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Abstract. In this paper we study the existence of multiple nontrivial positive weak solutions to the
following system of problems.
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where 0 < a < 1, 0<B<1,2—a—ﬁ<q<%__;) <p<T<p*,Withp*:NN—_pp.
We will guarantee the existence of a solution in the Nehari manifold. Further by using the Lusternik-
Schnirelman category we will prove the existence of at least cat(£2) + 1 number of solutions.
Key Words and Phrases: Nehari manifold, Lusternik-Schnirelman category, singularity, multi-
plicity.
2020 Mathematics Subject Classification: 35J35, 35J60.

1. INTRODUCTION

As mentioned in the abstract we will attempt the following problem.
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—Apu — Agu = Af(x)|ul""u+v h(x)|u)~v|** in Q,

—Apv — Ay = pg(z) o]0 + v h(z)|ul'~*v] =" in Q, (1.1)

u,v > 0 in £,
u=v =0 on 02
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where (C): 0 < a < 1, 0<B<1,2—a—6<q<%<p<r<p*,with
p* = NN—i), A, >0,0<a,p8<1.

The domain € is bounded subset of RV with a lipschitz continuous boundary 9.
The measurable functions f,g,h > 0, f+ g # 0 over a subset of (2 of positive measure
and are bounded almost everywhere in Q, i.e. f,g,h € L>°(Q2). The operator (—A;)
acting on a function say U is the s-Laplacian operator which is defined as

~AU(x) = =V - ([VU[*2VU)

. . N(p— "
for all s € [1,00). We will be assuming that p < N, 1 <r < ¢ < % <p<p

throughout the article. Off-late, a huge attention has been given to elliptic problems
involving two Laplacian operators viz.

(=Ap)u — (=A)u = Au""%u + [u[f" 2u in Q,
u=0in Q.

The problem draws its motivation from the fundamental reaction-diffusion equation

= V- [H(u)Vu] + c(z,u). (1.2)
where H(u) = |Vu|P~2 + |Vu|?~2. The problem is important owing to its manifold
applications in Physics and other applied sciences such as in biophysics to model the
cells, chemical reaction design, plasma physics, drug delivery mechanism to name a
few. The reaction term has a polynomial form with respect to u. In the recent years
the problem

=V - [H(uw)Vu] = c(z,u)
has been studied in [4, 6, 29, 32, 16, 17]. One may refer to Yin and Yang [35] who
studied the problem in (1.2) when p> < N, 1 < ¢ < p < r < p+. The authors
proved the existence of cat({2) number of positive solutions using simple variational
techniques. When p = ¢, r = 2 the problem (1.2) reduces to the well-known Brezis-
Nirenberg problem which has been further studied for the case of critical growth in
bounded and unbounded domains by many researchers (Refer [2, 3, 5, 26]) and the
references therein. A common issue which intrigued the researchers was to figure out
a way to overcome the lack of compactness in the continuous embedding W, ?(Q) <
LP"(£2). Two noteworthy contributions can be found in [10, 23].
Meanwhile, the elliptic systems have also gained much attention, especially for the
system

2
—(Ap)u = A|u|""2u + a—_&\u|a_2u|v|b in Q,
_(Ap)’U _ ,U,|’11|T721] + o b|u|a|v|b72u in Q, (13)

u=v=0Iin 90

where a+b = p*. Ding and Xiao [11] studied (1.3) with the p—superlinear perturbation
of 2 < p <r < p* an extension of which can be found in Yin [33]. Both the works
in [33] and [11] have obtained the existence of cat(€2) number of solutions using the
Lusternik-Scnirelman category. Similar results for elliptic equations driven by the
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p-Laplacian or the double phase operator can be found in [22, 24]. For the sublinear
perturbation, Hsu [15] obtained the existence of two positive solutions for the problem
(1.3). Few years back, Fan [14] studied the problem (1.3) for p =2 and 1 < r < p.
Using the Nehari manifold and the Lusternik-Schnirelman category the author has
proved the admittance of at least cat(2) + 1 positive solutions. Motivated from
the work of Li, Yang [18] we extend the results of the above problem with local
operators and added singular nonlinearities. As far as we know there has not been
any contribution in this direction whatsoever and is entirely novel. We now state the
main result of this work.

Theorem 1.1. Assume the condition (C) holds. Then there exists A* > 0 such that
if v € (0,A*), problem (1.1) admits at least cat(?) + 1 number of distinct solutions.
2. PRELIMINARIES

Let Q C RY, then the space (W ** (), II.Ilp) is defined by
WyP(Q) = {u:Due LP(Q),ulsq = 0}

um(éwwja

We will refer to |ul, as the LP-norm of v and is defined as ([, |u|pda:)%. We further

define the space Clearly, X = Wy (Q) x W, () is a Banach space. We define the
norm of any member of X as

1
1, 0)llp = (llullf + [[ol5) 7

The best Sobolev constant is defined as

equipped with the norm

B . [l
S = inf —_— (2.1)
wEWs P (0} ( [, |ulp" dz) 73
and further define
u,v)|?
. ) g )

in —.
(u,v)eX\{(0,0)} (fQ |u|P™ + |v|P"dx) ™

Also, we will denote M = ||h|co, M’ = max{||f|lco; |gllco }, Where || - ||oo denotes the
essential supremum norm (or more commonly the L*-norm) of a function. We now
define the associated energy functional to the problem (1.1) which is as follows.

Toplu) = Sl o)+l ol =1 [ (@ + gl )da

q
,L/ h(z)ur~ v =P dz.
2—a-pJg

A function (u,v) € X is a weak solution to the problem (1.1), if
(i) u,v >0, u=%1,v P ¢y € L1 (Q) and
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(ii) /(|VU|P*2VU~V¢1+ |Vo[P=2Vv - Vo) da
Q

+/(|Vu|q_2Vu-V¢1+|Vv|q_2Vv-V¢2)da:
Q

- [+ gty oo — vt | hapum Pnda

—Vm A h(z)u'~ v Ppodz = 0

for each ¢2,¢2 € X. Note that the nontrivial critical points of the functional I, g
are the positive weak solutions of the problem (1.1). Note that the functional I, g is
not a C'-functional and hence the classical variational methods are not applicable.
One can easily verify that the energy functional I, g is not bounded below in X.
However, we will show that I, g is bounded below on a Nehari manifold and we will
extract solutions by minimizing the functional on suitable subsets. We further define
the Nehari manifold as follows.

