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1. Introduction

The fixed point problem of a nonlinear mapping T is to find x such that

x = Tx. (1.1)

A number practical problems can be convertible to the fixed point problem, such as,
optimization problems, variational inequality problems, equilibrium problems, and
split feasibility problems, etc. In view of its real applications, such as, image recovery,
signal processing and so on, the fixed point problems have been extensively studied
by many researchers; see, e.g., [2, 8, 7, 17] and the references therein. However, most
of these results were established on linear spaces; see, e.g., [4, 10, 14, 21, 22] and the
references therein.

Recall that Halpern iterative algorithm (1.2) generates an iterative sequence {xn}
as follows

xn+1 = αnu+ (1− αn)Txn, ∀n ≥ 1, (1.2)

where u is the anchorm and the sequence {αn} ⊂ (0, 1). It is known that the Halpern
iterative algorithm is an efficient algorithm dealing with fixed points of nonexpansive
mappings. The main advantage is that the strong convergence can be guaranteed in
various linear spaces without any compact restrictions. Recently, many results based
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on the Halpern iterative algorithm were established; see, e.g, [13, 15, 24] and the
references therein. In particular, in 2000, Moudafi [16] first considered a viscosity
algorithm for nonexpansive mappings in Hilbert spaces. The fixed point in Moudafi’s
results was proved that it also uniquely solves some variational inequality associated
to a contractive mapping. In 2004, Xu [25] further improved Moudafi’s results from
Hilbert spaces to Banach spaces. Subsequence, various viscosity algorithms were
introduced and investigated; see, e.g., [6, 18, 19] and the references therein.

Let M be an Hadamard manifold, and let TM be the tangent bundle of M . Let
K be a nonempty closed convex subset of M . Let exp be a exponential mapping.
Recently, Li et al. [11] studied fixed points of nonexpansive mapping by using Halpern
iterative algorithm, and obtained the strong convergence on Hadamard manifolds.
This interesting result extends many results from classical linear spaces to the setting
of manifolds.

On Hadamard manifolds, the Halpern iterative algorithm is presented as follows

xn+1 = expu(1− αn) exp−1u Txn, n ≥ 0, (1.3)

where u, x0 ∈ K and the sequence {αn} ⊂ (0, 1). It is equivalent

xn+1 = γn(1− αn), n ≥ 0,

where γn : [0, 1] → M is the geodesic joining u to Txn (i.e. γ(0) = u and γ(1) =
T (xn)).

Limited by the nonlinearity of manifolds, the research progress on fixed point
problem (1.1) is slow. As far as now, only few related researches are presented; see,
e.g., [11, 5, 1, 9]. On the other hand, to the best of our knowledge, all of these results
were restricted to explicit algorithms.

Motivated by the results of Li [11], Qin et al. [18], and Xu [25], our goal here is
to present an implicit viscosity iterative algorithm for approximating fixed points of
nonexpansive mappings on Hadamard manifolds

xn = expf(xn)(1− αn) exp−1f(xn)
Txn, n ≥ 0,

and we proved the sequence {xn} generated by this implicit viscosity iterative algo-
rithm strongly converges to a fixed point of nonexpansive mapping T . Our results
extend the results of Xu [25] from the classical linear spaces to the setting of Hadamard
manifolds and perfected fixed point theory of nonexpansive mapping on Hadamard
manifolds.

2. Preliminaries

Let M be a connected m−dimensional manifold and p ∈M , the TpM denotes the
tangent space of M at p. To become Riemannian manifold, we always assume M is
endowed with the Riemannian metric 〈, 〉 and the corresponding norm ‖ · ‖.

Given a piecewise smooth curve c : [a, b]→M joining p to q, we define the length
of c by

L(c) =

∫ b

a

‖c′(t)‖dt.
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Then, the Riemannian distance d(p, q) is the minimal length over all such curves
joining p to q.

Let ∇ be a Levi-Civita connection associated with the Riemannian manifold M .
If φ is a smooth curve, a smooth vector field F along φ is called parallel if ∇φ′F = 0.
If φ′ is parallel, then φ is a geodesic, and ‖φ′‖ is a constant. Based on the definition
of Riemannian distance d(p, q), it is easily seen that a geodesic joining p to q in M is
called a minimizing geodesic if its length equals to d(p, q).

A Riemannian manifold is complete if its geodesics are defined for any t ∈ R, Hopf-
Rinow theorem asserts that if M is complete then any pair of points in M can be
joined by a minimizing geodesic. A complete simply connected Riemannian manifold
of non-positive sectional curvature is named a Hadamard manifold.

