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1. Introduction and preliminaries

The notion of w-distance was first introduced by Kada et al.([33]). Many authors
put their attentions on the said paper and proved several well known results in this
set up (see [28], [42], [43], [45], [46]). Consequently, their work became very popular
in fixed point theory. On the other site, the concept of w-distance was generalized in
different way. One of the important generalization of w-distance is wt-distance over
a b-metric space which can be found in [27]. In recent times, many interesting fixed
point results have been established in the setting of b-metric spaces as well as in wt-
distance (see e.g. [1], [6], [10], [11], [20], [26], [36], [37] and the references therein). In
year 2012 the idea of α-admissible mappings was first initiated by Samet et al.([51]).
This is another outstanding work in fixed point theory. Researchers utilized this
concepts and generalized many results of fixed point theory (see [5], [7], [8], [9], [14],
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[15], [24], [31], [35], [38], [40] and the references cited therein). In this paper, we
establish some new kind of fixed point results in setting of w-distance as well as in
wt-distance by using α-admissible mappings. Basically, the main aim of our work is
to generalize and extend the main results of Liu et al. [47] into two directions. In the
first direction, we have used the famous implicit functions (Theorem 2.1), introduced
by Popa [49] by considering α-admissible mappings and altering distance functions in
the setting of w-distance. α-admissible mappings are involved here as they combine
many different structures such as structure of standard metric spaces, the structure of
metric spaces endowed with a partial order, the structure of a metric spaces endowed
with a graph, the structure of cyclic mappings via closed subsets of a metric space etc.
Again, in the paper of Liu et al. [47], the authors have used integral type conditions.
We know that any integral type function is always an altering distance function but
not conversely. Motivated by this fact, we have utilized altering distance function
inside the implicit function.

In the second direction, we introduce (η, θ,Z, φ)β-contraction in the context of
wt-distance (Theorem 2.5) that we are going to discuss later.

Next, we move to define α-admissible mappings.

Definition 1.1. [51] Let X be a non-empty set. Suppose α : X × X → R+ be a
mapping. A mapping J : X → X is said to be α-admissible if the following satisfies:

∀ x, y ∈ X with α(x, y) ≥ 1 implies α(Jx, Jy) ≥ 1.

Very recently, the following definition was introduced by Shahi et al.([54]).

Definition 1.2. [54] Let X be a non-empty set. Let I, J : X → X and α : X ×X →
R+ be three given mappings. Then J is said to be α-admissible w.r.t I if the following
satisfies:

∀ x, y ∈ X with α(Ix, Iy) ≥ 1 implies α(Jx, Jy) ≥ 1.

From now, we write (I, J) to mean J is α-admissible w.r.t I and the collection of
all such (I, J) is denoted by αA(X).

Definition 1.3. Let X be a non-empty set and δ be a positive real number with
δ ∈ [1,∞). Let I, J : X → X and α : X ×X → R+ be three given mappings. Then
J is said to be α-admissible w.r.t I associated with δ if the following holds:

∀ x, y ∈ X with α(Ix, Iy) ≥ δ implies α(Jx, Jy) ≥ δ.

From now, we write (I, J)δ to mean J is α-admissible w.r.t I associated with δ and
the collection of all such (I, J)δ is denoted by αδA(X). First, we make an observation,
that the class of αA(X) and αδA(X) are totally independent. We have the following
examples for verification where X = R+ and δ = 2.

Example 1.1. Let α : X × X → R+ and I, J : X → X be three given mappings
defined by:

α(x, y) =

{√
x+
√
y+5

3 if x, y ∈ [0, 1],
ex+y

2+ex+y otherwise.
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I(x) =

{
1+x

2 if x ∈ [0, 1],

3 + x otherwise.

J(x) =

{
x6+1
200 if x ∈ [0, 1],

2 + sinhx otherwise.

Clearly, α(Ix, Iy) ≥ 1 ⇒ α(Jx, Jy) ≥ 1. Now, if we take x = .4, y = .6, then we
have α(I(.4), I(.6)) > 2 and α(J(.4), J(.6)) < 2. Thus, the pair (I, J) ∈ αA(X) but
(I, J) 6∈ α2

A(X). Hence αA(X) * α2
A(X).

Now, we move to our second example.

Example 1.2. Let α : X × X → R+ and I, J : X → X be three given mappings
defined by:

α(x, y) =

{
x+ y if x, y ∈ [1, 2],

min
{

1
4 ,

2|x−y|
1+4|x−y|

}
otherwise.

I(x) =


1 + x

3 for x ∈ [1, 2],
3
4 + x2

5 for x ∈ [0, 1),
1

1+x for x ∈ (2,∞).

J(x) =

{
1 + ln( 1

2 + x) for x ∈ [1, 2],
x2

6 + 2 for x ∈ [0, 1) ∪ (2,∞).

Clearly, α(Ix, Iy) ≥ 2⇒ α(Jx, Jy) ≥ 2. Now, if we take x = .3, y = .2, then we obtain
α(I(.3), I(.2)) > 1 and α(J(.3), J(.2)) < 1. Consequently, the pair (I, J)2 ∈ α2

A(X)
but (I, J)2 6∈ αA(X). Hence, α2

A(X) * αA(X), and our claim is justified.

Note. In general the mapping α may not be symmetric, i.e., α(x, y) 6= α(y, x). To
check this, consider the following example.

Example 1.3. Let X = [0, 3] with δ = 2. Let α : X ×X → R+ and I, J : X → X
be three given mappings defined by:

α(x, y) =

{
x2 + y3 if x, y ∈ [2, 3],
1
2 otherwise.

I(x) =

{√
x for x ∈ [2, 3],

x2 otherwise.

J(x) =

{
3
√
x for x ∈ [2, 3],

x3 otherwise.

Here J is α-admissible w.r.t I associated with 2. But α is not symmetric.

Next, we state the definition of wt-distance over a b-metric space and some related
results.
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Definition 1.4. ([22]) Let X be a non-empty set. Let ρδ : X × X 7→ [0,∞) be a
mapping which satisfies the following relations:

(1) ρδ(x, y) = 0 ⇔ x = y;
(2) ρδ(x, y) = ρδ(y, x),∀x, y ∈ X;
(3) ρδ(x, y) ≤ δ(ρδ(x, z) + ρδ(z, y)), for any point x, y, z ∈ X and for some δ ≥ 1.

Then the pair (X, ρδ) is called a b−metric space.

Definition 1.5. [27] Let (X, ρδ) be a b−metric space. Suppose {xn} is a sequence
in X. Then,

(1) xn → x(∈ X), as n→∞ ⇔ ρδ(xn, x)→ 0, as n→∞, and
(2) {xn} is Cauchy ⇔ ρδ(xn, xm)→ 0, as n,m→∞.

(X, ρδ) is complete ⇔ every Cauchy sequence in X is convergent. In the rest of
the paper, we denote cms and cbms as complete metric space and complete
b-metric space, respectively.

Definition 1.6. [18] Let (X, ρδ) and (X∗, ρ∗δ) be two b-metric spaces, then:

(1) A function J : X 7→ X∗ is said to be a b−continuous at a point x ∈ X, if for
a sequence xn(⊆ X) with xn → x, as n→∞ ⇒ J(xn)→ J(x), as n→∞.

From now we write lsc to mean lower semi continuous.

Definition 1.7. [27] Let (X, ρδ) be a b−metric space with constant δ ≥ 1. Then a
function ωδ : X ×X 7→ R+ is said to a wt−distance on X if the following holds:

(1) ωδ(x, y) ≤ δ(ωδ(x, z) + ωδ(z, y)), for any point x, y, z ∈ X;
(2) for any x ∈ X, ωδ(x, ·) : X 7→ R+ is δ-lsc;
(3) for any ε > 0, there exists ν > 0 such that ωδ(x, y) ≤ ν and ωδ(x, z) ≤ ν ⇒

ρδ(y, z) ≤ ε.

Definition 1.8. [28] Let (X, ρδ) be a b-metric space. Then a function J : X 7→ R is
called δ−lsc at a point x0 ∈ X if either lim

xn→x0

J(xn) =∞ or J(x0) ≤ limxn→x0
δJ(xn),

whenever xn ∈ X for every n ∈ N with xn → x0.

Examples of wt-distance over b-metric space are given in [27].

Remark 1.1. Every b−metric space is wt-distance but the converse is not true.

Remark 1.2. If δ = 1, then ωδ becomes a w-distance. In that case, we denote “ω”
instead of “ω1” in w-distance. Hence, the concept of wt-distance is more general than
the concept of w-distance.

Remark 1.3. Note that it had been shown in Example 3.4 [27], ωδ(x, y) = ωδ(y, x)
does not always satisfy for all x, y ∈ X, i.e., wt−distance is not symmetric.

The following important lemma will be used to prove our main results.

Lemma 1.1. [27] Let (X, ρδ) be a b−metric space with constant δ ≥ 1 and ωδ be a
wt−distance on X. Consider two sequences {xn} and {tn} in X with x, t, y ∈ X.
Let {βn} and {γn} be two sequences in [0,∞) converging to 0. Then the following
assertions hold.
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(l1) If ωδ(xn, t) ≤ βn and ωδ(xn, y) ≤ γn for n ∈ N, then t = y. In fact, if ωδ(x, t) = 0
and ωδ(x, y) = 0, then t = y.
(l2) If ωδ(xn, tn) ≤ βn and ωδ(xn, y) ≤ γn hold for n ∈ N, then tn → y(∈ X), as
n→∞.
(l3) If ωδ(t, xn) ≤ βn holds for n ∈ N, then {xn} is a Cauchy in X.
(l4) If ωδ(xn, xm) ≤ βn holds for m > n, then {xn} is a Cauchy in X.

Definition 1.9. [32] Suppose E,F are two self mappings defined on X. Then E,F
are said to be weakly compatible if they commute at their coincidence point, i.e., if
Fx = Ex holds for some x ∈ X then FEx = EFx.

Next, we state the definition of compatibility of two self mappings in a b-metric
space.