Nag = {(u,v) € Z\ (0,0),u,v > 0: (I}, s(u,v), (u,v) = 0)}.

For a detailed study on the method of Nehari manifolds we refer the readers to [30].
It is not difficult to see that a pair (u,v) € Ny g if and only if

o)l + w0l = [ M@ + g )i = v [ byl ~2dz o

Furthermore, it is customary to see, as for any problem which has an involvement of
a Nehari manifold, that

st = (3= 1) ol + (2= 1) o
+v <i - 2a16> /Qh(a;)ul—%l—ﬁdx.
> (2= 2) Qo + ol

1 1 g
+ v <7" — H—ﬁ) /Qh(x)ul Ul di)j’
> (2= Doy +o (2 - 525 [ i as
1 1 1 1
> (5= 7)ol - v (a5 - 7 ) Nw o).

Since 2 — a— 3 < p, therefore I, g is coercive and bounded below on N, 3. Therefore
the functional is coercive and is bounded below in N, g. In fact I, g(u,v) > 0 for
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sufficiently small v > 0 and for all (u,v) € N, g. We define for ¢ > 0 the fiber maps

tP td
Pap(t) = Lo (tu, to) =l (w, 0)l; + i, )G

_r ()\f( Ju" + pg(x)v”)de — A / ur P
r 1 Y e 2-a-4 '
Then
ap(®) =P [, 0) 5 + 77 (u, ) |g — 7 /Q(Af(ﬂf)ur + pg(z)v")dz
— z/tlfafﬁ/ h(z)ut =o' Pdzx
Q
and

w3 (t) = (p = D"2[|(u, v) |5 + (¢ = D772 (w, )11

(-1 / AF (@) + pg(e)”)de
—v(l—a-— —a—p 2 ul "% By
(1—a—p) /Q h(x) d

A simple observation shows that (u,v) € Ny,g if and only if @], 5(1) = 0. Furthermore,
in general we have that (u,v) € N, g if and only if @], 5(t) = 0. Therefore for
(u,v) € Ny, g we have

as(1) = (= Dl(w, )5 + (g = Dll(u,v) [ = (r = 1) /Q()\f(x)u’” + pg(z)v")dx
—v(l—a-— 2)ut " " Pdr
(1-a=) [ b d

=@ =), )5+ (g —7)l[(u,0)[I§ +v(r+a+5-2) /Q h(z)u' v da

=@+a+B—2)(u,)|)+(¢g+a+B—2)|(u,v)|
L@—a—f-r) / AF(@ + ug(a)o)d.

Therefore we split the Nehari manifold into three parts, namely

Nis = {(u,v) € Nap: @ 5(1) > 0},
Nos = {(w,v) € Nap: @ 5(1) <0},

)

N‘SB = {(u7 U) € Na,ﬁ : (I):)/c,ﬁ(l) = O}

3

which corresponds to the collection of local minima, maxima and points of inflection
respectively. We now prove a lemma which falls back on the proof due to Hsu [15]
(refer Theorem 2.2).
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Lemma 2.1. For (u,v) € N, g, there exists a positive constant Ay, that depends on
p,S, N, «, B8, |Q| such that
1—q \#retr—z 1—f \rretre
(2—a—ﬁ> +(2—a—5> '
Proof. We use

Los(uv) > (; - i) (1w 0)|) + v (i - Hl_ﬁ) /Qh(x)ulf%lfﬁdx.
(2.3)

I p(u,v) > —vAg

By the Hélder inequality, the Young’s inequality, and the Sobolev embedding theorem
to (2.3), we have

oa0) = (5= D) (o) v (5mamg - 1) [ Hou=vtas
> (2 ) (o)

p T
—vMQP
1 1 11—« 2—a—p 1- ﬁ 2—a—p
— = —ful: 2P ) d
X(Qaﬂ T)/Q(Qaﬂlup 2704—5|v|p .
11
> (- D) (o)
—vMjQ' T

1 l-a gwap, LB o oas
(rmams7) [ (e Savu e+ g5 Zgtvvi ™ ) o

11—« p+a$—ﬁ—2 1— ﬁ p+af-ﬁ—2
(=5 )

(2.4)
O

> —vAo(p, S, N, a, 3,]9|)

Lemma 2.2. There exists A* > 0 such that if

l—q \rretr—z 1- 3 \7ratre .
(75" ) ]6“”“7

v
then ./\/:SB = ¢.
Proof. Let us choose
T 2—a—f
» NG T o

> (r—p)Sy 5
—r 1_2-a-B8"
vM(r—24+a+ p)—7|Q] »”
The proof follows by contradiction. O

A= <(p—2+a+6)m>
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From the lemma (2.2), we have that if

1—a \#reis—z 1—p \rrats—s §
Vl(2—a—ﬂ> +(22a25) 16(0’“’

At -

then N5 =Ny s UN, 5.

We can define it = inf(u D)EN Iopandi™ = inf(u VENT, I, g since the functional
I is bounded below in N, g. Y

Remark 2.3. We will denote the norm convergence by —, the weak convergence by
— and A (or A*) as any small parameter we will encounter or any cumbersome
representation in short form.

Lemma 2.4. There exists A* > 0 such that if

l—a \rretrsz 1— 3 \rrate—e .
(%) () ]G(O’A)’

v

then

(1) it <o,
(2) i~ > Dyg for some Dy > 0.

Proof. (1) Let (u,v) € N3 C Nap. Then we have

0<(r=plwv)lp+ =gl < vir+a+f- Q)Ah(x)ul_avl_ﬁdm

(2.5)
Further,
o) = (5= D)Mol + (5 = 7) ol

e (7{ - 2&15) /Qh(x)ul—%l—ﬁdx.

<(3-Diworg+ (3 -1) v o

-l ol - ol ol

~D (o L iy S (2o ) o

< 0.