Let γ(t) : [a, b] → R, the parallel transport Pγ,γ(a),γ(b) : Tγ(a)M → Tγ(b)M on the
tangent bundle TM on the γ(t) is defined by

Pγ,γ(b),γ(a)(ν) = F (γ(b)),∀a, b ∈ R, ν ∈ Tγ(a)M,

where F is a unique vector field such that F (γ(a)) = ν and ∇γ′(t)F = 0,∀t ∈ [a, b].
If γ(t) : [a, b]→ R is a minimizing geodesic joining a to b, Pγ,b,a is denoted by Pb,a

and P−1b,a = Pa,b generally. Recall that, for a, b ∈ R, for all u, v ∈ Tγ(a)M , we have

〈Pγ(b),γ(a)u, Pγ(b),γ(a)v〉 = 〈u, v〉.
Definition 2.1. The mapping T : K → K is called to be nonexpansive, if the
following inequality holds

d(Tx, Ty) ≤ d(x, y).

Definition 2.2. The mapping T : K → K is called to be contraction, if there exists
a constant α ∈ (0, 1) and the following inequality holds

d(Tx, Ty) ≤ αd(x, y).

Lemma 2.1.[3] Let4(p, q, r) be a geodesic triangle in a Hadamard manifold M , then
there exists p′, q′, r′ ∈ R2 such that

d(p, q) = ‖p′ − q′‖, d(q, r) = ‖q′ − r′‖, d(r, p) = ‖r′ − p′‖.
Remark 2.1. The triangle 4(p′, q′, r′) is called to be the comparison triangle of the
geodesic triangle 4(p, q, r), which is unique up to isometry of M .
Lemma 2.2. [11] Let 4(p, q, r) be a geodesic triangle in a Hadamard manifold M ,
and 4(p′, q′, r′) is its comparison triangle.

(i) Let α, β, γ(α′, β′, γ′) be the angles of 4(p, q, r)(4(p′, q′, r′)) at the vertices
p, q, r(p′, q′, r′). Then the following inequalities hold:

α ≤ α′, β ≤ β′, γ ≤ γ′.
(ii) Let z be a point in the geodesic joining p to q, and z′ is its comparison point

in the interval [p′, q′]. Suppose that d(z, p) = ‖z′ − p′‖ and d(z, q) = ‖z′ − q′‖. Then
the the following inequality holds:

d(z, r) ≤ ‖z − r′‖.
Lemma 2.3. [12] Let x∗ ∈ M and {xn} ⊂ M with xn → x∗ as n → ∞. Then the
following conclusions hold:
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(i) For any y ∈M , then exp−1xn
y → exp−1x∗ y and exp−1y xn → exp−1y x∗ as n→∞.

(ii) If vn ∈ TxnM and vn → v∗ as n→∞, then v∗ ∈ Tx∗M .
(iii) Let ηn, νn ∈ TxnM and η∗, ν

∗ ∈ Tx∗M if ηn → η∗ and νn → ν∗ as n → ∞,
then 〈ηn, νn〉 → 〈η∗, ν∗〉 as n→∞.
Lemma 2.4. [12] If x, y ∈M and w ∈ TyM , then

〈w,− exp−1y x〉 = 〈w,Py,x exp−1x y〉 = 〈Py,xw, exp−1y x〉.

Lemma 2.5. [20] Let d : M × M → R be the distance function. Then d is a
convex function with respect to the product Riemannian metric, i.e., given any pair
of geodesics γ1 : [0, 1]→M and γ2 : [0, 1]→M , the following inequality holds for all
t ∈ [0, 1]:

d(γ1(t), γ2(t)) ≤ (1− t)d(γ1(0), γ2(0)) + td(γ1(1), γ2(1)).

Let PK denote the projection onto K, and for a point p ∈M ,PK(p) is defined by

PK(p) = {p0 ∈ K|d(p, p0) ≤ d(p, q)∀q ∈ K}

Lemma 2.6. [20] Let 4(x1, x2, x3) be a geodesic triangle in M . Then
(i) d2(x1, x2) + d2(x2, x3)− 2〈exp−1x2

x1, exp−1x2
x3〉 ≤ d2(x3, x1),

(ii) d2(x1, x2) ≤ 〈exp−1x1
x3, exp−1x1

x2〉+ 〈exp−1x2
x3, exp−1x2

x1〉.
(iii) If γ is the angle at x1, then we have

〈exp−1x1
x2, exp−1x1

x3〉 = d(x2, x1)d(x1, x3) cos γ.