Definition 1.10. ([3], [32]) Let (X, ρδ) be a b-metric space. Suppose C and D be two
self mappings on X. We say that the pair (C,D) satisfies the compatibility condition
in a b-metric space if and only if

lim
n→∞

ρδ(CDxn, DCxn) = 0,

whenever the sequence {xn}(⊆ X) satisfies lim
n→∞

Cxn = x = lim
n→∞

Dxn, for some

x ∈ X.

Next, we move to the definition of altering distance functions and comparison
functions.

Definition 1.11. [41] A function θ : R+ → R+ is said to be an altering distance
function if the following two conditions are satisfied:
(i) θ is strictly monotone non-decreasing and continuous;
(ii) θ(τ) = 0 if and only if τ = 0.

From now we write Θ to denote the collection of all altering distance function.

Definition 1.12. [18] A function µ : R+ → R+ is said to be a comparison function if
(i) it is an increasing function;
(ii) µk(l)→ 0 as k →∞, for all l ∈ R+.

Note. Every comparison function satisfies the following properties.
(i) µ(l) < l for l > 0, (ii) µ(0) = 0, (iii) µ is continuous at 0.

Definition 1.13. [18] A function µ : R+ → R+ is said to be a b-comparison func-
tion(with τ ≥ 1) if µ is a increasing function and there exists a k0 ∈ N, γ ∈ (0, 1) and
a convergent series of non-negative terms Σ∞k=1dk such that

τk+1µk+1(l) ≤ γτkµk(l) + dk for k ≥ k0 and any l ∈ R+.

From now, we write ∆ to denote the class of all b-comparison functions.
Note. The series Σ∞k=1τ

kµk(l) converges for every l ∈ R+, whenever µ ∈ ∆. Further-
more, each b-comparison function is a comparison function (for details see [18]).

In this paper, our aim is to present some new kind of fixed point results which
extend and generalize several well known results of fixed point theory including the
very recent result of Liu et al.[47].
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2. Main results

2.1. Implicit function. In this section, first we have investigated implicit function
in the context of w-distance by using α-admissible mappings and altering distance
functions. To do this, we consider the following implicit function (readers may also
look into [16], [17], [49], [52], [53]).

Definition 2.1. Let Ω be the collection of all functions G(ξ1, · · · , ξ4) : R4
+ → R such

that it satisfies the following properties:
(G1) G is continuous in each variable and decreasing in ξ3 variable;
(G2a) for all c, d ≥ 0 with G(c, d, d, c) ≤ 0 there exists a µ ∈ ∆ such that c ≤ µ(d);
(G2b) for all c, d ≥ 0 with G(c, d, τ, τ) ≤ 0 implies c ≤ µ(d) or c ≤ µ(τ) for all τ > 0,
where µ ∈ ∆;
(G3) for all τ > 0, we obtain 0 < G(τ, τ, 0, 0);
(G4) G satisfies (Gγ) condition, i.e., if G(τ1, τ2, 0, τ3) ≤ 0 for all τ1, τ2, τ3 ≥ 0, there
exists a γ ∈ [0, 1) such that τ1 ≤ γmax{τ2, τ3}.

Now, we provide some examples of G.

Example 2.1. G(ξ1, ξ2, ξ3, ξ4)=ξ1−kξ2−lξ3−mξ4, where k, l,m≥0 with k+l+m < 1.

Example 2.2. G(ξ1, ξ2, ξ3, ξ4) = ξ1 − kmax{ξ2, ξ3, ξ4}, where k ∈ [0, 1
2 ).

Example 2.3. G(ξ1, ξ2, ξ3, ξ4) = ξ2
1 − kξ2ξ3 − lξ2

4 , where k, l ≥ 0 with k + l < 1.

Example 2.4. G(ξ1, ξ2, ξ3, ξ4) = ξ1−kξ2−lξ3−mmax{2ξ4, ξ1 +ξ4} where k, l,m ≥ 0
with k + l + 2m < 1.

Example 2.5. G(ξ1, ξ2, ξ3, ξ4) = ξ2
1 − kmax{ξ2

2 , ξ
2
3 , ξ

2
4} − lmax{ξ1ξ3, ξ2ξ4} −mξ3ξ4

where k, l,m ≥ 0 with k + l +m < 1.

Example 2.6. G(ξ1, ξ2, ξ3, ξ4)=ξ3
1−kξ2

1ξ2−lξ1ξ3ξ4−mξ2ξ2
3−nξ3ξ2

4 where k, l,m, n≥0
with k + l +m+ n < 1.

Example 2.7. G(ξ1, ξ2, ξ3, ξ4) = ξ1 − kmax{ξ2, ξ3+ξ4
2 } where k ∈ [0, 1).

Example 2.8. G(ξ1, ξ2, ξ3, ξ4) = ξ1 − (kξn2 + lξn3 + mξn4 )
1
n where k, l,m, n > 0 with

k + l +m < 1.

Before going to our main results, first we need the following lemma.

Lemma 2.1. Let ωδ be a wt-distance with weight δ over a b-metric space (X, ρδ).
Let I, J : X → X be two mappings such that J(X) ⊆ I(X). Further, let {xr} be a
sequence in X such that Jxr = Ixr+1 for all r ∈ {0} ∪ N with

lim
r→∞

ωδ(Ixr, Ixr+1) = 0, lim
r→∞

ωδ(Ixr+1, Ixr) = 0. (2.1)

If lim
s>r,r→∞

ωδ(Ixr, Ixs) 6= 0, then there exists τ > 0 and two sub-sequences {rt} and

{st} of non-negative integers with st > rt > t such that

τ

δ
≤ lim sup

t→∞
ωδ(Ixrt , Ixst) ≤ δτ ;

τ

δ
≤ lim sup

t→∞
ωδ(Ixrt , Ixst+1) ≤ δ2τ ;
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τ

δ
≤ lim sup

t→∞
ωδ(Ixrt+1, Ixst) ≤ δ2τ ;

τ

δ2
≤ lim sup

t→∞
ωδ(Ixrt+1, Ixst+1) ≤ δ3τ.

Proof. Let {Ixr} be a sequence in X such that lims>r,r→∞ ωδ(Ixr, Ixs) 6= 0. Conse-
quently, for all M ∈ N there exists a τ > 0 such that ωδ(Ixr, Ixs) > τ for all s, r ∈ N
with s > r > M . Also, from (2.1), there exists a m0 ∈ N such that

ωδ(Ixr, Ixr+1) < τ, ωδ(Ixr+1, Ixr) < τ, for all r > m0. (2.2)

Now we pick up two sub sequences {xrt} and {xst} such that m0 ≤ rt < st < st + 1
and

ωδ(Ixrt , Ixst) > τ, for all t. (2.3)

Again, observe that,
ωδ(Ixrt , Ixst−1) ≤ τ for all t, (2.4)

where st is taken as the smallest element s ∈ {rt, rt + 1, rt + 2, · · · , } which satisfy
(2.3). Here we observe that rt + 1 ≤ st for all t. Also, note that the situation
rt + 1 = st is absurd because of (2.3), (2.4). Hence, we must have rt + 2 ≤ st for all
t. Consequently, it gives that

rt + 1 < st < st + 1, for all t.

Now, applying triangle inequality and by using (2.3), (2.4), we get,

τ ≤ ωδ(Ixrt , Ixst)
≤ δ[ωδ(Ixrt , Ixst−1) + ωδ(Ixst−1, Ixst)]

≤ δ[τ + ωδ(Ixst−1, Ixst)].

(2.5)

Considering lim sup as t→∞ in (2.5), and by using (2.1), we derive that

τ ≤ lim sup
t→∞

ωδ(Ixrt , Ixst) < δτ. (2.6)

From Definition 1.7, we obtain,

ωδ(Ixrt , Ixst) ≤ δ[ωδ(Ixrt , Ixst+1) + ωδ(Ixst+1, Ixst)]. (2.7)

Also, from Definition 1.7, we get,

ωδ(Ixrt , Ixst+1) ≤ δ[ωδ(Ixrt , Ixst) + ωδ(Ixst , Ixst+1)]. (2.8)

Considering lim sup as t → ∞ in (2.7), (2.8) and by utilizing (2.1), (2.6), we derive
that

τ

δ
≤ lim sup

t→∞
ωδ(Ixrt , Ixst+1) ≤ δ2τ. (2.9)

Again, from Definition 1.7, we obtain that

ωδ(Ixrt , Ixst) ≤ δ[ωδ(Ixrt , Ixrt+1) + ωδ(Ixrt+1, Ixst)]

≤ δωδ(Ixrt , Ixrt+1) + δ2[ωδ(Ixrt+1, Ixst+1) + ωδ(Ixst+1, Ixst)],

(2.10)

and
ωδ(Ixrt+1, Ixst+1) ≤ δ[ωδ(Ixrt+1, Ixrt) + ωδ(Ixrt , Ixst+1)]. (2.11)

Observe that by using (2.6), (2.10) and the following inequality

ωδ(Ixrt+1, Ixst) ≤ δ[ωδ(Ixrt+1, Ixrt) + ωδ(Ixrt , Ixst)],



192 SUDIPTA KUMAR GHOSH, C. NAHAK AND RAVI P. AGARWAL

one can easily show that τ
δ ≤ lim supt→∞ ωδ(Ixrt+1, Ixst) ≤ δ2τ . Now, considering

lim sup as t→∞ in (2.10), (2.11) and by utilizing (2.1), (2.9), we have

τ

δ
≤ lim sup

t→∞
ωδ(Ixrt+1, Ixst+1) ≤ δ3τ. �

Note. The relations given in Lemma 2.1 for lim sup are also true for lim inf.

The following lemma is needed in the proof of our first main result.

Lemma 2.2. Let ω be a w-distance over a metric space (X, ρ). Let I, J : X → X and
α is a mapping from X×X into R+. Suppose that C(I, J) 6= ∅ and α(Il1, Il2) ≥ 1 for
l1, l2 ∈ C(I, J). Also, suppose that for all x, y ∈ X with α(Ix, Iy) ≥ 1 the following
relation holds:

G(θ(ω(Jx, Jy)), θ(ω(Ix, Iy)), θ(ω(Ix, Jx)), θ(ω(Iy, Jy))) ≤ 0, (2.12)

where G ∈ Ω, θ ∈ Θ. Then, the number of point of coincidence of the functions I
and J is at most one.

