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Abstract. This paper addresses the numerical solution of the matrix square root problem. Two
fixed point iterations are proposed by rearranging the nonlinear matrix equation A − X2 = 0 and

incorporating a positive scaling parameter. The proposals only need to compute one matrix inverse

and at most two matrix multiplications per iteration. A global convergence result is established. The
numerical comparisons versus some existing methods from the literature, on several test problems,

demonstrate the efficiency and effectiveness of our proposals.
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1. Introduction

In this paper, we derive novel fixed point algorithms for numerically approximating
the solution of the matrix square root problem. Given a square matrix A ∈ Rn×n, we
address the problem of finding a matrix X ∈ Rn×n such that it satisfies the following
quadratic system of equations

X2 = A. (1.1)

Our approach lies on the special case of (1.1) when A is a symmetric positive semi–
definite (PSD) matrix with real entries. The matrix square root problem plays an im-
portant role in many applications, and arises in several contexts such as: computation
of the matrix sign function [8], signal processing applications [16, 21], parallel trans-
lation and polar retractions for optimization on Riemannian manifolds [9, 15, 22, 23],
the Karcher mean computation [9], among others.

It is well–known that the system (1.1) does not have a unique solution (if one
exists). However, if A is positive semi–definite then problem (1.1) has exactly a
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unique positive semi–definite solution, denoted by A1/2, which is called the principal
square root of A, see [2]. This seems to be the most frequent case in practice.

The most numerically stable way to solve problem (1.1) is via the Schur decompo-
sition. This strategy reduces the problem (1.1) into the computation of the matrix
square root of an upper triangular matrix. Specifically, let A = UTU∗ a Schur de-
composition of A, where T is upper triangular and U is unitary. Then, observe that
A1/2 = UT 1/2U∗. A blocked Schur procedure for solving (1.1) is presented in [3].
When A ∈ Rn×n is symmetric, this method is reduced to compute an eigenvalue de-
composition of A. However, this strategy is impractical for n large. Therefore, there
is not other option than to resort to iterative methods.

Several types of iterative algorithms have been introduced to address Problem
(1.1). Possibly the first one is the Newton method, developed by Higham in [6],
which constructs a sequence of iterates by the following recurrence

Xk+1 =
1

2
(Xk +X−1k A), starting at X0 = A. (1.2)

This method enjoys a quadratic convergence rate to A1/2 under some assumptions,
see [6]. However, Newton iteration suffers from instability near the solution, and
absence of global convergence. In an attempt to overcome these drawbacks, in [8] is
introduced a scaled Newton method to approximate the solution of (1.1) via polar
decomposition. First, it is computed the Cholesky factorization A = LL> to obtain
the square root as A1/2 = UL>, where U is the limit of the sequence {Uk} generated
by

Uk+1 =
1

2

(
µkUk +

1

µk
U−>k

)
, starting at U0 = L, (1.3)

where µk > 0 is the scaling parameter.
In [19], Sra developed a fixed point iteration, which is related to a non–convex

optimization problem. Starting at X0 = 1
2 (A + I), Sra’s iteration solve (1.1) by

running
Xk+1 = [(Xk +A)−1 + (Xk + I)−1]−1. (1.4)

This iteration was also considered in [1], in the context of geometric mean compu-
tation of positive operators, motivated by electrical resistance networks. In [19], Sra
established the linear convergence of (1.4) to A1/2 based on a geometric optimization
approach. Specifically, Sra cast Problem (1.1) as the following non–convex optimiza-
tion model

min
X�0
F(X) = δ2S(X,A) + δ2S(X, I), (1.5)

whose unique solution is the desired square root X∗ = A1/2. Here, δ2S(·, ·) denotes
the S–divergence (see [20]) defined by

δ2S(X,Y ) = log det

(
X + Y

2

)
− 1

2
log det

(
XY

2

)
. (1.6)

The first–order optimality conditions associated with (1.5), implies the following ma-
trix equation,