Therefore, it = inf(u,v)eN;B I, g(u,v) <O0.
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(2) Likewise, let us choose (u,v) € N 5.
We again appeal to the following inequality

P+a+B=2)[w)} < (P+a+B=2)[w)|f+(@+a+s-2)|,v)]
< (r+a+p-2) /Q()\f(x)uT + pug(z)v")dx

< (rt+a+B-2)CM (ATF + 7w )||(u, )5
(2.6)

by virtue of the fact that (u,v) € N, g. Therefore

nwﬂmuz[(p+“+ﬁ‘2) L r}“5
r+a+pB-2) CM'(A\=v + p7)

We will call this cumbersome looking constant as A. Therefore on proceeding further
we have

Lostu) = (5 = 1) ol + (2 = 2) ol

*”(i‘z;ﬁ)éh“”“%#w“
1 1
> (2= Do

—uMIQ ST

S

1 l-a gwap, LB o oagp
(rmams—7) L (e e g v ) i

1 1
> (57 ) o
l—q \rretrz 1—p8 etz
(2a5> +<2aﬂ> ]
< )l

- VAO(P737N70%B»|Q|)
a1 1 ot
~ ol [(3 - 3 o

p
1—a \#eirs 1-§ \rares
—vAo(p, s, N, e, 5, 9) {<2_a_5) + (H_ﬁ> H '
> A2—a=8 } _1 APtat+B-2
> b T

—uAapw,N¢»6JQ”{<23Q;fﬂ)p+wﬁ”-+(zi;ﬁi5>pm+W2}].
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Then for a sufficiently small A* > 0 and Dy > 0 such that

ptat+pB—2 ptat+B—2

v [(21;O‘ﬁ) T+ (271;5;3) ! } € (0,A*), we have i~ > Dg > 0. O

Remark 2.5. For a better understanding of the Nehari manifold and the fiber maps,
we define the function

Foo(t) = 77|, 0) |2 4+ 4977 |, 0) | — w20 / h(axyul =o'~ Pd.

Then
B (t) = £ [Foo(t) / (\f(@)u” + Bg(a)o)dal.

Observe that limy_, o Fy o (t) = 0 and lim; g+ Fy, ,(t) = —oco. Further,

Fuo) = (=)t (w0)lf + (g = r)t™" ) (w,0)]12
—v(2—-—a—-p-— r)tlfafﬁf’“/ h(z)ur~ v P dx
Q

= BT — ) e (o) |2 + (g — P (0, )

—v2—-—a—-p—r) / h(z)u'~ v =P dz].

Q
Let

buw(t) = (p = )PP (w, 0) |15 + (¢ = )t (u, 0)]|4
—v2—a—-p-r) / h(z)ur~ v P dz.
Q
We also have

lm t,,(t) =v(ir+a+p— 2)/ h(x)u' =o' Pz,
t—0+ Q
tlggo Yu(t) = =00

and
Pr, o (1) = (p—=7) (p+a+ BP0 | (u,v) |+ (g—7) (g +a+B8)t 7| (u, v)|¢ < 0.

u,v
Thus, for each (u,v) € X with [, h(z)u'~*v'~Pdz > 0, F, ,(t) attains its maximum
at some tmazr = tmaz (U, v). This unique ¢4, can be evaluated by solving for ¢ from
the equation
(r=p)t" | (u, 0) |5+ (r = @)t TP | (u, 0) |4 = V(?"+a+5—2)/ h(z)u' = 0! P da.

Q
A simple calculation yields

_r r—p 2
FU oltmaz) = tfnax 1 7tmaz ) b
oltmar) =t (14 Bt ) ol

_r r—q
+ e <1 + mwt%ax) [ (u, v) || > 0.
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Thus for t € (0,tmas) we have Fy, () >0 and Fy () < 0 for t € (tmax, 00).
We now have the following lemma as a consequence.

Lemma 2.6. For every (u,v) € X\ {(0,0)} there exists a unique 0 < t+ < tynas such
that (t*u,ttv) € N 5 and

Lo p(tTu,ttv) = t1r>1t(") I, p(tu, tv).

Furthermore, if
/ AMf(@)u" + pg(z)v")dx > 0
Q
then there exists unique 0 < t+ < tynay <t~ such that (ttu,tTv) € N g, (t7u,t7v) €
No?,ﬁ and

Los(tTu,tTv) = inf I, 5(tu,tv), Ins(t u,t"v) = sup Iy g(tu, tv).
0<t<tmax t>0

Proof. We only prove the case when [, (Af(z)u”+pug(x)v")dz > 0. Thus the equation
Ful®) = [ (Af@hu” + Bg(o)e")do
Q

has only two solutions namely, 0 < t* < t;q, < t~ such that I), 5(t*) > 0 and
I}, 5(t7) < 0. Since

B (t+) = (1) [Fu o (t7) - /Q (A (@)u” + pg(e)”)da] > 0
and
(1) = (1) [Fun(t) - / (Af(@)” + pg(a)o")da] <0,

therefore (t*u,ttv) € Nf 5 and (t7u,t"v) € N 5. Thus ®(t) decreases in (0,t7),
increases in (¢1,¢7) and decreases in (¢, 00). Hence the lemma. O

We now define the palais-Smale sequence ((PS)-sequence), (PS)-condition and (PS)-
value in X for I, g corresponding to the functional I, g which is as follows.

Definition 2.7. Suppose for ¢ € R, a sequence {(un,v,)} C X is a (PS).-sequence
for the functional I, g if Iy g(un,v,) — ¢ and I('Xﬁ(un,vn) — 0in X’ as n — oo,
then:
(1) ¢ € Ris a (PS) value in X for the functional I, g if there exists a (PS).-
sequence in X for I, g.
(2) The functional I, g satisfies the (PS).-condition in X for I, g if any (PS).-
sequence admits a strongly convergent subsequence in X.

Remark 2.8. We will sometimes denote lim,, o, z, = 0 as x,, = o(1) for a sequence
of real numbers (z,,).