Proof. Assume that b1 = Im = Jm and b2 = In = Jn. Then, by our assumption
α(Im, In) ≥ 1 and α(Im, Im) ≥ 1. Now, by using (2.12) with α(Im, Im) ≥ 1, we
have

G(θ(ω(Jm, Jm)), θ(ω(Im, Im)), θ(ω(Im, Jm)), θ(ω(Im, Jm))) ≤ 0

⇒ G(θ(ω(Im, Im)), θ(ω(Im, Im)), θ(ω(Im, Im)), θ(ω(Im, Im))) ≤ 0.

Now, by applying (G2a) property, we have

θ(ω(Im, Im)) ≤ µ(θ(ω(Im, Im))).

It is clear from the above inequality that if θ(ω(Im, Im)) > 0, then we arrive at a
contradiction. Thus we must have θ(ω(Im, Im)) = 0 which implies ω(Im, Im) =
0. In a similar way one can show that ω(In, In) = 0. Now, by using (2.12) with
α(Im, In) ≥ 1, we have

G(θ(ω(Jm, Jn)), θ(ω(Im, In)), θ(ω(Im, Jm)), θ(ω(In, Jn))) ≤ 0

⇒ G(θ(ω(Im, In)), θ(ω(Im, In)), θ(ω(Im, Im)), θ(ω(In, In))) ≤ 0

⇒ G(θ(ω(Im, In)), θ(ω(Im, In)), 0, 0) ≤ 0.

Thus, from (G3), we have θ(ω(Im, In)) = 0 ⇒ ω(Im, In) = 0. Now, by Lemma
1.1(l1), ω(Im, In) = 0 and ω(Im, Im) = 0 implies Im = In. Consequently,

b1 = Jm = Im = In = Jn = b2,

i.e., the number of point of coincidence of I and J is unique. �

Now, we state our first main result on w-distance by using implicit relation through
α-admissible mappings.

Theorem 2.1. Let (X,ω) be a w-distance over a metric space (X, ρ). Let α be a
mapping from the cross product of X into R+. Further, let I, J be two mappings from
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X into itself such that J(X) ⊆ I(X). Suppose that for all x, y ∈ X with α(Ix, Iy) ≥ 1
the following relation holds:

G(θ(ω(Jx, Jy)), θ(ω(Ix, Iy)), θ(ω(Ix, Jx)), θ(ω(Iy, Jy))) ≤ 0, (2.13)

where G ∈ Ω, θ ∈ Θ. Also, suppose that the following conditions are satisfied:
(C1) there exists a x0 such that α(Ix0, Jx0) ≥ 1 and α(Jx0, Ix0) ≥ 1;
(C2) J is α−admissible w.r.t I, i.e., the pair (I, J) ∈ αA(X);
(C3) α has the transitivity property, i.e., α(x, y) ≥ 1, α(y, z) ≥ 1 implies α(x, z) ≥ 1;
(C4) I and J both are continuous mappings;
(C5) I, J are compatible mappings;
(C6) (X, ρ) is a complete metric space.
Then I and J have a coincidence point, i.e., C(I, J) 6= ∅.

Proof. By our assumption (C1), there exists a point x0 ∈ X such that α(Ix0, Jx0) ≥
1. Since J(X) ⊆ I(X), consequently we can always find a x1 ∈ X such that Jx0 =
Ix1. Hence, we have α(Ix0, Ix1) ≥ 1. Again, by (C2), and by using J(X) ⊆ I(X), we
can obtain α(Jx0, Jx1) = α(Ix1, Jx1) ≥ 1. Since J(X) ⊆ I(X), consequently we can
find a x2 ∈ X such that α(Ix1, Ix2) ≥ 1. Now if we continue in this way, then we can
easily construct a sequence {xr} such that Jxr = Ixr+1 with α(Ixr, Ixr+1) ≥ 1 for all
r ∈ {0}∪N. Similarly, by using α(Jx0, Ix0) ≥ 1, we can show that α(Ixr+1, Ixr) ≥ 1
for all r ∈ {0} ∪ N. If Ixr = Ixr+1 for some r ∈ N, then we get Ixr = Jxr,
i.e., I and J have a coincidence point at x = xr. Hence, our proof is completed.
Thus from here, we assume that Ixr 6= Ixr+1, for all r ∈ {0} ∪ N. First, observe
that Ar = ω(Ixr, Ixr+1) > 0 for all n ∈ {0} ∪ N. Suppose not, i.e., there exists a
r# ∈ {0} ∪N such that Ar# = ω(Ixr# , Ixr#+1) = 0. Again, α(Ixr, Ixr+1) ≥ 1 for all
r ∈ {0} ∪ N. Then by taking x = xr# , u = xr#+1 in (2.13), we have

G(θ(ω(Jxr# , Jxr#+1)), θ(ω(Ixr# , Ixr#+1)), θ(ω(Ixr# , Jxr# )), θ(ω(Ixr#+1, Jxr#+1))) ≤ 0

⇒ G(θ(ω(Ixr#+1, Ixr#+2)), θ(ω(Ixr# , Ixr#+1)), θ(ω(Ixr# , Ixr#+1)), θ(ω(Ixr#+1, Ixr#+2))) ≤ 0.

Now, by applying (G2a), we have

ω(Ixr#+1, Ixr#+2) ≤ µ(ω(Ixr# , Ixr#+1)). (2.14)

But by our assumption ω(Ixr# , Ixr#+1) = 0. Correspondingly (2.14) implies the
following

ω(Ixr#+1, Ixr#+2) ≤ µ(ω(Ixr# , Ixr#+1)) = µ(0) = 0.

Thus, we have ω(Ixr#+1, Ixr#+2) = 0. Next, we have the following

ω(Ixr# , Ixr#+2) ≤ ω(Ixr# , Ixr#+1) + ω(Ixr#+1, Ixr#+2).

Putting the values of ω(Ixr#+1, Ixr#+2) and ω(Ixr# , Ixr#+1) in the above inequality,
we get ω(Ixr# , Ixr#+2) = 0. Now, by applying Lemma 1.1(l1) on ω(Ixr# , Ixr#+1) = 0
and ω(Ixr# , Ixr#+2) = 0, we obtain Ixr#+1 = Ixr#+2, a contradiction. Conse-
quently, we have ω(Ixr, Ixr+1) > 0 for all r ∈ {0} ∪ N. Also, observe that no
two consecutive terms of the sequence {ω(Ixr+1, Ixr)}∞r=1 can not be equal with 0.
Otherwise, it will contradict the assumption of Ixr 6= Ixr+1, for all r. Now, since
α(Ixr, Ixr+1) ≥ 1, considering x = xr, u = xr+1 in (2.13), we get

G(θ(ω(Jxr, Jxr+1)), θ(ω(Ixr, Ixr+1)), θ(ω(Ixr, Jxr)), θ(ω(Ixr+1, Jxr+1))) ≤ 0

⇒ G(θ(ω(Ixr+1, Ixr+2)), θ(ω(Ixr, Ixr+1)), θ(ω(Ixr, Ixr+1)), θ(ω(Ixr+1, Ixr+2))) ≤ 0.
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Now, by utilizing (G2a), we have

θ(ω(Ixr+1, Ixr+2)) ≤ µ(θ(ω(Ixr, Ixr+1))). (2.15)

Clearly, from the above inequality we can conclude that {ω(Ixr, Ixr+1)}∞r=1 is a de-
creasing sequence, bounded below by zero. Let lim

r→∞
ω(Ixr, Ixr+1) = a∗. By consid-

ering limit as r →∞ in (2.15), we can show that a∗ = 0. Next, we wish to show that
lim
r→∞

ω(Ixr+1, Ixr) = 0. Now, since α(Ixr+1, Ixr) ≥ 1, considering x = xr+1, u = xr

in (2.13), we get

G(θ(ω(Jxr+1, Jxr)), θ(ω(Ixr+1, Ixr)), θ(ω(Ixr+1, Jxr+1)), θ(ω(Ixr, Jxr))) ≤ 0

⇒ G(θ(ω(Ixr+2, Ixr+1)), θ(ω(Ixr+1, Ixr)), θ(ω(Ixr+1, Ixr+2)), θ(ω(Ixr, Ixr+1))) ≤ 0.

Now, since {ω(Ixr, Ixr+1)}∞r=1 is a decreasing sequence and the function G is decreas-
ing in it’s third co-ordinate, i.e., we have

G(θ(ω(Ixr+2, Ixr+1)), θ(ω(Ixr+1, Ixr)), θ(ω(Ixr, Ixr+1)), θ(ω(Ixr, Ixr+1))) ≤ 0.

Now, by applying (G2b) condition with the fact that ω(Ixr, Ixr+1) > 0 for all r, we
have

either θ(ω(Ixr+2, Ixr+1)) ≤ µ(θ(ω(Ixr+1, Ixr))) − (A)

or θ(ω(Ixr+2, Ixr+1)) ≤ µ(θ(ω(Ixr, Ixr+1))) − (B).

Suppose (A) holds for all r ∈ {0} ∪ N, then

θ(ω(Ixr+2, Ixr+1)) ≤ µr(θ(ω(Ix1, Ix0))).