1

2

(
X +A

2

)−1
+

1

2

(
X + I

2

)−1
−X−1 = 0. (1.7)
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Direct manipulation of this Riccati equation leads to the Sra’s iteration (1.4).
Another first–order method was proposed in [17]. Namely, the classical steepest

descent method (SD) for minimizing the least–square problem

min ||X2 −A||2F , s.t. X � 0, (1.8)

related to Problem (1.1). The main advantage of the steepest descent method to
solve (1.8) over the Newton and Sra methods, is that the SD method does not require
computing a matrix inverse per iteration, which makes the SD method an attractive
procedure. However, the optimal step–size depends on a certain constant c > 0, whose
existence is theoretically guaranteed (see Theorem 3.2 in [17]), leading to the absence
of a closed formula for the step–size in practice. Although strategies of sufficient
descent as the standard Armijo–rule with a backtracking strategy can be used, this
could cause the SD algorithm to perform many matrix multiplications per iteration,
which is not desired to design an efficient method.

Recently, Gawlik in [5] introduced the Zolotarev iterations for finding the matrix
square root, this approach is based on a recursion for rational approximations of

√
a,

which is extended to the matrix case. This procedure is similar to the Padè’s iterations
[7, 11], but converges more rapidly to the solution for matrices that have eigenvalues
with widely varying magnitudes.

In this paper, we introduce two new first–order fixed point methods to compute a
numerical solution of (1.1). Based on the Sra’ iteration (1.4) and keeping in mind the
high computational cost per iteration of (1.4), we propose some fixed point methods
equipped with a scaling parameter, which only need to compute one inverse matrix
and at most two matrix multiplications per iteration. In addition, we establish a
global convergence result under the Thompson metric, following the idea of the Sra’
demonstration in [19]. Furthermore, we perform some numerical comparisons between
our proposals and other state–of–the–art methods, in order to demonstrate the effec-
tiveness of our procedures. Several numerical experiments show that our proposals
are more efficient than the Sra iteration and also converge faster to the solution of
(1.1).

The rest of this paper is organized as follows. In section 2, we introduce our
two fixed point iterations for solving the square root problem (1.1). A convergence
analysis is given in section 3. Some numerical tests on several experimental problems
are presented in section 4. Finally, conclusions are drawn in section 5.

2. Two fixed point methods

In this section, we introduce two fixed point methods to deal with the numerical
solution of the matrix square root problem. Motivated by the Sra’ iteration and
looking for numerical efficiency, we construct new iterative schemes from the matrix
equation (1.1). Let µ be a positive parameter (conveniently chosen). Adding the term
µX on both sides of the equation (1.1), and then post–multiplying by the inverse
matrix (X + µI)−1, we arrive at

X = (A+ µX)(X + µI)−1, (2.1)
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which leads us to our first fixed point iteration, starting at an initial symmetric
positive semi–definite matrix X0 ∈ Rn×n,

Xk+1 = (A+ µXk)(Xk + µI)−1, k = 0, 1, 2, . . . (2.2)

Following a similar reasoning, we can build another fixed point iteration to address
problem (1.1). From A = XX, multiplying this equation by X>, adding µX and
then multiplying by (X>X + µI)−1 we obtain,

X = (X>X + µI)−1(X>A+ µX), (2.3)

which suggests the following fixed point iterative process,

Xk+1 = (X>k Xk + µI)−1(X>k A+ µXk), k = 0, 1, 2, . . . (2.4)

From equations (2.2) and (2.4), we note that our approaches are computationally less
costly than the Sra’ iteration due to our iterative procedures only require to compute
a matrix inverse per iteration, while the algorithm (1.4) needs three. In addition, our
proposals incorporate a scale parameter that, if its properly selected, can speed up
the convergence. Furthermore, comparing both iterative processes (2.2) and (2.4), it
is clear that each iteration of our first method is computationally more efficient than
our scheme (2.4), since it requires fewer matrix multiplications. Now we describe our
efficient fixed point iterative algorithm.

Algorithm 1 Fixed Point Method (FPM)

Require: A ∈ Rn×n a given positive definite matrix, X0 ∈ Rn×n, µ > 0, ε ∈ (0, 1),
k = 0.