Remark 2.9. X' refers to the dual space of X.
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Lemma 2.10. For any 0 < «, B < 1, the functional I, 5 satisfies the (PS).-condition
§7F TTarF=s _ PTatE—
force (—oo, E — VA [(;;%)H R (;ﬁlg)ﬁ 7 2}) where

1
=

A =2M'(A\77 + pu77)} 75 |Q

Proof. Suppose {(un,v,)} is a (PS).-sequence in X for the functional I, g with
1—q \rraips 1—f \vretiz
e A )

Iy (tun,v,) = c+o(1), ;ﬁ(un,un) = o(1). (2.7)

We now claim that {(u,,v,)} is bounded in X. We prove this claim by contradiction,
ie. say ||(un,vn)|lp — co. Let

(tin; ) = (||(u:2n)llp’ |(unljzn||p)> ’

then || (4, Un)|l, = 1 which implies that (t,,v;,,) is bounded in X. Therefore, due to
the reflexivity of the space X, we have upto a subsequence

r—p
ce | —oo, j{@ —vAy

Then

(Un,s Un) = (Un,vn)
as n — oo in X. This further implies that
Uy, — i, U, — 0 in WP(),
Uy = 0, Up = 0in L%(Q), 1 < s < p¥,
/ vh(z)i, =, P dr — / vh(z)u'~ v~ Pdz.
Q Q

The last convergence follows from the Egoroff’s theorem. From (2.7) we have

1 ~ 1 L.
e 01) = o) [ )+ i )40 )
1 - -
)l | M@+ pg(e)in)ds
e (0] ol O L
and
o(1) = It ) G, 50+ ot ) 2 G, 1)

o) / (M (@), + g )i de

s (v 27 /Q h(z)il—o 58 da.
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Now by the assumption we made, i.e. ||(un,v,)|p, = 00, we obtain
1, . 1 o/~ ~
o) = I, B)llp + 2l Ctms ) 5 1 B )l

L rr r)u’ )0 )dx
)l [ @), + ngl)it)a

gl o) 7 [ h@)a e
and
o1) = 11y D)+ I aty w17 i, )1

s ) 57 /Q @), + g () )da
Vlun o3 [ hia)ak el .
Q
On using the above to equalities we get

o) = (1= 22220 il + (1= 22220 a0l )1
(L ) el [ @i + gt

as n — 00. Therefore we have

p(p—2+a+j)
¢2—a-B-q)
Vp(p—2+a+5)
r(r—2+a+p)

(@, o)l = [ (e, ) 1571 (G, )1

[t ) 275 /Q h(x)ak=* 5k P da + o(1)

as n — oo, Thus we have ||(i,, 9, )||h — oo which is a contradiction to our assumption
that ||(@n, 0n)|lp = 1. Therefore, the sequence {(ty,vy)} is bounded in X.

We choose a subsequence to this bounded sequence, still denoted by {(un,v,)} such
that

(Un,vpn) = (u,v) in X,

Up —> U, U, — v in L¥(Q), 1 < s < p*,

/ (A (@)l + pg()ol )z — / (AF(@)u” + pg(a)o”)da,
Q Q

1// h(z)ul=vi=Pdr — 1// h(z)ur v P dx
Q Q

as n — 0o.
By the Brezis-Lieb [19] theorem we get

[(un = w00 = V)|IF = [[(un, va) 5 = [l (u, ) [[§ + o(1),
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/ (A () (ttn — )"+ g () (v — )" = / (A (@)l + pg(a)ol)de
Q

Q

N /Q()‘f(x)ur + pg(x)v")dz + o(1)
and

h(z)ul= vl =P dx

J
- Z//Q h(z)u' = Pdz + o(1).

Thus for any (¢a, ¢2) € X the following holds.

lim (I}, 5, (¢2, $2)) = (I}, s(u, ), (41, ¢2)) = 0.

n—oo

In other words (u,v) is a critical point of I, 3. All we now need to show is that
(Un,vn) = (u,v) in X. We use (2.7), the Brezis-Lieb lemma [19] and some basic
functional analysis to obtain

1 1
¢~ lap +o(1) = Zll(un =, v = v)[[; 4 Zll(un = w,vn =)z

=1 [0 @an — 0" + ug(a)(wn — vz (28)
Q
and

0= (I}, s(tn,vn), (Un — u, vy — v))
= <Igz,ﬁ(un7vn) - I;,ﬁ(uvv)v (un — U, Vp — U)>

= [I(un = w,vn = 0)[I5 + [ (un = u,v0 = 0)[[g

— [ @) = )+ ngl) o)) + o). (2:9)
Q
Now without loss of generality, we let
[(n = v, v = 0)[If = ¢+ o(1), [[(un = u,vn = v)[[§ =d"+o(1)

and therefore

| @) =)+ pgta) w0, = 0y = ¢+ (1),
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Now if ¢/ = 0 the proof is immediate. On the contrary, we assume that ¢ > 0.

NF L (era\F
2 - 2

= lim | (Af(z)(un — )" + pg(x)(vn —v)")dx

n—oo Q
< M lim [ (Nup —u|” + plon —o|") da
n—oo
. 1 1 -
< M HILH;O |Q|7=a=7 TS%EH(un — U, Vyp — U)H;

= M|QIF RS, (AT + p) .
Thus,
. si s
T 2M/ (AT 4 )Y e Q) A
Therefore from (2.8), (2.9) and (u,v) € N, 5J{(0,0)} we have
d doJ+d
Jr [

d = I,gu,v)+ —
a,8(u,v) s .
;_5" 1—a m 1,ﬂ ﬁ
Z e VAO - - + | —
A 2—a—-p 2—a—p

which contradicts

T—p

’ a,3

< —"—=——-vA
A 0

1—a e 1-8 PTatA—3
(25) =)

Thus ¢/ = 0 and hence (uy,v,) = (u,v) in X. O
We will now see the proof of the existence of a local minimizer for I, 5 in N 5

Lemma 2.11. There exists A* > 0 such that

l—q \rretrsz 1- 3 \rratr—e .
[(2——6) (%) ]“O’“’

I, has a minimizer (u,,v,) € N:B and it satisfies

+

(1) In.g(uy,v,) =147 is a weak solution to the problem (1.1)

(1) In p(uy,v,) = 0 and || (uy,vu)|lp = 0, ||(uw,vu)]lq = 0 as v — 0.