Otherwise, suppose there exists a r∗ ∈ {0} ∪ N for which (B) holds. Then, we can
derive the following

θ(ω(Ixr+2, Ixr+1)) ≤ µr(θ(ω(Ix0, Ix1))), for all r ≥ r∗.
Thus, from any situation we get that θ(ω(Ixr+2, Ixr+1)) → 0 as r → ∞ im-
plies ω(Ixr+2, Ixr+1) → 0 as r → ∞. Our next aim is to show that the se-
quence {Ixr} is a Cauchy sequence, i.e., lim

s>r,r→∞
ω(Ixr, Ixs) = 0. Suppose not,

i.e., lim
s>r,r→∞

ω(Ixr, Ixs) 6= 0. Consequently, by Lemma 2.1, there exists τ > 0 and

two sub-sequences {rt} and {st} of non-negative integers with st > rt > t such that

lim
t→∞

ω(Ixrt , Ixst) = τ ; lim
t→∞

ω(Ixrt , Ixst+1) = τ ; lim
t→∞

ω(Ixrt+1, Ixst+1) = τ. (2.16)

Now, by utilizing (C3) with α(Ixr, Ixr+1) ≥ 1 for all r, we derive that α(Ixr, Ixs) ≥ 1
for all r, s ∈ N with r < s. Now, considering x = xrt , u = xst in (2.13), we obtain the
following

G(θ(ω(Jxrt , Jxst)), θ(ω(Ixrt , Ixst)), θ(ω(Ixrt , Jxrt)), θ(ω(Ixst , Jxst))) ≤ 0

⇒ G(θ(ω(Ixrt+1, Ixst+1)), θ(ω(Ixrt , Ixst)), θ(ω(Ixrt , Ixrt+1)), θ(ω(Ixst , Ixst+1))) ≤ 0.

Now, by applying continuity of G, θ with (2.16), and taking limit as t→∞, we obtain

G(θ(τ), θ(τ), 0, 0) ≤ 0.

Clearly, above relation contradicts (G3), since θ(τ) > 0. Thus we must have
lim

s>r,r→∞
ω(Ixr, Ixs) = 0. Hence, by Lemma 1.1(l4) {Ixr} is a Cauchy sequence.
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Again, by our assumption (X, ρ) is a complete metric space. Consequently, there
exists a x∗ ∈ X such that Ixr → x∗, i.e.,

lim
r→∞

ρ(Ixr, x
∗) = lim

r→∞
ρ(Jxr, x

∗).

Also, by using continuity of the mappings I, J , we get

Ixr → x∗ implies J(Ixr)→ Jx∗,

Jxr → x∗ implies I(Jxr)→ Ix∗.
(2.17)

Consequently, we obtain

ρ(Ix∗, Jx∗) ≤ [ρ(Ix∗, IJxr) + ρ(IJxr, Jx
∗)]

≤ ρ(Ix∗, IJxr) + [ρ(IJxr, JIxr) + ρ(JIxr, Jx
∗)].

(2.18)

Making n→∞ in (2.18), we have ρ(Ix∗, Jx∗) = 0 implies Ix∗ = Jx∗. Therefore, x∗

becomes a coincidence point of I and J . Hence, we get C(I, J) 6= ∅. �

Next, we move to our second theorem, where we drop the assumption of continuity.

Theorem 2.2. Suppose all the hypotheses of Theorem 2.1 are satisfied except
(C4), (C5), (C6). Suppose that the following two conditions are satisfied:

(C7) inf{ω(Ix, Ix∗) + ω(Ix, Jx) : x ∈ X} > 0 for every x∗ with Ix∗ 6= Jx∗;

(C8) (IX, ρ) is a complete sub-space of (X, ρ).

Then, I and J have a coincidence point, C(I, J) 6= ∅.

Proof. Proceeding similarly as in Theorem 2.1, we can construct a sequence {Ixr}
such that Ixr+1 = Jxr with {Ixr} is a Cauchy-sequence in (X, ρ). Since (IX, ρ) is a
complete sub-space of (X, ρ), consequently there exists a x∗ ∈ X such that Ixr → Ix∗.
Next, we wish to show that x∗ is a coincidence point of I, J . We now show this by
using the method contradiction, i.e., suppose Ix∗ 6= Jx∗. Since {Ixr} is a Cauchy
sequence, consequently for each σ > 0, we can always find a Lσ ∈ N such that for
each r > Lσ, we get ω(IxLσ , Ixr) < σ. Again, by using the definition of w-distance
over metric space, we obtain

ω(IxLσ , Ix
∗) < lim inf

r→∞
ω(IxLσ , Ixr) < σ,

which shows that ω(IxLσ , Ix
∗) < σ. Now let us consider σ = 1

s , where s ∈ N and
Lσ = rs. Then, we get

lim
s→∞

ω(Ixrs , Ix
∗) = 0.

Since we assume Ix∗ 6= Jx∗, consequently by applying (C7), we get

0 < inf{ω(Ix, Ix∗) + ω(Ix, Jx) : x ∈ X}
≤ inf{ω(Ixrs , Ix

∗) + ω(Ixrs , Jxrs) : rs ∈ N}
= inf{ω(Ixrs , Ix

∗) + ω(Ixrs , Ixrs+1) : rs ∈ N}
→ 0 as s→∞,

which contradicts our assumption (C7). Therefore, we must have Ix∗ = Jx∗. Hence,
our proof is completed. �
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Our next theorem deals with the uniqueness of the point of coincidence of the
functions I, J .

Theorem 2.3. Suppose that all the hypotheses of Theorem 2.1 and Theorem 2.2 are
satisfied. Also, suppose that if C(I, J) 6= ∅, then α(Il1, Il2) ≥ 1 for all l1, l2 ∈ C(I, J).
Then, the number of point of coincidence of the functions I, J is unique. Furthermore,
if I and J are weakly compatible, then I and J have unique common fixed point x∗

with ω(x∗, x∗) = 0.

Proof. From Theorem 2.1(respectively Theorem 2.2), it is clear that C(I, J) 6= ∅.
Also, by our assumption, we have α(Il1, Il2) ≥ 1 whenever l1, l2 ∈ C(I, J). Since,
l1, l2 ∈ X with α(Il1, Il2) ≥ 1, consequently the point (l1, l2) satisfy (2.13). Now,
by applying Lemma 2.2, we obtain that the number of point of coincidence of the
functions I and J is unique. Let x∗ be the unique point of coincidence. Hence, there
exists a u ∈ X such that x = Iu = Ju. Again, we have the following,

Ix∗ = IJu = JIu = Jx∗,

since I and J are weakly compatible. Thus, we have x∗ = Ix∗ = Jx∗, which shows
that x∗ is a fixed point of the mappings I, J and that is unique also. Hence, our proof
is completed. �

2.1.1. Well-posedness and limit shadowing property over w-distance by using implicit
relation and α-admissible mappings. In this section, we discuss the well-posedness
property. To do this, first we recall a class of function, defined by Gordji et al.[25],
θ : R+ → R+ such that θ satisfies all the condition given in Definition 1.11 together
with sub-additivity property, i.e., θ(t+ s) ≤ θ(t) + θ(s), for all t, s ∈ R+.

We write Θ̃ to denote the above mentioned class of functions.
The study of well-posedness property for a fixed point problem, has become very
popular among the researchers in the field of mathematics, see for example [12], [44],
[48],[50]. Now we state the definition of well-posedness in generalize sense. Here, we
will write “c.f.p” to mean “common fixed point”.

Definition 2.2. Let (X,ω) be a w-distance over a metric space (X, ρ). Let I, J :
X → X and α : X ×X → R+ be three given mappings. Then I and J are said to be
well-posed in generalized sense w.r.t c.f.p problem if
(C1) I and J have a unique c.f.p x∗ in X;
(C2) for any sequence {xr} in X with α(Ix∗, Ixr) ≥ 1 such that

lim
r→∞

ω(xr, Ixr) = lim
r→∞

ω(Ixr, xr) = 0;

lim
r→∞

ω(xr, Jxr) = lim
r→∞

ω(Jxr, xr) = 0,
(2.19)

implies lim
r→∞

ρ(xr, x
∗) = 0.

Next, we state the definition of limit shadowing property in generalized sense.

Definition 2.3. Let (X,ω) be a w-distance over a metric space (X, ρ). Let I, J :
X → X and α : X × X → R+ be three given mappings. Then I and J are said
to satisfy limit shadowing property in generalized sense w.r.t c.f.p problem if for any
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sequence {xr} in X with α(Ix∗, Ixr) ≥ 1 satisfying (2.19), implies that there exists a
k ∈ X such that lim

r→∞
ρ(Irk, xr) = lim

r→∞
ρ(Jrk, xr) = 0.

Theorem 2.4. Let (X,ω) be a w-distance over a metric space (X, ρ). Let I, J : X →
X with J(X) ⊆ I(X) and α : X ×X → R+ be three given mappings such that

G(θ(ω(Jx, Jy)), θ(ω(Ix, Iy)), θ(ω(Ix, Jx)), θ(ω(Iy, Jy))) ≤ 0,

for all x, y ∈ X with α(Ix, Iy) ≥ 1, where G ∈ Ω, θ ∈ Θ̃. Assume that all the
hypotheses of Theorem 2.3 are satisfied. Then, I and J are said to satisfy well-
posedness as well as limit shadowing property in generalized sense with respect to
c.f.p problem.

Proof. Clearly Theorem 2.3 guarantees that the mappings I and J have a unique
c.f.p. Let x∗ be such unique c.f.p of I and J . Next, we consider a sequence {xr} in
X such that (2.19) holds with α(Ix∗, Ixr) ≥ 1 for all r ∈ N. Then, by the condition
of Theorem 2.4, we have

G(θ(ω(Jx∗, Jxr)), θ(ω(Ix∗, Ixr)), 0, θ(ω(Ixr, Jxr))) ≤ 0

⇒ G(θ(ω(x∗, Jxr)), θ(ω(x∗, Ixr)), 0, θ(ω(Ixr, Jxr))) ≤ 0.

Now, by applying condition (G4) of Definition 2.1, we have

θ(ω(x∗, Jxr)) ≤ γmax{θ(ω(x∗, Ixr)), θ(ω(Ixr, Jxr))}, where γ ∈ (0, 1).

Again, we have,

ω(x∗, xr) ≤ ω(x∗, Jxr) + ω(Jxr, xr).

Since θ is non-decreasing and satisfies sub-additivity property, consequently we have,

θ(ω(x∗, xr))

≤ θ(ω(x∗, Jxr) + ω(Jxr, xr))

≤ θ(ω(x∗, Jxr)) + θ(ω(Jxr, xr))

≤ γ[θ(ω(x∗, Ixr)) + θ(ω(Ixr, Jxr))] + θ(ω(Jxr, xr))

≤ γ[θ(ω(x∗, xr) + ω(xr, Ixr)) + θ(ω(Ixr, xr) + ω(xr, Jxr))] + θ(ω(Jxr, xr))

≤ γθ(ω(x∗, xr)) + γθ(ω(xr, Ixr)) + γθ(ω(Ixr, xr)) + γθ(ω(xr, Jxr)) + θ(ω(Jxr, xr)).

