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1. Introduction and preliminary

The purpose of this note is to study the existence of fixed points in Banach spaces
for upper semicontinuous multivalued maps and weakly sequentially upper semicon-
tinuous multivalued maps. This work is motivated by Himmelberg’s theorem (The-
orem 1.1) and the condition (A) which was introduced in [15]. Indeed, if instead of
assuming in Theorem 1.1 that F (M) is relatively compact, we suppose that F (M) is
relatively weakly compact and each selection of F satisfies condition (A), then F has a
fixed point (cf. Theorem 2.1). Moreover, in the case where F is a weakly sequentially
upper semicontinuous multivalued maps, assuming that F (M) is relatively weakly
compact and using O’Regan’s theorem (Theorem 1.2), we establish a new fixed point
theorem of Himmelberg’s type without supposing condition (A). In Section 3 we use
our results to establish fixed point theorem of Sadovskii’s type for multivalued maps.
We underline that, in the last years, the fixed point theory under weak topology
for single or multivalued maps experienced new developments and aroused a lot of
interest (see, for example, [1, 2, 5, 8, 9, 10, 15, 16, 17, 18] or [14, Chapter 4]).

Now we introduce notations and definitions which are required in the paper. Let
X be Banach space and let B(X) and Pcl,cv be the subsets defined by

B(X) =
{
M ⊂ X : M is nonempty and bounded

}
,
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Pcl,cv(X) =
{
M ⊂ X : M is nonempty, convex and closed

}
.

We shall now give the notion of a measure of weak noncompactness on a Banach
space.

Definition 1.1. A map µ : B(X) → [0,+∞[ is said to be a measure of weak non-
compactness on X if it satisfies the following conditions:

(1) The family kerµ :=
{
M ∈ B(X) : µ(M) = 0

}
is non-empty and kerµ is

contained in the set of relatively weakly compact subsets of X.

(2) Monotonicity: M1 ⊂M2 ⇒ µ(M1) ≤ µ(M2).
(3) Invariance under passage to the closed convex hull: µ(co(M)) = µ(M) where

co denotes the closed convex hull of M .
(4) Maximum Property: µ(M1 ∪ M2) = max

(
µ(M1), µ(M2)

)
, for all M1,M1 ∈

B(X).
(5) Homogeneity: µ(λM) = λµ(M) ∀λ ∈ R+.
(6) Fullness: µ(M) = 0 if and only if M is a relatively weakly compact set.

The family kerµ given in first assertion is called the kernel of the measure µ. It
should be noticed that the containements M ⊆Mw ⊆ co(M) together with the item
(3) of Definition 1.1 implies

(7) µ(Mw) = µ(M).

Note that µ(·) is a full measure of weak noncompactness having the maximum
property is non-singular, that is:

(8) µ(M ∪ {x}) = µ(M), for all M ∈ B(X) and x ∈ X.

Proposition 1.1. Let X be a Banach space and µ a measure of weak noncompactness
on X. If (Mn)n∈N is a decreasing sequence (in the sense of inclusion) of weakly closed
subsets of B(X) such that lim

n→+∞
µ(Mn) = 0, then M∞ =

⋂∞
n=1Mn is a nonempty

weakly compact subset of X.

Proof. Let (xn)n∈N be a sequence of points of X such that for all n ∈ N, xn ∈ Mn.
Let (Sn)n∈N be a sequence of subsets where Sn = {xk : k ≥ n}. It is clear that
(Sn)n∈N is decreasing and Sn ⊆ Mn for all n ∈ N. Since µ(·) is nonsingular, for all
n ∈ N, µ(S0) = µ(Sn) ≤ µ(Mn). Because lim

n→+∞
µ(Mn) = 0, we have µ(S0) = 0 and

therefore the set {xn, n ∈ N} is relatively weakly compact. Let x be the weak limit of a
subsequence (xnk

)k∈N of (xn)n∈N. It is clear that for any n ∈ N, x ∈Mn and therefore
x ∈ M∞ which proves that M∞ 6= ∅. Moreover, for all n ∈ N, µ(M∞) ≤ µ(Kn) and
then µ(M∞) = 0 because lim

n→+∞
µ(Mn) = 0. Hence, M∞ is weakly compact. �

We note that the first example of measure of weak noncompactness was introduced
by F. S. De Blasi [6]. For an axiomatic definition, we refer, for example, to [3].