Proof. For the proof of (i) we follow Hsu [15], Theorem 4.2.

Since it = inf(y v)enr, 5 {1a,5(u, v)}, there exists a sequence (uy,v,) € No, g such that
I, g(tun,v,) — it and I}, 5(un,v,) — 0 in X* as n — oo. Since the functional 1, s is
coercive and therefore (u,,v,) is bounded in X. Thus there exists a subsequence of
(tUn,vy), still denoted as (uy,v,), such that ((un,v,)) = (u,v) € X. So we have

Up — U, Up — 0,
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Uy — U, Uy — 0 a.e.in €,

Up — U, U, = vin L¥(Q) for 1 < 5 < p*

as n — oo. This implies

2 2
m/ﬂh(x)ui_avi_ﬂdfv—) m/gh(;ﬁ)ul—avl—gdm
Clearly (u,v) is a weak solution of (1.1). Also since (u,,v,) € N, g we have

gt on) = o2 OB (L DY

S wr—2+a+pB)\p r
r(2—a—0) 1 1 .
w(r—2+a+p) (C]r> G v )1
_ r(2—a—0)
(r—2+a+p

where LY, 5(un,vn) = [o h(x)upy v, Pdz. Also

r(2—a—p) 1 1 »
et (- Dol

)Ia,ﬁ(un; Un)

LZﬁ(”nvvn) Z 5 r

e (G- ) Nl - ot

wir—24+a+p)\qg r (r=2+a+p)
2 o —
B C ) PSS
2v(r —24+a+p5)
where we have used the lower-semicontinuity of || - [|,, || - || and i* < 0. Therefore

(u,v) # (0,0). Thus we have a nontrivial weak solution.
Claim: We now claim that (u,,v,) = (u,v) in X and I, g(u,v) =it.
For any (ug,vo) € Ny, g we have

2—a-— 1 1
Lg, p(uo, vo) = QVZ“T(_ 2‘1 O/i)m (p - T) (o, vo) |17
r(2—a—0) 1 1 .
2(r —2+a+f) (q B r> 1o, vo) g
_r2-a-p)
w(ir—24+a+p

)Ia,/a(uo,vo)-

Thus
it < I,p(u,v)
. 1 1 1 1
< | (5= D) Nl (5= ) ol
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Thus I, g(u,v) = ¢*. This also implies that (uy,v,) = (u,v) in X.
For the proof of (i7) let (u,,v,) € N(:CB. From Lemmas 2.1, 2.2 we have that

l—q \rretrs 1— g \7raiss
(2— —6) +(2—a—ﬁ>

Therefore it is obvious that as v — 0 we have I, g(u,,v,) — 0.
Further we have

0> Ia,ﬂ(umvy) > —vAy

| E—

0 = lL}rrloIa,B(uuvvu)

. 1 1 1 1
= (2= Dotz + (3= 1) oy

27(%5/ 16“1%4.

As seen earlier that the functional Ia g is coercive over N + 5 and therefore (u,,v,) is

bounded. Also using the fact hm fQ ul=vl- 5 dx = 0 we clearly have
lim|[(u, 00) [l = 0= lim [ (w, 0.)I7.
O
Remark 2.12. For € > 0 we define
() R G
= > N_p VelT) =
(e + |2|757) "7 |ue (@)

where n(z) € C§°(Q) is a radially symmetric function defined by
1 2| < po
n(z) =40 |z > 2p0
0<n(x) <1 otherwise.

Further let |[Vn| < C, where py is such that B(0,2p0) C Q. Then [, |uc|P dz = 1 and
we have the following estimates

(p—=1)—t(N—p) _

G T 1 00) > N

/ |Ue‘tdm =4 Cq|lnel + 0O(1) t = N]gp:pl)
N(p—1)

o) < (@) < 1 < M

Therefore in particular we have

/ VuPde = Kae™ + O(1)
Q

(/ |u6|p*dx>p —K3€ B +O()
Q

and
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where K7, Ko, K3 > 0 independent of €. Further there exists ¢y such that S, the best
sobolev constant, is close to % for every 0 < € < ¢p. In other words we will take
S =%

Ks*

We now prove the following lemma which will be used in guaranteeing the multiplicity
of solutions.

Lemma 2.13. There exists €1, A*, o(€) > 0 such that for e € (0,€1),

l—q \rrats—z 1— 8 \rratr—e .
” KH_B) +(22azs) 1 =04

and o € (0,0(¢)), we have
sup Lo, g (te Vvve, te /vve) < cap — o,
t>0

2—a—p 2—a—p

__p _ p

Proof. Define

at) = I.gtYvve, tvoe)
tP 4 a
= —v | |VoPde+ —(2vP) [ |Vu|%dx
P Ja q Q

pmﬁ+22a5

1 iy 21/ 2 a—
—7/9(/\f(x)+ug(x))(tvew) - 2T /h Baz.

r

Clearly a(0) = 0, lim;_, a(t) = —oo. Therefore there exists ¢t > 0 such that
I g(teW/vve, te Yvve) = sup Ly g (8 voe, £/ v0e).
>0
This yields that
(2u)tP1 / Ve [Pda + 269 w7 / |Vve|9de = 71 / (Af(z)+ ug(a:))(vey%)’"dx
Q Q Q

+21/p7a1:8+2t27a’ﬂ/ h(z)v?~* Pdz.
Q

(2.10)
From (2.10) we have the following
et | vupds <1770 [ (@) + pgla)) (ot da
4o / h(z)v?~* Pdx (2.11)
Q

and

(2v)tr= / Vo |Pdz + 208 / Vo.td > 7 / (@) + pg(2) (v d ) de. (2.12)
Q Q Q
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From the estimates for u. obtained in the Remark 2.12, i.e.

)

/ Vo Pde =S+ O 7
Q

(2-a— ﬂ)(N P)

/|v€| dz =0 /|v 2=o=Bdy — O(c

From (2.10) it very easily follows now that

—a—B+2 (2—=a—B)(N—p)
P

PretB=2(§ 4 O(e 7)) < CM'ErTotB=2 L appy* Oe  »
where we have use the estimate
/Q()\f(a:) + pg(x))vidz < CM'|lv|. = CM'.