Thus, we have the following

θ(ω(x∗, xr)) ≤
γ

1− γ
θ(ω(xr, Ixr)) +

γ

1− γ
θ(ω(Ixr, xr)) +

γ

1− γ
θ(ω(xr, Jxr))

+
1

1− γ
θ(ω(Jxr, xr)).

Using (2.19), and making r →∞ in the above inequality, we obtain

lim
r→∞

θ(ω(x∗, xr)) = 0⇒ θ( lim
r→∞

ω(x∗, xr)) = 0, since θ is continuous.

Again, by using property of θ, we get lim
r→∞

ω(x∗, xr) = 0. Also, from Theorem 2.3,

we have ω(x∗, x∗) = 0. Thus, from Lemma 1.1(l2), we get xr → x∗ as r → ∞, i.e.,
lim
r→∞

ρ(x∗, xr) = 0. Hence, our proof is completed. �
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2.2. (η, θ,Z, φ)β-contraction. Before going to our new theorems, first we introduce
the following class of functions.
Let Φ denotes the collection of all such functions φ : R6

+ → R+ such that it satisfies
the following conditions:

(1) φ is a continuous mapping;
(2) φ(t1, t2, t3, t4, t5, t6) = 0 if and only if ti = tj for i 6= j with i, j ∈
{1, 2, 3, 4, 5, 6}.

Next, we give some examples of functions which belongs to the class Φ. Here we take
K = {1, 2, 3, 4, 5, 6}.

Example 2.9. φ1(t1, t2, t3, t4, t5, t6) = sinh(Πi,j∈K,i6=j |ti − tj |).

Example 2.10. φ2(t1, t2, t3, t4, t5, t6) = Lmin{|ti − tj | : i, j ∈ K with i 6= j}.

Example 2.11. φ3(t1, t2, t3, t4, t5, t6) = eΠi,j∈K,i6=j |ti−tj | − 1.

Example 2.12. φ4(t1, t2, t3, t4, t5, t6) = cosh(Πi,j∈K,i6=j |ti − tj |)− 1.

Example 2.13. φ5(t1, t2, t3, t4, t5, t6) = ln(1 + Πi,j∈K,i6=j |ti − tj |).

From now we write φ
(I,J)
ωδ [x, y] to mean

φ(I,J)
ωδ

[x, y] = φ(ωδ(Ix, Ix), ωδ(Iy, Iy), ωδ(Ix, Jx), ωδ(Iy, Jy), ωδ(Ix, Jy), ωδ(Iy, Jx)),

where x, y ∈ X, (X,ωδ) be a wt-distance over a b-metric space (X, ρδ) with φ ∈ Φ
and I, J : X → X be two given mappings.

In our next theorem (i.e. Theorem 2.5), we introduce a new kind of contraction
(which is (η, θ,Z, φ)β-contraction) in the context of wt-distance over a b-metric space
by involving the concept of α-admissible mappings associated with δ. Before going to
that, first we give a brief mathematical background for constructing such (η, θ,Z, φ)β-
contraction. Here, we first look into Jaggi-contraction [30], which is:

d(Jx, Jy) ≤ a1
d(x, Jx)d(y, Jy)

d(x, y)
+ a2d(x, y)

≤ (a1 + a2) max{d(x, y), d(y, Jy)}max{d(x, Jx)

d(x, y)
, 1}

≤ βmax{d(x, y), d(x, Jx)d(y, Jy), d(x, Jy)}max{d(x, Jx)

d(x, y)
, 1},

(2.20)

and next, we look into Dass-Gupta contraction[23], which is:

d(Jx, Jy) ≤ a1
d(y, Jy)(1 + d(x, Jx))

1 + d(x, y)
+ a2d(x, y)

≤ (a1 + a2) max{d(x, y), d(y, Jy)}max{1 + d(x, Jx)

1 + d(x, y)
, 1}

≤ βmax{d(x, y), d(x, Jx)d(y, Jy), d(x, Jy)}max{1 + d(x, Jx)

1 + d(x, y)
, 1},

(2.21)



STUDY OF IMPLICIT RELATION AND (η, θ,Z, φ)β-CONTRACTION 199

where β(= a1 + a2) ∈ (0, 1). If we observe in (2.20), the second maximum term it is

coming max{d(x,Jx)
d(x,y) , 1} for Jaggi-contraction and max{ 1+d(x,Jx)

1+d(x,y) , 1} for Dass-Gupta

contraction in (2.21). This motivates us to construct some functions which we have
taken as “Z(τ, s)” function in our next theorem (i.e. Theorem 2.5). Since we have
to extend and generalize the main result of Liu et al. [47], where the authors have
taken integral type functions. Now, if we apply integral type condition on Jaggi and
Dass-Gupta contraction, then we have the following∫ d(Jx,Jy)

0
ϕ(s)ds

≤ βmax{
∫ d(x,y)

0
ϕ(s)ds,

∫ d(x,Jx)

0
ϕ(s)ds,

∫ d(y,Jy)

0
ϕ(s)ds,

∫ d(x,Jy)

0
ϕ(s)ds}max{

d(x, Jx)

d(x, y)
, 1},

(2.22)

and∫ d(Jx,Jy)

0
ϕ(s)ds

≤ βmax{
∫ d(x,y)

0
ϕ(s)ds,

∫ d(x,Jx)

0
ϕ(s)ds,

∫ d(y,Jy)

0
ϕ(s)ds,

∫ d(x,Jy)

0
ϕ(s)ds}max{

1 + d(x, Jx)

1 + d(x, y)
, 1},

(2.23)

where ϕ is a Lebesgue integrable function. We know that every integral type
function is an altering distance function but not conversely. Due to this fact, we
have considered an altering distance function “θ” in the contraction of Theorem
2.5. Observe that in [13], authors have considered Berinde type generalized con-
traction. The contraction, given by inequality (9) in [13], is known as Berinde
type contraction due to the addition of the last term which is “LN(x, y)”, where
N(x, y) = min{dpm(x, Tx), dpm(y, Ty), dpm(x, Ty), dpm(y, Tx)}. Motivated by this, we

have added the function “φ
(I,J)
ωδ [x, y]” in the (η, θ,Z, φ)β-contraction. One can see

that we have given φ2(t1, t2, t3, t4, t5, t6) = Lmin{|ti − tj | : i, j ∈ K with i 6= j}
(Example 2.10) as an example of our newly introduced class of functions “Φ” which
is inspired from “LN(x, y)” term. Now, we move to our next theorem.

Theorem 2.5. Let (X,ωδ) be a wt-distance over a b-metric space (X, ρδ). Let α be a
mapping from the cross product of X into R+. Further, let I, J be two mappings from
X into itself such that J(X) ⊆ I(X). Suppose that for all x, y ∈ X with α(Ix, Iy) ≥ δ
the following relation holds:

η(θ(δ%ωδ(Jx, Jy))) ≤βη(max{θ(ωδ(Ix, Iy)), θ(ωδ(Ix, Jx)), θ(ωδ(Iy, Jy)), θ(
ωδ(Ix, Jy)

2δ
)})·

max{Z(ωδ(Ix, Jx), ωδ(Ix, Iy)), 1}+ φ(I,J)
ωδ [x, y],

(2.24)

where η, θ ∈ Θ, β ∈ [0, 1), % > 1, φ ∈ Φ and Z is a continuous function from R+×R+

into R+ such that Z(τ, s) ≤ 1 for all τ, s ∈ R+ with τ ≤ s. Also, suppose that the
following conditions are satisfied:
(D1) there exists a x0 such that α(Ix0, Jx0) ≥ δ and α(Jx0, Ix0) ≥ δ;
(D2) J is α−admissible w.r.t I associated with δ, i.e., the pair (I, J) ∈ αδA(X);
(D3) α has the transitivity property, i.e., α(x, y) ≥ δ, α(y, z) ≥ δ implies α(x, z) ≥ δ;
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(D4) I and J both are continuous mappings;
(D5) I, J are compatible mappings;
(D6) (X, ρδ) is a complete b-metric space.
Then, I and J have a coincidence point, i.e., C(I, J) 6= ∅.

Proof. From condition (D1) there exist a x0 such that α(Ix0, Jx0) ≥ δ and
α(Jx0, Ix0) ≥ δ. Similarly as in Theorem 2.1 we can show that α(Ixr, Ixr+1) ≥ δ and
α(Ixr+1, Ixr) ≥ δ for all r ∈ N. Also, by using (D3) we can show that α(Ixr, Ixs) ≥ δ
for all r, s ∈ N. As in Theorem 2.1, we can show that Ixr 6= Ixr+1, for all r ∈ N,
otherwise our proof is completed. First, observe that Ar = ωδ(Ixr, Ixr+1) > 0 for all
r ∈ N. If not, i.e., there exists a r∗ ∈ N such that Ar∗ = ωδ(Ixr∗ , Ixr∗+1) = 0. Again,
using α(Ixr, Ixr+1) ≥ δ, and taking x = xr∗ , u = xr∗+1 in (2.24), we obtain

η(θ(δ%ωδ(Jxr∗ , Jxr∗+1)))

≤ βη(max{θ(ωδ(Ixr∗ , Ixr∗+1)), θ(ωδ(Ixr∗ , Jxr∗ )), θ(ωδ(Ixr∗+1, Jxr∗+1)), θ(
ωδ(Ixr∗ , Jxr∗+1)

2δ
)})·

max{Z(ωδ(Ixr∗ , Jxr∗ ), ωδ(Ixr∗ , Ixr∗+1)), 1}+ φ
(I,J)
ωδ [xr∗ , xr∗+1].