Ensure: An ε–approximate solution of the system of equations (1.1)
1: while ||A−X2

k ||F /||A||F > ε do
2: Xk+1 = (A+ µXk)(Xk + µI)−1;
3: k = k + 1;
4: end while
5: X∗ = Xk.

Remark 2.1 By changing line 2 of Algorithm 1 by the update formula (2.4), we get
our second fixed point iterative method. In this work, we will analyze this second
variant only from a numerical point of view.

3. Convergence analysis

We now analyze Algorithm 1 by revealing the behaviour of the residual δT (Xk, X∗),
where δT denotes the Thompson metric and X∗ is the solution of (1.1). The theoret-
ical results provided here use similar tools than [19]. Specifically, at the end of this
section, we prove that our scheme (2.2) is a fixed–point iteration under the Thompson
part metric defined by

δT (X,Y ) = || log(X−
1
2Y X−

1
2 )||2, (3.1)
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where || · ||2 is the usual matrix norm and “log” denotes the matrix logarithm. In the
rest of this article, we will denote by λmin(M) and λmax(M) the smallest and largest
real part of the eigenvalues of the square matrix M ∈ Rn×n, respectively.

The following lemma provides us some remarkable properties associated to the
Thompson metric. For details about Lemma 3.1 please see [12, 13, 14, 18].
Lemma 3.1 [Proposition 4.2 in [18]]. Consider the Thompson metric defined in (3.1).
Let A,B,X, Y ∈ Rn×n be symmetric positive definite matrices, then the following
properties hold

δT (X−1, Y −1) = δT (X,Y ), (3.2)

δT (X +A, Y +B) ≤ max{δT (X,Y ), δT (A,B)}, (3.3)

and

δT (X +A, Y +A) ≤
(

α

α+ λmin(A)

)
δT (X,Y ), (3.4)

where α = max{||X||2, ||Y ||2}.

Proposition 3.2 establishes another property of the Thompson metric, which is
fundamental to demonstrate the global convergence of our Algorithm 1.
Proposition 3.2 Consider the Thompson metric defined in (3.1). Let A,B,X, Y ∈
Rn×n be symmetric positive definite matrices, then

δT (XA−1, Y A−1) = δT (X,Y ). (3.5)

Proof. To show this property, firstly observe that

λmax(AB−1) = λmax(B−1A) = λmax(B−
1
2AB−

1
2 ). (3.6)

In fact, let (λ, x) be an eigenpair of AB−1, and (γ,w) an eigenpair of B−1A. Then,

for v = B−
1
2x, we have

AB−1x = λx⇔ AB−
1
2 v = λB

1
2 v ⇔ B−

1
2AB−

1
2 v = λv,

which proves that λ is an eigenvalue of B−
1
2AB−

1
2 .

Similarly, for y = B
1
2w, we have

B−1Aw = γw ⇔ B−
1
2AB−

1
2 y = γy,

obtaining that γ is an eigenvalue for B−
1
2AB−

1
2 .

Taken maximum on the Rayleigh quotient we obtain our claim.
On the other hand, to prove (3.5) observe that

λmax((XA−1)−1Y A−1) = λmax(AX−1Y A−1) = λmax(A−1AX−1Y ) = λmax(X−1Y ).

In the second equality above, we used the relation (3.6). Analogously, we can prove

λmax((Y A−1)−1XA−1) = λmax(Y −1X).

Then,

δT (XA−1, Y A−1) = max{log λmax((XA−1)−1Y A−1), log λmax((Y A−1)−1XA−1)}
= max{log λmax(X−1Y ), log λmax(Y −1X)}
= δT (X,Y ),

which completes the proof. �
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Now consider the positive semi–definite matrix interval I = [2A(A+I)−1, 12 (A+I)]

and the mapping G ≡ X → (µX +A)(X +µI)−1. We claim that G maps the interval
I to itself. That is, if X ∈ I we have