Let (X, d) and (Y, d) be two metric spaces and let F : X → Pcl,cv(Y ) be a multi-
valued map.
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• F is called upper semi-continuous (u.s.c. for short) provided that, for every open
set U of Y , the set F−1(U) is open in X, where F−1(U) =

{
x ∈ X : F (x) ⊂ U

}
.

• F is called weakly upper semicontinuous (w.u.s.c. for short) if F is u.s.c. with
respect to the weak topologies of X and Y .

• F is called weakly sequentially upper semicontinuous (w.s.u.s.c. for short) if for
any weakly closed set V of Y, F−1(V ) is weakly sequentially closed.

Let us now recall the following definition (see, for example, [11]).

Definition 1.2. Let X and Y be two metric spaces and F : X → Pcl,cv(Y ) be a
multivalued map. A single valued map f : X → Y is called a selection of F if for
every x ∈ X, f(x) ∈ F (x).

We recall also the following two results established in [12, Theorem 2] and [18,
Theorem 4.1] respectively.

Theorem 1.1. Let M be a nonempty, convex and closed subset of a locally convex
Hausdorff space X. Let F : M → Pcl,cv(M) be a u.s.c. multivalued map such that
F (M) is relatively compact. Then F has a fixed point.

Theorem 1.2. Let X be a Banach space and let M be a weakly compact subset of X.
If F : M → Pcl,cv(M) is w.s.u.s.c. multivalued map, then F is a w.u.s.c. multivalued
map.

2. Two theorems of Himmelberg’s type

Let M be a nonempty closed convex subset of a Banach space X and let f : M →
M be a single-valued map. In the remainder of this work, we need the following
hypothesis introduced in [15, p. 260].

(A) For each weakly convergent sequence (xn)n∈N of M , the sequence (f(xn))n∈N
has a strongly convergent subsequence.

Now we are ready to state our first result:

Theorem 2.1. Let M be a nonempty closed, convex subset of a Banach space X and
let F : M → Pcl,cv(M) be a u.s.c. multivalued map. Suppose that all selections of F
satisfy condition (A) and F (M) is relatively weakly compact. Then there exists x ∈M
such that x ∈ F (x).

Proof. Let C = co(F (M)). According to Krein-Ŝmulian’s theorem (see [7, p. 434]),
C is a weakly compact convex subset of X. Moreover, it is not difficult to check
that F (C) ⊆ F (M) ⊂ C. Now, we shall show that F (C) is relatively compact.
To this end, let (xn)n∈N be a sequence of points in C. Since C is weakly compact,
there exists a subsequence (xnk

)k∈N such that xnk
⇀ x, (x ∈ C because C is weakly

closed), as n→ +∞. Let (ynk
)k∈N be a sequence in F (C) such that, for each k ∈ N,
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ynk
∈ F (xnk

). Hence, there exists a selection f of F such that ynk
= f(xnk

). Since f
satisfies the hypothesis (A), we infer that ynk

= f(xnk
) ∈ C has a strongly convergent

subsequence in C . Hence F (C) is relatively compact. Now, applying Theorem 1.1,
we conclude that there exists z ∈ C such that z ∈ F (z). �

Theorem 2.2. Let X be a Banach space, M a nonempty closed, convex subset of
X. Let F : M → Pcl,cv(M) be a w.s.u.s.c. multivalued map and F (M) is relatively
weakly compact. Then there exists x ∈M such that x ∈ F (x).