After doing some simple calculation, and keeping in mind that η, θ ∈ Θ, φ ∈ Φ,

Z(τ, s) ≤ 1 for τ ≤ s, and
ωδ(Ixr∗ ,Ixr∗+2)

2δ ≤ ωδ(Ixr∗+1, Ixr∗+2), we can derive the
following

η(θ(δ%ωδ(Ixr∗+1, Ixr∗+2))) ≤ βη(θ(ωδ(Ixr∗+1, Ixr∗+2))).

Clearly, we get a contradiction, if we assume θ(ωδ(Ixr∗+1, Ixr∗+2)) > 0. Thus, we
have ωδ(Ixr∗+1, Ixr∗+2) = 0. Now, by applying same argument that have been given
in Theorem 2.1 to show Ixr∗+1 = Ixr∗+2, a contradiction. Also, no two consecutive
terms of {ωδ(Ixr+1, Ixr)} can not be equal with zero, similar type argument follows
from Theorem 2.1. Now we divide the proof the proof into two cases.
Case 1. In this case we consider δ = 1. Here we divide the proof into several steps.
Step 1. First, we show that lim

r→∞
ωδ(Ixr, Ixr+1) = 0.

Now, we have α(Ixr, Ixr+1) ≥ 1, for all r ∈ N. Thus, considering x = xr, u = xr+1

in (2.24), we have

η(θ(ω(Jxr, Jxr+1)))

≤ βη(max{θ(ω(Ixr, Ixr+1)), θ(ω(Ixr, Jxr)), θ(ω(Ixr+1, Jxr+1)), θ(
ω(Ixr, Jxr+1)

2
)})·

max{Z(ω(Ixr, Jxr), ω(Ixr, Ixr+1)), 1}+ φ(I,J)
ω [xr, xr+1].

(2.25)

Again, we have

θ(
ω(Ixr, Jxr+1)

2
) ≤ θ(max{ω(Ixr, Ixr+1), ω(Ixr+1, Jxr+2)}),

and φ
(I,J)
ω [xr, xr+1] = 0. Thus, from (2.25) we have

η(θ(ω(Ixr+1, Ixr+2))) ≤ βη(max{θ(ω(Ixr, Ixr+1)), θ(ω(Ixr+1, Ixr+2))}) (A1).

If max{θ(ω(Ixr, Ixr+1)), θ(ω(Ixr+1, Ixr+2)} = θ(ω(Ixr+1, Ixr+2), then we get a con-
tradiction from (A1). Thus, from (A1) we obtain,

η(θ(ω(Ixr+1, Ixr+2))) ≤ βη(θ(ω(Ixr, Ixr+1))) < η(θ(ω(Ixr, Ixr+1))) (A2).
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Thus, from (A2), we have {ω(Ixr, Ixr+1)}∞r=0 is a non-increasing sequence, and one
can easily show that lim

r→∞
ω(Ixr, Ixr+1) = 0.

Step 2. Our next step is to show that lim
r→∞

ω(Ixr+1, Ixr) = 0, and we use method

of contradiction to prove it. First we show that lim infr→∞ ω(Ixr+1, Ixr) = 0. Let
us assume on the contrary, i.e., lim infr→∞ ω(Ixr+1, Ixr) = b∗ > 0. Next, we put
ω(Ixr+1, Ixr) = br. First, suppose that b∗ ∈ (0,∞). Now, if we put x = xr+1, u = xr
in (2.24), then we have

η(θ(ω(Ixr+2, Ixr+1)))

≤ βη(max{θ(ω(Ixr+1, Ixr)), θ(ω(Ixr+1, Ixr+2)), θ(ω(Ixr, Ixr+1)), θ(
ω(Ixr+1, Ixr+1)

2
)})·

max{Z(ω(Ixr+1, Ixr+2), ω(Ixr+1, Ixr)), 1}+ φ(I,J)
ω [xr+1, xr].

Since {ω(Ixr, Ixr+1)}∞r=0 is a decreasing sequence, θ is a non-decreasing function and
utilizing the property of φ, we obtain

η(θ(ω(Ixr+2, Ixr+1))) ≤βη(max{θ(ω(Ixr+1, Ixr)), θ(ω(Ixr, Ixr+1))})·
max{Z(ω(Ixr+1, Ixr+2), ω(Ixr+1, Ixr)), 1} (A3).

Now we consider lim inf in both sides of (A3), we get

η(θ(lim inf
r→∞

ω(Ixr+2, Ixr+1)))

≤ βη(max{θ(lim inf
r→∞

ω(Ixr+1, Ixr)), θ(lim inf
r→∞

ω(Ixr, Ixr+1))})·

max{Z(lim inf
r→∞

ω(Ixr+1, Ixr+2), lim inf
r→∞

ω(Ixr+1, Ixr)), 1} (A4).

Clearly, from (A4), we have

η(θ(b∗)) ≤ βη(max{θ(b∗), θ(0)}) ·max{Z(0, b∗), 1}
⇒ η(θ(b∗)) ≤ βη(θ(b∗)),

which is a contradiction. Hence b∗ /∈ (0,∞). Next, we suppose that b∗ = ∞.
Consequently, there exists a sub-sequence {bri} of {br} such that lim

r→∞
bri = ∞

with bri > ω(Ixri , Ixri+1), for i = 1, 2, 3, · · · , since lim
r→∞

ω(Ixr, Ixr+1) = 0. Also,

bri > ω(Ixri , Ixri+1) implies bri > ω(Ixri+1, Ixri+2), since {ω(Ixr, Ixr+1)}∞r=0 is a
decreasing sequence. Thus, from (A3), we have

η(θ(ω(Ixri+2, Ixri+1))) ≤βη(max{θ(ω(Ixri+1, Ixri)), θ(ω(Ixri , Ixri+1))})·
max{Z(ω(Ixri+1, Ixri+2), ω(Ixri+1, Ixri)), 1}.

Consequently, we have

ω(Ixri+2, Ixri+1) ≤ ω(Ixri+1, Ixri) (A5).

Thus, from (A5) it is clear that lim
r→∞

ω(Ixri+2, Ixri+1) = ∞ otherwise if it has a

sub-sequence whose sub-sequential limit is l ∈ [0,∞), then it will contradicts the fact
that lim inf

r→∞
br =∞. Again, inequality (A5) can be written as

ω(Ixri+2, Ixri+1)− ω(Ixri+1, Ixri) ≤ 0.

Now, taking i → ∞ in the above inequality, we obtain ∞−∞ ≤ 0, a meaningless
expression. Thus lim inf

r→∞
br 6=∞. Consequently, we must have lim inf

r→∞
br = 0.
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Step 3. Next we show that lim sup
r→∞

br = 0. Let us assume on the contrary, i.e.,

lim sup
r→∞

br > 0. Let D denotes the collection of all sub-sequential limits whose value is

> 0 and supD = lim sup
r→∞

br. Now, for ε > 0, we can always construct a sub-sequence

of {br}, say {brm}, such that each term of {brm} belongs to ε-neighbourhood 0 since
lim inf
r→∞

br = 0, whereas each term of {brm+1} lies in the ε-neighbourhood of a point,

which belongs to D for all m ∈ N. Now putting x = xrm+1, u = xrm in (2.24), we
have

η(θ(ω(Ixrm+2, Ixrm+1)))

≤ βη(max{θ(ω(Ixrm+1, Ixrm)), θ(ω(Ixrm+1, Ixrm+2)), θ(ω(Ixrm , Ixrm+1)),

θ(
ω(Ixrm+1, Ixrm+1)

2
)}) ·max{Z(ω(Ixrm+1, Ixrm+2), ω(Ixrm+1, Ixrm)), 1}

+ φ(I,J)
ω [xrm+1, xrm ].

Since {ω(Ixr, Ixr+1)}∞r=0 is a decreasing sequence, θ is a non-decreasing function and
utilizing the property of φ, we obtain

η(θ(ω(Ixrm+2, Ixrm+1))) ≤βη(max{θ(ω(Ixrm+1, Ixrm)), θ(ω(Ixrm , Ixrm+1))})·
max{Z(ω(Ixrm+1, Ixrm+2), ω(Ixrm+1, Ixrm)), 1}.

Clearly, above inequality can be written as the following

η(θ(brm+1))

≤ βη(max{θ(brm), θ(ω(Ixrm , Ixrm+1))}) ·max{Z(ω(Ixrm+1, Ixrm+2), brm), 1} (A6).

Now as m → ∞ in (A6) observe that L.H.S of (A6) is always > 0, whereas R.H.S
tends to 0. Clearly, this is a contradiction to our assumption, i.e., lim sup

r→∞
br > 0.

Thus, we must have lim sup
r→∞

br = 0. Hence, we conclude that lim
r→∞

br = 0.

Step 4. In this step, we show that {Ixr} is a Cauchy sequence. To do this we use
method of contradiction. Suppose that {Ixr} is not a Cauchy sequence. Then, there
exists τ > 0 for which we can find two sub-sequence {rt} and {st} with st > rt > t
such that ω(Ixrt , Ixst) ≥ τ and ω(Ixrt , Ixst−1) < τ . Now we put x = xrt , u = xst in
(2.24), we obtain

η(θ(ω(Ixrt+2, Ixst+1))) ≤βη(max{θ(ω(Ixrt , Ixst)), θ(ω(Ixrt , Ixrt+1)), θ(ω(Ixst , Ixst+1)),

θ(
ω(Ixrt , Ixst+1)

2
)}) ·max{Z(ω(Ixrt , Ixrt+1), ω(Ixrt , Ixst)), 1}

+ φ(I,J)
ω [xrt , xst ].

(2.26)

Now if we put δ = 1 in Lemma 2.1, then we obtain

lim
t→∞

ω(Ixrt , Ixst) = τ ; lim
t→∞

ω(Ixrt , Ixst+1) = τ ; lim
t→∞

ω(Ixrt+1, Ixst+1) = τ. (2.27)

Also, note that lim
r→∞

ω(Ixr, Ixr) = 0, since

ω(Ixr, Ixr) ≤ ω(Ixr, Ixr+1) + ω(Ixr+1, Ixr).