0 ≺ 2A(A+σ1I)(A+I)−1(A+σ1I)−1 � G(X) � 1

2
(σ2A+I)(A+I)(σ2A+I)−1, (3.7)

where σ1 = 1 + 2µ and σ2 = 2 + µ. In fact, if X ∈ I then we have on one hand

[(2 + µ)I +A](I +A−1)−1 � µX +A � 1

2
[µI + (2 + µ)A], (3.8)

and on the other hand, X ∈ I also implies

((2 + µ)I + µA−1)(I +A−1)−1 � X + µI � 1

2
[(1 + 2µ)I +A], (3.9)

so, (3.9) and the positive definition of the involved matrices lead to

2((1 + 2µ)I +A)−1 � (X + µI)−1 � (A+ I)[(2 + µ)A+ µI]−1. (3.10)

Now, multiplying the respective matrices in (3.8) and (3.10), we obtain our claim.
Now, we are ready to show the global convergence result for our Algorithm 1.
Theorem 3.3 Let {Xk}k≥0 be any infinite sequence generated by Algorithm 1 with

X0 ∈ I be a symmetric and positive semi–definite matrix, µ > 0 and X∗ = A1/2 be
the exact solution of (1.1). Then, there exists a positive constant γ ∈ (0, 1) such that

δT (Xk, X
∗) ≤ γkδT (X0, X

∗).

Moreover,

lim
k→∞

Xk = X∗.

Proof. Consider the nonlinear map G : I → I previously defined and take arbitrary
pair X,Y ∈ I. Then using property (3.3), we obtain

δT (G(X),G(Y ))

= δT [(µX +A)(X + µI)−1, (µY +A)(Y + µI)−1]

= δT [µX(X + µI)−1 +A(X + µI)−1, µY (Y + µI)−1 +A(Y + µI)−1]

≤ max{δT (µX(X + µI)−1, µY (Y + µI)−1), δT (A(X + µI)−1, A(Y + µI)−1)}.
Now let us establish bounds on each argument of the maximum: for the first one, we
use properties (3.2) (twice) and (3.4):

δT (µX(X + µI)−1, µY (Y + µI)−1) = δT

(
1

µ
(X + µI)X−1,

1

µ
(Y + µI)Y −1

)
= δT

(
1

µ
I +X−1,

1

µ
I + Y −1

)
≤

(
α1

α1 + µ−1

)
δT (X−1, Y −1)

=

(
α1

α1 + µ−1

)
δT (X,Y ),

where α1 = max{||X−1||2, ||Y −1||2}.
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Similarly, by using properties (3.2), (3.4) and (3.5), the second argument becomes

δT (A(X + µI)−1, A(Y + µI)−1) = δT ((X + µI)A−1, (Y + µI)A−1)

= δT (XA−1 + µA−1, Y A−1 + µA−1)

≤
(

ᾱ2

ᾱ2 + µλmin(A−1)

)
δT (XA−1, Y A−1)

=

(
ᾱ2

ᾱ2 + µ
λmax(A)

)
δT (X,Y ),

where ᾱ2 = max{||XA−1||2, ||Y A−1||2}. Let us denote α2 = max{||X||2, ||Y ||2}.
Then ᾱ2 ≤ α2

λmin(A) . Since the function h(α) = α/(α+ c) is increasing, we obtain

δT (A(X + µI)−1, A(Y + µI)−1) ≤

(
α2

α2 + µ
κ(A)

)
δT (X,Y ),

where κ(A) denotes the condition number of A, i.e. κ(A) = λmax(A)/λmin(A).
Merging these two expressions in the above maximum, we arrive at

δT (G(X),G(Y )) ≤ γδT (X,Y ),

where

γ = max{ α1

α1 + µ−1
,

α2

α2 + µκ(A)
} < 1.

Since the positive definite interval I is a compact set, we can choose γ independently
from X and Y . Specifically, since

α1 ≤ ||
1

2
(I +A−1)||2 and α2 ≤ ||

1

2
(I +A)||2

then

γ = max

{
1 + ||A−1||2

1 + ||A−1||2 + 2µ−1
,

1 + ||A||2
1 + ||A||2 + µκ(A)−1

}
< 1,

which is strictly less than one for definite positive matrix A. Thus, the map G is a strict
contraction. Hence, from Banach contraction theorem it follows that δT (Xk, X

∗)
converges at linear rate given by γ, and Xk → X∗. �

Remark 3.4 If we choose the parameter as µ =
√

(1+||A||2)κ(A)
(1+||A−1||2) to balance the argu-

ments of the maximum defining γ then we construct a theoretically optimal conver-
gence rate.