(2.13)

Thus, there exists 77 > 0, ¢; > 0 such that for any ¢ € (0,¢;), we have t. > T.

Likewise we have

QP U(S +O(e 7)) +20vF > C2-oFa,

Then, there exists T5 > 0, €2 > 0 such that for any € € (0,¢2), we have t. < Tb.

Let € = min{ey, eo}. Then for any e € (0,€) we have T} < t. < Ty. Consider
t

be) == / VuelPdz — / (A (@) + ug(a) (o ) de

Then a simple calcultaion gives

supb(t) = L Pgety 4 O(e¥).
t>0 rp
Therefore, for any € € (0, €), we have
td
a(te) = bt + 5(1/5)/ |Vue|ldx
Q

p—a—B+2

v 7 tQOzB
e h 2—a—=By
2-a-5 /Q (e

_ td
< Sr 2 —i—O(e%)-i— (2V%>/ |Vue|9da
rp
p—a— [:H—2 9
AL e ﬁ/h 2Py
2—a-p
- s - 2 Tq
< L pS'r~w+O(e » )+—2 2w7) /|Vve|"dac
rp
p—a—B+2 ﬂ+2 2 a—p
v
h 2 a— ﬁd
2—a— / v
q(N p) (2—a=B)(N—-p)
< P65 L 07 ") + Ofe )—O0(e

rp

(2.14)
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From the assumptions in the problem in (1.1) we also have
2-a-p)N-p _al¥N=-p) N-p
p? p? p
Therefore, one can choose €; > 0, sufficiently small, A*, o(e) > 0 such that for

PR PR R
€ € (0,e1), v [( Low )HMB# + ( 15 )PMMQ} € (0,A*) and o € (0,0(¢)), we

0<

2—a—p 2—a—p
have
N—p a(N—p) (2—a—B)(N—p)
O(e® )+0(e »» )—0(e »?
1-a PFatp=3 1-3 PFatp—
—A _— —_— — 0. O
< ov (2—a—5> +<2—a—ﬁ) ] 7

3. FEW USEFUL LEMMAS

This section is devoted to recall and prove some important lemmas which are
crucial to the proof of the main theorem. We first consider a submanifold of N B
defined as follows.

Ny glea,p) = {(u,v) € N 5 Lo p(u,v) < capl

«
The main result which we will prove in this section is that the problem in (1.1) admits
at least cat({2) number of solutions in this set.

Definition 3.1. (a) For a topological space X, we say that a non-empty, closed
subspace Y C X is contractible to a point if and only if there exists a continuous

mapping
€:0,1] xY - X

such that for some xy € X. there hold
£0,2) =z, forallz €Y

and
&(l,z) =g, forallz €Y.

(b) If Y is closed subset of a topological space X, catx(Y) denotes Lusternik-
Schnirelman category of Y, i.e., the least number of closed and contractible sets
in X which cover Y.

We now state an auxilliary lemma which can be found in the form of Theorem 1 in
[1].

Lemma 3.2. Suppose that X is a CY' complete Riemanian manifold and I €
CY(X,R). Assume that for co € R and k € N:

(i) I satisfies the (PS). condition for ¢ < cg
(#1)  cat(u € X : I(u) < cg) > k. (3.1)
Then I has at least k critical points in v € X : I(u) < ¢g.

The following lemma is a standard one and can be proved if one works in the lines of
the argument in [31].
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Lemma 3.3. Let {(un,v,)} C X be a nonnegative sequence of functions with
Jo\f(@)uy, 4 pg(x)vy,)de =1 and ||(un, va)|[5 — Sa,s. Then there exists a sequence
{(Yn,0,)} C RN x RY such that

1 (@), w2(2)) = 057 (00 + Yn), 00 (On + y0))

contains a convergent subsequence denoted again by {w,} such that
wp — w in WHP(RN x whP(RY),
1

where w = (w',w?) > 0 in RY. Moreover, we have 0, — 0 and y, — y € Q as
n — 0o.

wn () = (w

Upto translations, we assume that 0 € Q. Moreover, we schoose § > 0 small enough
such that Bs = {z € RY : dist(x, ) < &} and the sets
Qf = {z e RY 1 dist(z,0Q) < 6}, Q5 = {z € RY : dist(z,09) > &}

are both homotopically equivalent to 2. By using the idea of [14] or [20] we define a
continuous mapping 7 : N(;B — R by setting

Jox(Afu” + pgv")dz
fQ Afu” + pgu)dz

Remark 3.4. As told before that the functional I, 5 is not a C*-functional, we might
fail to use some very useful techniques in variational techniques. For this we will define
a cut-off functional using a subsolution (refer [13] for a definition) to the system in
(1.1). Define

7(u,v) =

f(l',t,s) ift>u,s>v
F(x,t,5) = flz,t,v) ift>us<wv
f($7uas) lft§u7s>g
f(JHQ,Q) lftSu7SSy
where
1_ —
f@”as)::Af@ﬂf;1+u9@0§ul+V2——a-—ﬁhﬁwt*ag—ﬂ+véff&%?3h@ﬁﬂfasfﬁ

is a subsolution to (1.1) (the existence of such a solution can be guaranteed by the
previous sections by taking A = p = 0 in (1.1)). Let F(x,t,s) fo Jy flx,t,s)dsdt
and (u,v). Define a function I : X x X — R as follows.

I 1 b 1uvq— F(z,u,v)dz
Hm@z;Mwwm+qm7ﬂu AF(7,M- (3.2)

The functional is C! (the proof follows the arguments of the Lemma 6.4 in the Ap-
pendix of [28]) and weakly lower semicontinuous. The way the functional has been
defined, it is not difficult to see that the critical points of the fnctional corresponding
to the problem (1.1) and that of the cut-off functional are the same.

Remark 3.5. We will continue to name the cut-off functional T as I, g.

We then have the following result.
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Lemma 3.6. There exists A* such that if

1—q \Fafsz 1-8 Ttz .
(25)" ) ]G(O’A)

and (u,v) € N 5(ca,p), then T(u,v) € Of.