Consequently, making t→∞ in (2.26), we have

η(θ(τ)) ≤ βη(θ(τ)),
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a contradiction as β ∈ [0, 1). Thus {Ixr} is a Cauchy sequence by Lemma 1.1(l4).
Case 2. In this case, we consider δ > 1. Here we take x = x0, u = x1 in (2.24), we
have

η(θ(δ%ωδ(Jx0, Jx1)))

≤ βη(max{θ(ωδ(Ix0, Ix1)), θ(ωδ(Ix0, Jx0)), θ(ωδ(Ix1, Jx1)), θ(
ωδ(Ix0, Jx1)

2δ
)})·

max{Z(ωδ(Ix0, Jx0), ωδ(Ix0, Ix1)), 1}+ φ(I,J)
ωδ

[x0, x1].

From the above inequality, we have

η(θ(δ%ωδ(Ix1, Ix2))) ≤ βη(max{θ(ωδ(Ix0, Ix1)), θ(ωδ(Ix1, Ix2))}). (2.28)

Clearly, if max{θ(ωδ(Ix0, Ix1)), θ(ωδ(Ix1, Ix2))} = θ(ωδ(Ix1, Ix2)), then we arrive at
a contradiction from (2.28). Thus, from (2.28), we obtain

ωδ(Ix1, Ix2) ≤ 1

δ%
ωδ(Ix0, Ix1) = σωδ(Ix0, Ix1), putting σ =

1

δ%
∈ [0, 1).

Continuing in this way, one can show that

ωδ(Ixn, Ixn+1)

≤ σωδ(Ixn−1, Ixn) ≤ σ2ωδ(Ixn−2, Ixn−1) ≤ · · · ≤ σnωδ(Ix0, Ix1) (A7).

Now, by using (A7) together with triangular inequality of Definition 1.7, one can easily
show that {Ixr}∞r=0 is a Cauchy sequence. Thus from any case we have {Ixr}∞r=0 is
a Cauchy sequence. Since (X, ρδ) is a complete b-metric space, consequently there
exists a x∗ ∈ X such that Ixr → x∗ as r →∞. Now we proceed exactly in a similar
way using triangular inequality for b-metric space, we can show that Ix∗ = Jx∗.
Hence, we have C(I, J) 6= ∅. �

Next, we state a theorem without proof where we drop the assumption of continuity.

Theorem 2.6. Suppose all the hypotheses of Theorem 2.5 are satisfied except
(D4), (D5), (D6). Suppose that the following two conditions are satisfied:

(D7) inf{ωδ(Ix, Ix∗) + ωδ(Ix, Jx) : x ∈ X} > 0 for every x∗ with Ix∗ 6= Jx∗;

(D8) (IX, ρδ) is a complete sub-space of (X, ρδ).

Then, I and J have a coincidence point, i.e., C(I, J) 6= ∅.

3. Caristi type (α-Ω-Z)-contraction

Motivated by the result of Caristi[19], in this section we introduce another new kind
of contraction, i.e., Caristi type (α-Ω-Z)-contraction in the setting of wt-distance by
using α-admissible mappings. Authors studied Caristi type fixed point theorem in
different context (see, for example, [4], [2], [29], [34], [39]).

Definition 3.1. Let J be a given mapping from X into X and α be a mapping
from X2 into R+. Also, suppose that Z is a continuous mapping from R+ ×R+ into
R+ such that Z(τ, s) ≤ 1 for all τ, s ∈ R+ with τ ≤ s and Ω be a mapping from
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X into R+. Then, J is said to be generalized Caristi type (α-Ω-Z)-contraction over
wt-distance ωδ if ωδ(x, Jx) > 0 implies

ωδ(Jx, Jy) ≤ (Ω(x)− Ω(Jx))E(x, y) max{Z(ωδ(x, Jx), ωδ(x, y)), 1},

for all x, y ∈ X with α(x, y) ≥ δ, where E(x, y) = max{ωδ(x, y), ωδ(x, Jx), ωδ(y, Jy)}.

Theorem 3.1. Let (X,ωδ) be a wt-distance over a complete b-metric space (X, ρδ).
Let J : X → X be a generalized Caristi type (α-Ω-Z)-contraction. Suppose that the
following conditions are satisfied:
(G1) J is α-admissible w.r.t δ;
(G2) there exists a x0 ∈ X such that α(x0, Jx0) ≥ δ and ωδ(J

rx0, J
rx0) = 0 for all

r ∈ {0} ∪ N;
(G3) either J is continuous or
(G4) inf{ωδ(x, y) + ωδ(x, Jx) : x ∈ X} > 0 for every y with y 6= Jy.
Then, J has a fixed point x∗ in X. Furthermore, if α(x∗, x∗) ≥ δ then ωδ(x

∗, x∗) = 0.

Proof. By condition (G2) there exists a point x0 ∈ X such that α(x0, Jx0) ≥ δ.
Also, by (G2), we can easily define a sequence {xr} such that xr+1 = Jxr = Jr+1x0

with ωδ(J
rx0, J

rx0) = 0 for all r ∈ {0} ∪ N. Suppose there exists a r∗ such that
xr∗ = xr∗+1, then xr∗ ∈ X is a fixed point of J , and we have nothing to show. Hence,
from now now, we assume that xr 6= xr+1 for all r ∈ {0}∪N. Since J is α-admissible
associated with δ, consequently we have α(xr, Jxr+1) ≥ δ for all r. Observe that

ωδ(xr, xr+1) = ωδ(xr, Jxr) = ωδ(J
rx0, J

r+1x0) > 0.

Otherwise if ωδ(xr, xr+1) = 0 then ωδ(J
rx0, J

rx0) = 0 implies xr = xr+1, a contra-
diction. Let us put γr = ωδ(xr−1, xr). Since J is a Caristi type (α-Ω-Z)-contraction,
thus we have

γr+1 = ωδ(xr, xr+1)

= ωδ(Jxr−1, Jxr)

≤ (Ω(xr−1)− Ω(Jxr−1))E(xr−1, xr) max{Z(ωδ(xr−1, xr), ωδ(xr−1, xr)), 1}
≤ (Ω(xr−1)− Ω(xr)) max{ωδ(xr−1, xr), ωδ(xr, xr+1)}.

(3.1)

Now, suppose that

max{ωδ(xr−1, xr), ωδ(xr, xr+1)} = ωδ(xr, xr+1)

for some r. Then, from (3.1), we have

ωδ(xr, xr+1) ≤ (Ω(xr−1)− Ω(xr))ωδ(xr, xr+1), (3.2)

⇒ 1 + Ω(xr) ≤ Ω(xr−1).

Clearly, {Ω(xr)}∞r=1 is a decreasing sequence of positive real numbers and hence
Ω(xr)→ a∗ as r →∞, where a∗ ∈ R+. Now, from (3.2), we have 1 ≤ Ω(xr−1)−Ω(xr)
and taking limit as r → ∞, we have 1 ≤ 0, a contradiction. Thus we must have
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max{ωδ(xr−1, xr), ωδ(xr, xr+1)} = ωδ(xr−1, xr) for all r. Therefore from (3.2), we
obtain

ωδ(xr, xr+1) ≤ (Ω(xr−1)− Ω(xr))ωδ(xr−1, xr)

⇒ ωδ(xr, xr+1)

ωδ(xr−1, xr)
≤ (Ω(xr−1)− Ω(xr))

⇒ 0 <
γr+1

γr
≤ (Ω(xr−1)− Ω(xr)).

(3.3)

Clearly, (3.3) implies that {Ω(xr)}∞r=1 is a non increasing sequence of positive real
numbers and consequently Ω(xr)→ a∗ as r →∞, where a∗ ∈ R+. Thus, we have

s∑
r=1

γr+1

γr
≤

s∑
r=1

[Ω(xr−1)− Ω(xr)] = Ω(x0)− Ω(xs)→ Ω(x0)− a∗ as s→∞.

Thus
∑∞
r=1

γr+1

γr
is a convergent series and hence by the property of a convergent

series we have

lim
r→∞

γr+1

γr
= 0. (3.4)

Consequently, for λ ∈ (0, 1), there exists a r0 ∈ N such that γr+1

γr
≤ λ for all r ≥ r0

implies γr+1 ≤ λγr. Further, we can choose λ in such a way such that λδ < 1.Thus
we have γr0+r ≤ λrγr0 , where r ∈ N. Consequently, using triangular inequality of
Definition 1.7, for r, s ∈ N with r < s one can can easily show that ωδ(xr0+r, xr0+s)→
0 as r → ∞. Hence, {xr} is a Cauchy sequence and by completeness there exists a
x∗ such that xr → x∗ as r →∞. Next, we wish to show that x∗ is a fixed point of J .
We prove this into two cases.
Case-1: Suppose that (G3) holds, i.e., J is a continuous mapping. Then, we have

x∗ = lim
r→∞

xr+1 = lim
r→∞

Jxr = J( lim
r→∞

xr) = Jx∗.

Case-2: Now we suppose that (G4) holds. Assume that x∗ 6= Jx∗. Again, xr → x∗ as
r →∞ and ωδ(xr, xs)→ 0 as r →∞, where s > r. Thus for each τ > 0, there exists
a Rτ ∈ N such that for r > Rτ implies ωδ(xRτ , xr) < τ . Also, by using property-2 of
Definition 1.7, we have

ωδ(xRτ , x
∗) ≤ lim

r→∞
δωδ(xRτ , xr) < τ as r →∞.

Hence, ωδ(xRτ , x
∗) < τ . Now, if we put τ = 1

h and Rτ = rh, then we get
lim
h→∞

ωδ(xrh , x
∗) = 0. Since, x∗ 6= Jx∗, i.e., we have

0 < inf{ωδ(x, x∗) + ωδ(x, Jx) : x ∈ X}
≤ inf{ωδ(xrh , x∗) + ωδ(xrh , Jxrh)}
→ 0 as h→∞,

a contradiction. Thus, we must have x∗ = Jx∗. Furthermore, if α(x∗, x∗) ≥ δ then
ωδ(x

∗, x∗) = 0 follows easily. �

Now, we give an example to support Caristi type (α-Ω-Z)-contraction.
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Example 3.1. Let X = {1, 2, 3, 4}. Define the function J : X → X by J(1) = 1,
J(2) = 3, J(3) = 1, J(4) = 4. Let ρδ : X ×X → R+ be a mapping given by,

ρδ(x, y) = |x− y|2.