Lemma 2.7. [23] For any point p ∈ M , PK(p) is a singleton and the following
inequality holds

〈exp−1PK(p) p, exp−1PK(p) q〉 ≤ 0,∀q ∈ K.

3. Main results

Let x0 ∈ M , {αn} ⊂ (0, 1), f : M → M a contraction with coefficient α, consider
the iteration scheme

xn = expf(xn)(1− αn) exp−1f(xn)
Txn, n ≥ 0, (3.1)

or equivalently

xn = γn(1− αn), n ≥ 0, (3.2)

where γn : [0, 1] → M is the geodesic joining f(xn) to Txn (i.e. γ(0) = f(xn) and
γ(1) = T (xn) ).
Theorem 3.1. Let K be a closed convex subset of M , T : K → K a nonexpansive
mapping with Fix(T ) 6= ∅, and f : K → K a contraction with coefficient α. Let
{xn} be generated by the algorithm (3.1), {αn} ⊂ (0, 1) satisfies lim

n→∞
αn = 0. Then

the sequence {xn} converges to x̃, where x̃ is the unique solution of the variation
inequality

〈exp−1x̃ f(x̃), exp−1x̃ z〉 ≤ 0,∀z ∈ Fix(T ). (3.3)

Proof. The proof is divided into four steps.
Step 1. We show {xn} is bounded.
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Take x ∈ Fix(T ) and fix n, then, by the convexity of the Riemannian distance in
lemma 2.5 and the nonexpansive of T , we have that

d(xn, x) = d(γn(1− αn), x)

≤ αnd(γn(0), x) + (1− αn)d(γn(1), x)

= αnd(f(xn), x) + (1− αn)d(Txn, x)

≤ αnd(f(xn), f(x)) + αnd(f(x), x) + (1− αn)d(xn, x)

≤ αnαd(xn, x) + αnd(f(x), x) + (1− αn)d(xn, x).

By induction

d(xn, x) ≤ 1

1− α
d(f(x), x),∀n ≥ 0.

Then {xn} is bounded, so are {Txn} and {f(xn)}.
Step 2. We show lim

n→∞
d(xn, Txn) = 0.

By Step 1, there exists a constant C such that

d(f(xn), Txn) ≤ C,∀n ≥ 0.

Using the convexity of the distance function in lemma 2.5, we have that

d(xn, Txn) = d(γn(1− αn), Txn)

≤ αnd(γn(0), Txn) + (1− αn)d(γn(1), Txn)

≤ αnd(f(xn), Txn) + (1− αn)d(Txn, Txn)

≤ αnd(f(xn), Txn)

≤ αnC.

Together with the condition lim
n→∞

αn = 0, we get lim
n→∞

d(xn, Txn) = 0.

Step 3. We show that there exist a subsequence {xnk
} of {xn} such that xnk

→ x̃
as k →∞, and x̃ ∈ Fix(T ) solves the variational inequality (3.3)

Since {xn} is bounded by step1, there exist a subsequence {xnk
} of {xn} such that

xnk
→ x̃ as k →∞.

From Step 2, we know lim
k→∞

d(xnk
, Txnk

) = 0, therefore,

d(x̃, T x̃) ≤ d(x̃, xnk
) + d(xnk

, Txnk
) + d(Txnk

, T x̃)

≤ 2d(x̃, xnk
) + d(xnk

, Txnk
)

which implies that d(x̃, T x̃) = 0, i.e. x̃ ∈ Fix(T ).
Fix n, k ∈ N, let z ∈ Fix(T ) and 4(xnk

, f(xnk
), z) ⊆ M be a geodesic triangle

with vertices xnk
, f(xnk

) and z, and 4(xnk
, f(xnk

), z) ⊆ R2. Let β and β denote the

angles at xnk
and xnk

, respectively. And we know β < β by lemma 2.2.
Likewise, let 4(Txnk

, f(xnk
), z) ⊆ M be a geodesic triangle with vertices Txnk

,

f(xnk
) and z, and 4(Txnk

, f(xnk
), z) ⊆ R2. Let θ and θ denote the angles at Txnk

and Txnk
, respectively. And we know θ < θ by lemma 2.2.
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The comparison point xnk
= αnf(xnk

) + (1− αn)Txnk
, by lemma 2.1 then

〈xnk
− Txnk

, xnk
− z〉

= 〈xnk
− z − (Txnk

− z), xnk
− z〉

= ‖xnk
− z‖2 − 〈Txnk

− z, xnk
− z〉

≥ ‖xnk
− z‖2 − ‖Txnk

− z‖ · ‖xnk
− z‖

= d2(xnk
, z)− d(Txnk

, z)d(xnk
, z)