4. Numerical experiments

In this section, we report some numerical results associated with the two variants
of our Algorithm 1 FPM1 and FPM2 (the iterative schemes (2.2)–(2.4) respectively)
and compare with some existing methods on the literature such as the Sra’s iteration
(1.4), the Newton method given by (1.2), and the gradient method (GradM) proposed
in [17] with Barzilai–Borwein [10] step–size corrected with Armijo line search, in order
to demonstrate the effectiveness of our proposal on three different experiments. All
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test problems were performed on a intel(R) CORE(TM) i7–4770, CPU 3.40 GHz with
500GB HD and 16GB RAM, and all methods were implemented in Matlab.

In all experiments, presented in this section, in addition to checking the residual
norm Ek = ||A−X2

k ||F /||A||F , we also compute the relative change of two consecutive
iterates

reschgk =
||Xk+1 −Xk||F
||Xk||F

. (4.1)

We let all algorithms run up to N iterations and stop them at iteration k < N if
Ek < ε, or reschgk < εX . We use the default values N = 1000, ε = 1e-5 and εX = 1e-

6. Furthermore, for our procedures FPM1 and FPM2, we set µ = ν
√

(1+||A||2)κ(A)
(1+||A−1||2)

with ν ∈ (0, 1). In addition, for all experiments and for all methods, we use the
starting point X0 = (1/2)(A+ I).

4.1. Randomly generated symmetric positive definite problems. In this sub-
section, we test the performance of all the methods on problems of the form (1.1)
with A ∈ Rn×n generated as follow, A = QDQ> where

Q = (I − 2w1w
>
1 )(I − 2w2w

>
2 )(I − 2w3w

>
3 ),

with w1, w2 and w3 are three n-dimensional vector randomly generated in the unitary
sphere, and D ∈ Rn×n is a diagonal matrix D = diag(λ1, λ2, . . . , λn), whose i–th
eigenvalue is defined by

log(λi) =

(
i− n
n− 1

)
ncond.

The parameter ncond, in the above equality, controls the condition number of A.
Note that in such kind of problems the logarithms of the eigenvalues (and not the
eigenvalues) are uniformly distributed, leading to problems which are typically harder
to solve. In addition, observe that the optimal solution is A1/2 = QD1/2Q>, due to
Q is an orthogonal matrix.

To illustrate the behaviour of the five methods, we show, in Figure 1, the residual
norm Ek along the iterations for a randomly generated problem with n = 100 and
ncond = 6. In this Figure, we observe that the faster procedure is the Newton’s
method, which is expected due to its quadratic convergence behaviour. We also see
that our FPM1 reduces the residual norm Ek more quickly than the Sra’s iteration.
In addition, we note that the gradient method produces a very slow decrease in the
residual norm but the estimated solution is far from the A1/2.

Table 1 contains the numerical results associated to this experiment for three dif-
ferent values of n = 100, 500, 1000 and varying ncond = 1, 3, 5, 10. For each pair
(n, ncond), we generate ten independent problems and then, we report the average
number of iterations (Nitr), the mean CPU time in seconds and the average of the

residual norm, that is, Res = (1/10)
∑10
i=1E(X̂i) where E(X̂i) = ||A− X̂2

i ||F and X̂i

denotes the estimated solution obtained by the algorithm, solving the i–th problem.
In order to compare the efficiency of the algorithms, we adopt the performance

profile [4] introduced by Dolan and More to illustrate the whole performance of all
the methods for the 120 problems tested in this subsection.
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Figure 1. Behavior of the algorithms for n = 100, ncond = 6.

Table 1. Numerical results for symmetric positive definite problems.