Clearly the mapping ρδ is a b-metric space with δ = 2. Also let ωδ : X ×X → R+ be
a mapping defined in the following way,

ωδ(1, 1) = ωδ(2, 2) = ωδ(3, 3) = 0, ωδ(4, 4) = 1, ωδ(3, 2) = 5, ωδ(2, 3) = 4, ωδ(1, 3) = 8,

ωδ(3, 1) = 10, ωδ(1, 2) = 2, ωδ(2, 1) = 3, ωδ(4, x) = ωδ(x, 4) = 2 for all x ∈ {1, 2, 3}.
Then it can be easily observed that ωδ is not a b-metric space, and also it is not a
w-distance. To check this, we observe the following facts.
Since ωδ(1, 3) 6= ωδ(3, 1), so it not a b-metric and also note ωδ(1, 3) � ωδ(1, 2) +
ωδ(2, 3). Consequently it is not a w-distance. Here ωδ is a wt-distance with
δ = 2. Let Ω : X → R+ and α : X × X → R+ be two mappings, given by
Ω(1) = 0,Ω(2) = 5,Ω(3) = 2,Ω(4) = 1 and

α(x, y) =

{
3, if x, y ∈ {1, 2, 3},
0, otherwise.

Consider Z(τ, s) = τ
1+s . Note that ωδ(x, Jx) > 0 implies x = 2, 3, 4. Here ωδ(x, Jx) >

0 with α(x, y) ≥ δ implies (x, y) equals to (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3). Again,
it can be easily verified that at that points the mapping J satisfies Caristi type (α-
Ω-Z)-contraction. Take x0 = 3, then α(x0, Jx0) ≥ δ and ωδ(J

rx0, J
rx0) = 0, for

all r ∈ {0} ∪ N. Also, inf{ρδ(x, x∗) + ρδ(x, Jx) : x ∈ X} > 0 for each x∗ ∈ X
with x∗ 6= Jx∗ holds. Consequently, 1 is a fixed point of J . But here we observe two
things. First of all Banach contraction principle is not valid as ωδ(J2, J3) = ωδ(3, 1) =
10, ωδ(2, 3) = 4, and secondly the Caristi type (α-Ω-Z)-contraction becomes invalid
for all those points where α(x, u) � δ. For example take x = 4, u = 1.

4. Application

In this section, we apply our new findings to obtain a solution of a non-linear
integral equation of Fredholm type, given by

ϕ(τ) =

∫ d

c

B(τ, µ)E(τ, ϕ(µ))dµ, (4.1)

where B : [c, d]2 → R+ and E : [c, d]× R → R are two continuous functions. Denote
X = C[c, d], the collection of all continuous functions from [c, d] into R. Define
J : X → X as

(Jϕ)(τ) =

∫ d

c

B(τ, µ)E(τ, ϕ(µ))dµ, (4.2)

for all ϕ ∈ X and µ ∈ [c, d]. Let us consider a complete b-metric space ρδ on X with
a wt-distance ωδ as

ρδ(x, y) = sup
τ∈[c,d]

|x(τ)− y(τ)|λ
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and

ωδ(x, y) = sup
τ∈[c,d]

(|x(τ)|λ + |y(τ)|λ),

where λ ∈ N\{1} and δ = 2λ−1. Now we observe that ϕ is a solution of the integral
equation (4.1) if it is a fixed point of the operator J . Let us denote

MJ
ξ (x, y) = max{ξ(ωδ(x, y)), ξ(ωδ(x, Jx)), ξ(ωδ(y, Jy)), ξ(

ωδ(x, Jy)

2δ
)},

where ξ : R+ → R+ is a continuous and strictly non-decreasing function satisfying

(1) ξ(τ) = 0⇔ τ = 0; (2) ξ(τ) < τ, for τ > 0,

and we write “A” to denote all such functions.

Theorem 4.1. Let us choose a Fredholm integral equation given by (4.1). Assume
that the following assertions are satisfied:
(C1) B is a continuous and measurable function from [c, d]2 into R+ at τ ∈ [c, d] for
each µ ∈ [c, d] such that ∫ d

c

B(τ, µ)σdµ ≤ Ω,

where Ω ∈ (0,∞) and σ is a real number, given by σ = λ
λ−1 ;

(C2) E : [c, d] × R → R+ is non-decreasing function in its second variable as well as
continuous such that for all x, y ∈ X with x(µ) ≤ y(µ) for all µ ∈ [c, d], we get

[E(τ, x(µ)) + E(τ, y(µ))]λ ≤ ∆(τ, µ)ξ(|x(µ)|λ + |y(µ)|λ),

where ξ ∈ A, and ∆ : [c, d]2 → R+ is a continuous function such that

sup
τ∈[c,d]

(∫ d

c

∆(τ, µ)dµ
)
<

2
−3λ2++3λ−1

λ

Ωλ−1
;

(C3) inf{ωδ(x, y) + ωδ(x, Jx) : x ∈ X} > 0 for each y ∈ X with y 6= Jy;

(C4) there exists a x0 ∈ X such that x0(τ) ≤
∫ d
c
B(τ, µ)E(τ, x0(µ))dµ for τ ∈ [c, d].

Then (4.1) has a solution in X.

Proof. First, we define a mapping as follows

α(x, y) =

{
σ1, if x(τ) ≤ y(τ) for all τ ∈ [c, d],

σ2, otherwise,

where σ1 ∈ [2λ−1,∞) and σ2 ∈ [0, 2λ−1). It can be easily checked that J is an
α-admissible mapping associate with δ due to the fact that E is a non-decreasing
function in its second variable. Also, α enjoys transitivity property. Next, we see
that condition (C4) implies α(x, Jx0) ≥ σ1. Let α(x, y) ≥ σ1 ≥ δ, i.e., x(τ) ≤ y(τ)
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for all τ ∈ [c, d]. Next, we have

|(Jx)(τ)|λ + |(Jy)(τ)|λ

≤ (|(Jx)(τ)|+ |(Jy)(τ)|)λ [since λ ∈ N \ {1}]

=
(
|
∫ d

c

B(τ, µ)E(τ, x(µ))dµ|+ |
∫ d

c

B(τ, µ)E(τ, u(µ))dµ|
)λ

≤
(∫ d

c

|B(τ, µ)||E(τ, x(µ))|dµ+

∫ d

c

|B(τ, µ)||E(τ, y(µ))|dµ
)λ

≤
(∫ d

c

B(τ, µ)[|E(τ, x(µ))|+ |E(τ, y(µ))|]dµ
)λ

≤
[( ∫ d

c

B(τ, µ)σdµ
) 1
σ
(∫ d

c

[|E(τ, x(µ))|+ |E(τ, y(µ))|]λdµ
) 1
λ
]λ

≤ Ω
λ
σ

(∫ d

c

[|E(τ, x(µ))|+ |E(τ, y(µ))|]λdµ
)

≤ Ωλ−1
(∫ d

c

∆(τ, µ)ξ(|x(µ)|λ + |y(µ)|λ)dµ
)

≤ Ωλ−1
(∫ d

c

∆(τ, µ)ξ(ωδ(x, y))dµ
)

≤ Ωλ−1
(∫ d

c

∆(τ, µ)MJ
ξ (x, y)dµ

)
≤ Ωλ−1 · MJ

ξ (x, y) · sup
τ∈[c,d]

(∫ d

c

∆(τ, µ)dµ
)

≤ Ωλ−1 · MJ
ξ (x, y) · 2

−3λ2++3λ−1
λ

Ωλ−1

≤ 2
−3λ2++3λ−1

λ · MJ
ξ (x, y).

Thus, from the last inequality, we obtain

(
ξ(δ3ωδ(Jx, Jy))

)λ
≤
(
δ3ωδ(Jx, Jy)

)λ
=
(

22λ−3ωδ(Jx, Jy)
)

≤
(

22λ−3 · 2
−3λ2++3λ−1

λ · MJ
ξ (x, y)

)
≤ 2−1 ·

(
MJ

ξ (x, y)
)λ
· (1)

= 2−1 ·
(
MJ

ξ (x, y)
)λ
·max{a, 1}, where a ∈ (0, 1).
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Now, in Theorem 2.6, consider I as an “identity mapping”, η(t) = tλ, θ(t) = ξ(t),

β = 1
2 , Z(τ, s) = a, where a ∈ (0, 1), % = 3, φ

(I,J)
ωδ [x, y] = φ2(t1, t2, t3, t4, t5, t6)

(Example 2.10 ) with L = 0. Also, it can be easily checked that all the conditions of
Theorem 2.6 are satisfied, i.e., J has a fixed point, i.e., integral equation (4.1) has a
solution. �
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contractions in b-metric spaces, Fixed Point Theory Appl., 1(2012), 1-8.

[11] H. Aydi, M.F. Bota, E. Karapinar, S. Moradi, A common fixed point for weak φ-contractions

on b-metric spaces, Fixed Point Theory, 13(2012), 337-346.
[12] H. Aydi, A. Felhi, S. Sahmim, Related fixed point results for cyclic contractions on G-metric

spaces and application, Filomat, 31(2017), 853-869.

[13] H. Aydi, S. Hadj Amor, E. Karapinar, Berinde-type generalized contractions on partial metric
spaces, Abstr. Appl. Anal., Hindawi, (2013).

[14] H. Aydi, E. Karapinar, H. Yazidi, Modified F -contractions via α-admissible mappings and

application to integral equations, Filomat, 31(2017), 1141-1148.
[15] H. Aydi, E. Karapinar, D. Zhang, A note on generalized admissible-Meir-Keeler-contractions

in the context of generalized metric spaces, Results Math., 71(2017), 73-92.
[16] I. Beg, A.R. Butt, Fixed points for weakly compatible mappings satisfying an implicit relation

in partially ordered metric spaces, Carpathian J. Math., (2009), 1-12.

[17] V. Berinde, F. Vetro, Common fixed points of mappings satisfying implicit contractive condi-
tions, Fixed Point Theory Appl., (2012), p. 105.
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