 0 as k →∞.
This implies that q ∈ T (q). Let v ∈ T (q). For each k, there exists vnk

in T (xnk
) such

that d(v, vnk
) = dist(v, T (xnk

)). It follows from (4.4) and the continuity of T that

d(q, v) ≤ d(q, xnk
) + d(xnk

, vnk
) + d(vnk

, v)

≤ d(q, xnk
) +R(xnk

, T (xnk
)) +H(T (xnk

), T (q))→ 0 as k →∞.

Thus v = q for all v ∈ T (q). Therefore q ∈ End(T ). By Lemma 4.1, lim
n→∞

d(xn, q)

exists and hence q is the strong limit of {xn}. �

The following result shows that if T is generalized Berinde nonexpansive, then the
continuity of T in Theorem 4.8 can be omitted.

Theorem 4.9. Let E be a nonempty convex subset of X and T : E → K(E) a
generalized Berinde nonexpansive mapping such that End(T ) 6= ∅. Let αn, βn ∈ [0, 1)
be such that βn → 0 and

∑
αnβn = ∞ and let {xn} be the sequence of Ishikawa

iteration defined by (4.1). If T is semicompact, then {xn} converges strongly to an
endpoint of T.

Proof. As in the proof of Theorem 4.8, we can show that there exists a subsequence
{xnk

} of {xn} such that

lim
k→∞

R(xnk
, T (xnk

)) = 0 and lim
k→∞

xnk
= q ∈ E. (4.5)
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Since T is generalized Berinde nonexpansive, there exists µ ≥ 0 such that

H(T (xnk
), T (q)) ≤ d(xnk

, q) + µR(xnk
, T (xnk

)) for all k ∈ N. (4.6)

This implies that

dist(q, T (q)) ≤ d(q, xnk
) + dist(xnk

, T (xnk
)) +H(T (xnk

), T (q))

≤ 2d(xnk
, q) + (1 + µ)R(xnk

, T (xnk
)) → 0 as k →∞.

Thus q ∈ T (q). Let w ∈ T (q). For each k, there exists wnk
in T (xnk

) such that
d(w,wnk

) = dist(w, T (xnk
)). By (4.5) and (4.6), we have

d(xnk
, w) ≤ d(xnk

, wnk
) + d(wnk

, w)

≤ R(xnk
, T (xnk

)) +H(T (xnk
), T (q))

≤ (1 + µ)R(xnk
, T (xnk

)) + d(xnk
, q)→ 0 as k →∞.

Thus w = q, and hence q ∈ End(T ). By Lemma 4.1, lim
n→∞

d(xn, q) exists and hence q

is the strong limit of {xn}. �
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[8] R. Esṕınola, M. Hosseini, K. Nourouzi, On stationary points of nonexpansive set-valued map-

pings, Fixed Point Theory Appl., 2015, 2015:236, 13 pp.

[9] M.A. Khamsi, A.R. Khan, Inequalities in metric spaces with applications, Nonlinear Anal.,
74(2011), 4036-4045.

[10] P.Q. Khanh, V.S.T. Long, Invariant-point theorems and existence of solutions to optimization-
related problems, J. Global Optim., 58(2014), 545-564.

[11] W.A. Kirk, B. Panyanak, A concept of convergence in geodesic spaces, Nonlinear Anal., 68

(2008), 3689-3696.

[12] A. Kudtha, B. Panyanak, Common endpoints for Suzuki mappings in uniformly convex hyper-
bolic spaces, Thai J. Math., Special Issue, 2018, 159-168.

[13] T. Laokul, B. Panyanak, A generalization of the (CN) inequality and its applications,
Carpathian J. Math., 36(2020), 81-90.

[14] L. Leuştean, A quadratic rate of asymptotic regularity for CAT(0)-spaces, J. Math. Anal. Appl.,

325(2007), 386-399.



ENDPOINTS OF GENERALIZED BERINDE NONEXPANSIVE MAPPINGS 321
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