≥ d2(xnk
, z)− d2(xnk

, z) = 0

It follows lemma 2.4, we have that

〈exp−1xnk
f(xnk

), exp−1xnk
z〉

= 〈−Pxnk
,f(xnk

) exp−1f(xnk
) xnk

, exp−1xnk
z〉

= −d(xnk
, f(xnk

))d(z, xnk
) cosβ

≤ −d(xnk
, f(xnk

))d(z, xnk
) cosβ

≤ −‖xnk
− f(xnk

)‖‖z − xnk
‖ cosβ

≤ −〈xnk
− f(xnk

), z − xnk
〉

≤ 1− αnk

αnk

〈xnk
− Txnk

, z − xnk
〉

= −1− αnk

αnk

〈xnk
− Txnk

, xnk
− z〉

≤ 0

Taking the limit through k →∞ by lemma 2.3, we have

〈exp−1x̃ f(x̃), exp−1x̃ z〉 ≤ 0,∀z ∈ Fix(T ). (3.4)

Step 4. We Show lim
n→∞

xn = x̃.

Assume there exists another subsequence {xnj} of {xn} such that xnj → x̂ as j →∞.
Similarly, we get x̂ ∈ Fix(T ) satisfying the variational inequality

〈exp−1x̂ f(x̂), exp−1x̂ z〉 ≤ 0,∀z ∈ Fix(T ). (3.5)

Replacing z ∈ Fix(T ) with x̂ in (3.4) and replacing z ∈ Fix(T ) with x̃ in (3.5), we
obtain

〈exp−1x̃ f(x̃), exp−1x̃ x̂〉 ≤ 0 (3.6)

and

〈exp−1x̂ f(x̂), exp−1x̂ x̃〉 ≤ 0. (3.7)

Let 4(x̃, f(x̃), x̂) ⊆ M be a geodesic triangle with vertices x̃, f(x̃) and x̂, and

4(x̃, f(x̃), x̂) ⊆ R2. Let µ and µ denote the angles at x̃ and x̃, respectively. And we
know µ < µ by lemma 2.2.

Likewise, let 4(x̂, f(x̂), x̃) ⊆M be a geodesic triangle with vertices x̂, f(x̂) and x̃,

and 4(x̂, f(x̂), x̃) ⊆ R2. Let µ and µ denote the angles at x̂ and x̂, respectively. And
we know ν < ν by lemma2.2.
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By lemma 2.1 and lemma 2.6, we obtain

〈x̃− f(x̃), x̃− x̂〉 = ‖x̃− f(x̃)‖‖x̃− x̂‖ cosµ

= d(f(x̃), x̃)d(x̃, x̂) cosµ

≤ d(f(x̃), x̃)d(x̃, x̂) cosµ

= 〈exp−1x̃ f(x̃), exp−1x̃ x̂〉 ≤ 0

(3.8)

Repeated the same as the above technique, it yields

〈x̂− f(x̂), x̂− x̃〉 ≤ 〈exp−1x̂ f(x̂), exp−1x̂ x̃〉 ≤ 0. (3.9)

Adding up (3.8) and (3.9), we have

〈x̃− f(x̃)− (x̂− f(x̂)), x̃− x̂〉

= ‖x̃− x̂‖2 − 〈f(x̃)− f(x̂), x̃− x̂〉

= d2(x̃, x̂)− 〈f(x̃)− f(x̂), x̃− x̂〉 ≤ 0,

(3.10)

since

〈f(x̃)− f(x̂), x̃− x̂〉 ≤ ‖f(x̃)− f(x̂)‖‖x̃− x̂‖
≤ d(f(x̃), f(x̂))d(x̃, x̂)

≤ αd2(x̃, x̂). (3.11)

Combine (3.10) with (3.11), we get (1−α)d2(x̃, x̂) ≤ 0. Thus x̃ = x̂. So {xn} converges
strongly to x̃.
Remark 3.1. Theorem 3.1 constructed firstly the implicit iteration approximation
theory on Hadamard manifolds and extend the results of Xu [25] from the classical
linear space to Hadamard manifolds.

4. Conclusions

In this paper, an implicit viscosity iterative algorithm for nonexpansive mapping on
Hadamard manifolds has been proposed, and we have proved the sequence generated
by the algorithm (3.1) strongly converges to the fixed point of the nonexpansive
mapping T : K → K on Hadamard manifolds. The results present in this paper
extended the results of Xu [25] from the classical linear space to Hadamard manifolds
and the implicit iterative approximation theory is constructed firstly on Hadamard
manifolds.
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