Proof. Put K = co(F (M)). As in the previous theorem, K is a weakly compact
convex subset of X and satisfies F (M) ⊆ K ⊂ M . Since F (K) ⊆ K and K is
weakly compact, we infer that F (K) is relatively weakly compact. Now, we note
that F : K → Pcl,cv(K) is a w.s.u.s.c. multi-valued map. By Theorem 1.2, F is a
w.u.s.c. multi-valued map. Since X equipped with its weak topology σ(X,X∗) is a
Hausdorff locally convex space, applying Theorem 1.1, we deduce that F has a fixed
point z ∈ K ⊆M which ends the proof. �

3. Theorems of Sadovskii’s type

In this section we shall derive some fixed point theorems of Sadovskii’s type for
multi-valued maps. The next two results deal with mappings satisfying the condition
(A).

Definition 3.1. Let M be a nonempty closed, convex subset of a Banach space X and
µ a measure of weak noncompactness on X. Denote by F : M → 2X a multi-valued
mapping. We say that F is µ-condensing if

µ(F (D)) < µ(D), for each D ∈ B(X) such that µ(D) > 0.

We now use Theorem 2.1 to obtain a fixed point result of Sadovskii’s Type.

Theorem 3.1. Let M be a nonempty bounded, closed, convex subset of a Banach
space X and let F : M → Pcl,cv(M) be a u.s.c. multivalued map and µ(·) a measure
of weak noncompactness on X. Suppose that all selections of F satisfy condition (A).
If F is µ-condensing, then there exists x ∈M such that x ∈ F (x).

Proof. Let y ∈M . We define the family Π by

Π := {D ⊆M : D is closed, convex, y ∈ D andF : D → Pcl,cv(D)}.
We denote

K =
⋂
D∈Π

D and K∗ = co(F (K) ∪ {y}).

It is clear that K is closed convex containing y. Moreover for all D ∈ Π, we have

F (K) ⊆ F (D) ⊆ D and so F (K) ⊆
⋂
D∈Π

D = K. If y ∈ D, we see that F (K)∪{y} ⊆ K

and so, taking into account the fact that K is closed and convex, we deduce that

K∗ = co(F (K) ∪ {y}) ⊆ co(K) = K.
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This implies that K∗ ⊆ K and therefore F (K∗) ⊆ F (K) ⊆ K∗. Hence we conclude
that K∗ ∈ Π and K ⊆ K∗ which proves that K = K∗. It suffices to show that K is
relatively weakly compact. If it is not the case, then µ(K) > 0. Moreover, using the
properties of µ(·) we can write

µ(K) = µ
(
co(F (K) ∪ {y})

)
≤ µ(F (K)) < µ(K)

which is a contraction. Hence µ(K) = 0 and so K is relatively weakly compact. Now
using the fact that F (K) ⊂ K we infer that F (K) is relatively weakly compact and
therefore F : K → Pcl,cv(K) is u.s.c. mapping. To conclude the proof, it suffices to
apply Theorem 2.1. �

It should be noticed that the result of Theorem 3.1 is also valid for µ-k-contractive
mapping for some k belonging to [0, 1).

The proof of the previous result uses the boundedness of M . In the case where M
is an unbounded convex subset of X, we have the following result.

Theorem 3.2. Let M be a nonempty closed convex unbounded subset of X and
µ(·) a measure of weak noncompactness on X. Let F : M → Pcl,cv(M) be a u.s.c.
µ-condensing multivalued map. If F (M) is bounded and all selections of F satisfy
condition (A), then there exists z ∈M such that z ∈ F (z).

To prove this theorem we shall make use of the following result established in [13,
p. 636].

Lemma 3.1. Let X be a topological space and let F : X → Pcl,cv(X) be a u.s.c.

multivalued map with closed graph. If there is a nonempty subset A of X such that A
is compact and F (A) ⊆ A, then there exists a nonempty, closed and compact subset
M of X such that M ⊂ F (M).