FPM1 FPM2 Sra Newton GradM FPM1 FPM2 Sra Newton GradM
n = 100, ncond = 1 n = 100, ncond = 3

Nitr 7 10 26 5 28 23 25 45 5 72
Time 0.075 0.1264 0.53 0.0674 0.014 0.012 0.013 0.04 0.003 0.037
Res 9.05e-9 3.08e-9 7.67e-9 5.63e-16 6.45e-6 6.99e-6 7.40e-6 7.94e-6 8.28e-8 8.28e-6

n = 100, ncond = 5 n = 100, ncond = 10
Nitr 32 115 120 6 288 292 >2000 1716 7 >2000
Time 0.02 0.05 0.1 0.01 0.16 0.15 0.95 1.48 0.004 1.66
Res 8.70e-6 9.45e-6 9.03e-6 2.82e-10 9.83e-6 9.73e-6 0.0349 9.94e-6 1.1853e-15 0.1042

n = 500, ncond = 1 n = 500, ncond = 3
Nitr 53 8 21 5 31 51 25 47 5 52
Time 0.89 0.16 0.61 0.07 0.61 0.85 0.51 1.36 0.08 1.07
Res 8.15e-06 7.84e-6 7.66e-6 1.49e-12 5.35e-6 9.09e-6 8.42e-6 7.90e-6 1.62e-7 8.35e-6

n = 500, ncond = 5 n = 500, ncond = 10
Nitr 56 114 124 6 324 255 >2000 1747 Fail >2000
Time 0.93 2.29 3.52 0.09 7.23 2.8098 40.59 51.31 Fail 69.28
Res 8.61e-6 9.82e-6 9.18e-6 4.9653e-16 9.79e-6 9.87e-9 2.69e+4 9.95e-6 Fail 22.2072

n = 1000, ncond = 1 n = 1000, ncond = 3
Nitr 76 9 22 5 31 74 26 48 6 78
Time 6.82 0.98 3.51 0.36 3.48 6.84 2.98 7.91 0.45 9.67
Res 9.84e-6 2.82e-6 5.68e-6 2.09e-12 7.56e-6 8.71e-6 6.80e-6 7.69e-6 2.26e-7 9.70e-6

n = 1000, ncond = 5 n = 1000, ncond = 10
Nitr 76 116 126 8 226 331 >2000 1768 Fail >2000
Time 6.95 13.2 20.73 0.61 30.91 29.94 225.15 292.18 Fail 341.59
Res 9.91e-6 9.56e-6 9.31e-6 9.16e-11 9.47e-6 9.83e-6 4.51e+4 9.96e-6 Fail 70.8521

4.2. Random correlation and low–rank matrices. In this subsection, we test all
the methods on random generated positive definite matrices built with the following
matlab command:

• Example 1.1: random correlation matrices A = gallery(′randcorr′, n)).
• Example 1.2: A = eye(n) +βUU>, where U is generated by U = randn(n, k)

with k = 10, and a variable β = rand. Note that the product UU> is a
low–rank matrix.

• Example 1.3: the Hilbert matrix A = hilb(n).

For examples 1.1 and 1.2, we vary n in {100, 250, 500, 1000}, and compare the mean

number of iteration, the mean CPU time (in seconds) and the average error E(X̂i) =
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(a) Performance profile based on the
number of iterations

(b) Performance profile based on
CPU–time

Figure 2. Performance profile based on the number of iterations
and CPU–time, respectively.

Table 2. Numerical results for Examples 1.1 and 1.2.

FPM1 FPM2 Sra Newton GradM FPM1 FPM2 Sra Newton GradM
Example 1.1, n = 100 Example 1.1, n = 250

Nitr 26 212 49 5 100 30 210 56 5 123
Time 0.01 0.11 0.05 0.002 0.04 0.09 0.73 0.32 0.02 0.34

Residual 8.01e-6 9.45e-6 9.13e-6 1.99e-6 7.69e-6 8.59e-6 9.57e-6 9.20e-6 2.02e-6 7.41e-6
Example 1.1, n = 500 Example 1.1, n = 1000

Nitr 50 467 82 6 203 56 563 91 6 232
Time 0.84 9.37 2.30 0.08 3.18 5.15 61.54 14.74 0.47 22.08