14

Proof. Let us assume that there exists sequences v, — 0 and {(uy,v,)} such that
7(un, vn) € . By using the tactics in one of the previous lemmas (2.10) we conclude
the boundedness of the sequence {(un,v,)} in X. Then we have

l/n/ h(z)ul=vlPdr — 0 as n — oco.
Q

Therefore we get

11 11 o

op(intn) = (5= 1) Mol + (5= 3 ) N vl + 000) < c22, 4 001
and

1 1 Y S

(=3 ) Namonlly < ety ott) = 557 4o
This implies that

rp ST
famwnlly < 5T o) (33)

Since {(un,vn)} C N, g(chs) C N, 5, we have

s 0a) 2 < /Q (\f(@)ul, + ug(@)op)da + o(1) < M'|(u,0,) 50 +0(1).  (3.4)

By (3.3) and (3.4) we get
[[(uns o)l
{Jo(ub” + b )da} s
< C||(Umvn)||5
< Sap+o(1) (3.5)

Sa.8

which implies that ||(wn,v,)|h — C’Sﬁ and [,(\f(z)u], + pg(x)v],)dz — C'SE.
Define

(€nm) = ( un o )
) =\ O Fur, + pgon)da) 7" (o O\, + pgog)da) 77 )
Clearly,

[0 + iz =1
Q

and

r—1

P
/(|an|p + |nalPdz) — S5 3 7, asn — oo
o



148 DEBAJYOTI CHOUDHURI, MOUNA KRATOU AND KAMEL SAOUDI

From the Lemma 3.3, there exists a sequence {(yy, 0,)} C N x Rt such that 6,, — 0,

_ N
Yn — y € Q and w(z) = (w,ll(:zr),w%(z)) =0 (§n(0nT + Yn), M (On® + yn)) — (W1, w2)
with wi,ws > 01in RY as n — oc.

Let x € C§°(RY) such that x(z) = z in Q. Then we guarantee that

Jo x@)(Afuy, + pgvy,)da
Jo\fup, + pguy)dx

t/m95x(9nm-+th(A5£4-un2)dw
Q

T(Up, vp) =

ZKLM%%+%MMWWVV+M%®WUW- (3.6)

By the lebesgue dominated convergence theorem we have
[ X Ouitn 3 )N+ ()N 5y € 8
Q

as m — oo. this implies that 7(z,,y,) — y € Q as n — oo, which leads to a
contradiction to our assumption. O

The analysis done till now tells us that inf s, uq,g > 0 and inf 7, ve,g > 0, thanks to
the Lemma 2.11 and the definition of Q. Note that M; = {x € Q : dist(z,Q; ) < 5}
which is a compact set. Thus by the Lemma 2.13 and using the idea of Lemma 3.4
of [14], Lemma 3.3 of [9], we can obtain a = > 0 such that

(£ Yvve(w —y), 1/vve(x — y)) € Nas(cap — 0)
uniformly in y € ;. Further, by the lemma 3.6, 7(£~ Y/vvc(z — y), tYvvc(z —y)) €
Q5 . Thus we can define a map v : Q5 — Ny g(ca,3 —0)” by

YY) = {(f‘ Yvve(x —y), t/vo(x —y)), if x € Bs(y)

0, otherwise.

We will denote by 7, s the restriction of 7 over Na_,B (ca,3 — o). Observe that v, is a
radial function, therefore for each y € Q5 , we have

Joz M\ (@) vz —y)" + pg(e) (™ Yvo(z —y))")dx
Jol )\f 2) (I~ /vve(x — )" + pg(a) (= Yvve(z —y))r)dz
Joly+2) () v (\f + pg)vidz

Jo (= Yrue (Af + pg)ordz

(7o VW) i

= ¥
From [14], we define the map Hq g : [0,1] X N 5(ca,p — o) = RY by
Hyp(t, 2) =t710,8(2) + (1 — t)Ta,5(2).

We then have the following lemma.
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Lemma 3.7. To each e € (0,¢€), there exists A* > 0 such that if

1—a TFasF—2 1-8 PFatA—2 .
(2—a—5> +<2——5> ]“O’“’

we have Ha g([0,1] X N 5(ca,p —0)) C Q5.

v

Proof. We prove by contradiction. Let there exists sequences t,, € [0, 1], v, — 0 and
Zn = (Up,vp,) € J\/'(;B(ca,/g — o) such that Hy g(tn, 2n) & Q; for all n. We can assume
that ¢, — ¢ € [0,1]. Thus by Lemma 2.11 (i¢) and similar argument in the proof of
3.6, we have

Ha”@(tn, Zn) — Y < ﬁ as n — oo

which leads to a contradiction. O

We now prove the main result of this article which roughly states that under certain
assumptions on v the problem in (1.1) admits at least cat(€2) + 1 number of solutions.

Lemma 3.8. If (u,v) is a critical point of In g on N 4, then it is also a critical
point of In g in X.

Proof. We follow the proof of Lemma 4.1 in [14] or of Lemma 4.1 in [35]. Let (u,v)
be a crtical point of I, g in N 5. Then

<I(/1,[3(u7 U)a (u7 ’U)> =0.
Define

wa.ﬂ(ua 'U) = <I(Ix,ﬁ(uvv)7 (u,v))

(s )5+ 1l (s )1 = /Q(Af(ff)if + pg(z)o")de

—V/ h(z)u'~ v~ Pdz.
Q

Since we are now looking for minimizing I, s over the entire space X, to which the
Lagrange multiplier method comes to our rescue in finding a 6(# 0) € R such that

I, 5(u,v) = 64 (u,v) (3.7)

where

7/104,5(“71)) - <é,ﬁ(uav)a(uvv)>'

Since, (u,v) € J\/’Ojﬁ7 we have from a simple computation that w’a,ﬂ(u7 v) < 0. Conse-
quently from (3.7) we have I}, 5(u,v) = 0. O

Lemma 3.9. There exists A* > 0 such that any sequence {(un,vyn)} C N(;B with
IN;ﬁ(un,vn) — ¢ € (—00,¢q,8) and Ij’\/,ﬁ (tn,vn) — 0 contains a convergent subse-

P P
quence for all 0 < v {( 1o )MQM_Q + (71_*8 )p+a+ﬁ_2] < A%

2—a—0 2—a—f3
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Proof. From the Lagrange’s multiplier method, there exists a sequence (a,) C R such
that

”I&,B(unvvn) - and’;,ﬁ(unvvn)”X’ —0
as n — oo. Here

wa,ﬁ(uanH) = <;,ﬁ(umvn)a(unvvn)>

(s o)1+l (00 ) 1§ = /Q(Af(ff)uz + ng(x)vy,)dz

—v / h(z)ul= vl =Pdz.
Q

Then
I&,B(um Up) = an"//a,ﬁ(una vp) + o(1).
Since (un,vy) € N, 5 C No g, by a simple computation we have

(Va8 (tn, Un), (Un, vy)) < 0.