Proof of Theorem 3.2. Let ζ ∈M and A = {Fn(ζ), n = 0, 1, 2, · · · } where F 0(ζ) = ζ.
It is clear that A = F (A) ∪ {ζ}. Moreover, the use of properties (1) and (4) of

Definition 1.1, implies µ(F (A) ∪ {ζ}) = max
(
µ(F (A)), µ({ζ})

)
= µ(F (A)

)
because

{ζ} is trivially weakly compact. Hence we deduce that µ(F (A)) = µ(A). Since F
is µ-condensing, we get µ(A) = 0 and so A is relatively weakly compact. By the
hypothesis that all selections of F satisfy the condition (A), we deduce that F (A) is
relatively compact (see the proof of Theorem 2.1). Since F (F (A)) ⊂ F (A), we derive
by Lemma 3.1 that one can choose a compact subset A0 contained in F (A) such that
A0 ⊆ co(F (A0)). We put

I := {C such that A0 ⊆ C, co(C) = C,F (C) ⊆ C}.

It is clear that I 6= 0 because M ∈ I. If Π is a chain of a partially ordered subsets in

(X,⊆), then
⋂
C∈Π

C is a lower bound of Π. Hence, by Zorn’s lemma (see for example,

[4, p. 2] or [7, p. 6]), one sees that I has a minimal element S. Because S is closed
and convex, we infer that F (S) ⊆ S and so co(F (S)) ⊆ S. Accordingly,

F (co(F (S))) ⊆ F (S) ⊆ co(F (S)).
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Since A0 ⊆ co(F (S)), we deduce that co(F (S)) is a element of I. Using the fact
that S is a minimal element of I, we conclude that S = co(F (S)). Hence µ(S) =
µ(co(F (S))) = µ(F (S)). Since F is µ-condensing, we get µ(S) = µ(F (S)) = 0 and
therefore F (S) is relatively weakly compact. Because each selection of F satisfies
condition (A), the use of Theorem 2.1 ends the proof. �

We close this section by establishing the next fixed point result for w.s.u.s.c. µ-
condensing multi-valued maps.

Theorem 3.3. Let X be a Banach space and M a nonempty bounded, closed, convex
subset of X. Assume that µ(·) is a measure of weak noncompactness on X. If F :
M → Pcl,cv(M) is a w.s.u.s.c. µ-condensing multivalued map, then there exists x ∈M
such that x ∈ F (x).

Proof. Let k0 ∈M . We consider the set

K := {A ⊂M such thatF (A) ⊆ A, k0 ∈ A and A is closed, convex}.

So, using the same proof as Theorem 3.1, we show that the set

B :=
⋂
A∈K

A = co(F (B) ∪ {k0})

belongs to K. Next, using the properties of µ and F , one sees that

µ(B) = µ(co
{

(F (B) ∪ {k0}
}

) = µ(F (B)) < µ(B)

which is a contradiction. Hence µ(B) = 0 and so B is relatively weakly compact. On
the other hand, since B ∈ K, we have F (B) ⊂ B and therefore F (B) is relatively
weakly compact. Moreover, the restriction of F to B, that is F : B → Pcl,cv(B), is
a w.s.u.s.c. multivalued map. Now the use of Theorem 2.2 shows that there exists
z ∈ B such that z ∈ F (z). �

References

[1] R.P. Agarwal, D. O’Regan, Fixed point theory for weakly sequentially upper semicontinuous
maps with applications to differential inclusions, Nonlinear Oscil. (N.Y.), 5(2002), no. 3, 277-

286.

[2] R.P. Agarwal, D. O’Regan, M.A. Taoudi, Fixed point theorems for condensing multivalued
mappings under weak topology features, Fixed Point Theory, 12(2011), no. 2, 247-254.
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