Residual 9.24e-6 9.86e-6 9.46e-6 2.17e-6 8.21e-6 9.39e-6 9.92e-6 9.64e-6 1.54e-6 7.47e-6
Example 1.2, n = 100 Example 1.2, n = 250

Nitr 14 26 89 6 19 12 58 135 7 18
Time 0.01 0.01 0.08 0.003 0.01 0.04 0.19 0.76 0.02 0.05

Residual 5.30e-6 7.31e-6 9.25e-6 3.07e-7 4.64e-6 5.47e-6 8.58e-6 9.33e-6 7.72e-7 4.66e-6
Example 1.2, n = 500 Example 1.2, n = 1000

Nitr 13 111 178 7 18 12 698 230 7 17
Time 0.21 2.26 5.00 0.10 0.29 1.06 36.59 37.02 0.57 1.65

Residual 4.95e-6 9.34e-6 9.36e-6 5.48e-7 5.35e-6 4.50e-6 6.21e-6 9.54e-6 9.28e-7 3.51e-6

||A − X̂2
i ||F obtained by the algorithms on a total of 30 independent instances, for

each value of n. Note that the random correlation matrices are well–conditioned,
the matrices given by Example 1.2 are moderately well–conditioned, while Hilbert’s
matrix is ill–conditioned. These test experiments were taken from [19].

Table 2 reports the numerical results associated to the test examples 1.1–1.2. From
this table, we can see that the Newton’s method obtains the best results both in
CPU–time and in the number of iterations performed. Furthermore, we note that our
FPM1 outperforms the other first–order approaches both in terms of iterations and
CPU time. In fact, we observe that our FPM1 performs almost the same number of
iterations as Newton’s method for low–rank type problems. We also note that our
second proposal converges very slowly for random correlation matrices, while for test
Examples 1.2, this procedure is faster than the Sra’s iteration.

The residual norm of the iterates for the three different examples 1.1, 1.2 and 1.3
are shown in Figure 3. In the subfigure (c) we omit the curve associated with Newton’s
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(a) Residual for random correlation
matrices with n = 100

(b) Residual for low–rank matrices
with n = 100

(c) Residual for the Hilbert matrix

with n = 50

Figure 3. Residual vs the iterations number for all methods.

method because this procedure fails in ill–conditioned problems. Figure 3 shows that
our first proposal FPM1 converges faster than the rest of the first–order methods,
while the Newton’s method is superior to the rest of methods when the matrix A
is well–conditioned or moderately well–conditioned. In addition, we notice that in
the ill–conditioned situation, our FPM1 procedure has a very similar behavior to the
Sra’s iteration, however our proposal makes a smaller number of matrix inversions
and therefore is the most efficient method in this case.

5. Conclusion and perspectives

The goal of this paper is to develop an effective algorithm which is able to compute
the square root of a given symmetric positive semi–definite matrix. Our strategy is
simply to rearrange the nonlinear equation A−X2 = 0, in order to design a contrac-
tive mapping which is regulated for an exogenous (conveniently chosen) parameter,
leading to effective scaled fixed point methods, which only require calculating one
matrix inverse (numerically, solving a linear system of equations) and one matrix
product per iteration. We further theoretically show the global convergence of one
of our proposed numerical methods. In fact, we demonstrate that this first proposal
converges q–linearly to A1/2. The second one is only numerically studied. However,
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our numerical experiments on randomly generated symmetric positive definite matri-
ces, with different conditioning situations, show that our two procedures are effective
to solve the matrix equation A − X2 = 0. In addition, our numerical tests show
that our first proposal (FPM1) outperforms some first–order methods existing in the
literature.

Although in the literature there are second–order methods such as the scaled New-
ton method, which is one of the most effective algorithms at present, both the Sra
and our theoretical analysis add understanding and a conceptual value about the
convergence properties of first–order methods under the Thompson metric and using
their properties. These ideas might be valuable to analyze other types of methods in
the context of geometric optimization field.

Acknowledgements. The second author wants to thank the Federal University of
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