Now suppose (¢, 5(tn,vn), (tn,vn)) — 0, then we have

(= D, v )+ = @l ) =1+ @+ 3) [ Bla)ul 0 do +o(1)

Q
l—a \rretrsz
<v(1 M| (2
<v(l+a+p) [(2—0{—,@)
R ptra+B—2
1-8 pFatp—2 r 20 p
_— @ 1
+(52225) ] w0 |27 + o(1)

and

(P +a+ 8 =2)[[(un, o)y + (g + a+ 5 =2)|(un, va) I
=(r+a+p-2) /Q(Af(fﬂ)u; + Bg(@)vp)dz + o(1) < M'|[(un, va)lIf + o(1)

where we have used the Holder inequality and the Sobolev embedding. Then we have

1—a PFatA—2 1-83 e
(2a6> +<2aﬂ)

1
[ (un, v)llp = €377 + o(1).
Now if we choose A* small enough, this cannot hold. Therefore let us assume that
(Ya,8(Un, Un), (Un,vy)) = 1 < 0, as n — oo. since (Lo g(Un, Vp), (Un,vpn)) = 0, we
conlcude that a, — 0 and therefore I (’1 6(u"’ vp) — 0. This gives us that

1
P

+o(1)

=

|| (um Un) Hp < (vC1)

and

Iy g(tn,vp) = ¢ < cq,p and I&,ﬂ(umvn) — 0.

Therefore by the Lemma 2.10 the proof is complete. O
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Lemma 3.10. Suppose that (C) holds and

l—q \rreiis 1— 3 \7ratr—e .
v [(H—ﬁ) + (z_a_@> ] € (0,A%).

Then cat(Ny ,(cau — o)) = cat(Q2).

Proof. Let cat(N,, 4(ca,p — o)) = n. Then, by the definition 3.1 of the category of a

«
set in the sense of Lusternik-Schnirelman, we suppose that

Noslcap—0)=A1UAU..UA,

(e

where A;, j = 1,2, ...,n are closed and contractible in Na_ﬁ(caﬁ —0), i.e., there exists
hj € C([0,1] x Aj, N, 5(ca,p — 0)) such that

hj(0,2) =z, hj(1,2) = O, for all z € A;,

where © € A; is fixed. Consider B; = v~ 1(4;), j = 1,2,...,n. Then the sets B; are
closed

QO =B UB,U...UB,.
We now define the deformation g; : [0,1] x B; — QF by setting
95(t,y) = Ha,p(t, hj(t,7(y)))-

ptat+B—2 ptatp—2

for v {(Qi_f ) T4 (i) ’ ] € (0,A*). Notice that

2—a—p

95(0,y) = Ha 5(0,7;(0,7(y))) = (Ta,s o) (y) =y, for all y € B;
and
9;(1,y) = Ha3(0,h;(1,7(y))) = 7a,8(0) € QF, for all y € B;.

Thus the sets B;, j = 1,2,...,n are contractible in Q;r.
Therefore cat(N, 5 — o) > cabq+ (Q5) = cat(Q). O

Proof of Theorem 1.1. By Lemmas 2.10 and 3.9, the functional I, g satisfies the (PS).
condition for ¢ € (—00, cq,5). Then, by Lemma 3.2 and 3.10, we have I, g has at least
cat(€2) number of critical points in NV, 5(ca,s — o). By Lemma 3.8, we have I, 5 has
at least cat(2) number of critical points in N;B. Further, since N(jﬁ ﬁNo:B = ¢, the
proof is now complete.

Acknowledgement. The first author thanks the SERB-MATRICS, India, for the
financial assistanceship received to carry out this research work through the grant
number MTR/2019/000525. All the authors thank the anonymous referees for their

constructive comments and suggestions.



[1]
2]
3]
(4]
[5]
[6]

[7]

(8]
[9]
(10]
(11]
(12]

(13]
(14]

[15]
[16]
(17]
(18]
(19]
20]
21]
[22]
(23]
(24]

(25]

DEBAJYOTI CHOUDHURI, MOUNA KRATOU AND KAMEL SAOUDI

REFERENCES

C.O. Alves, D.C. de Morais Filno, M.A. Souto, On systems of elliptic equations involving
subcritical or critical Sobolev exponents, Nonlinear Anal., 42(2000), 771-787.

C.O. Alves, J.M. do O, O.H. Miyagaki, On perturbations of a class of periodic m-laplacian
equations with critical growth, Nonlinear Anal., 45(2001), 849-863.

A. Ambrosetti, H. Brezis, G. Cerami, Combined effects of concave and convexr nonlinearities in
some elliptic problems, J. Funct. Anal., 122(1994), no. 3, 519-543.

J.G. Azvrero, I.P. Aloson, Multiplicity of solutions for elliptic problems with critical exponent
or with a nonsymmetric term, Trans. Amer. Math. Soc., 323(1992), 977-895.

V. Benci, G. Cerami, The effects of the domain topology on the number of positive solutions of
nonlinear elliptic problems, Arch. Ration. Mech. Anal., 114(1991), 79-93.

V. Benci, A.M. Micheletti, D. Visetti, An eigenvalue problem for a quasilinear elliptic field
equation, J. Differential Equations, 184(2002), no. 2, 299-320.

S. Benmouloud, R. Echarghaoni, S.M. Sbai, Multiplicity of positive solutions for a critical quasi-
linear elliptic system with concave and conver noninearities, J. Math. Anal. Appl., 396(2012),
375-385.

H. Brézis, L. Nirenberg, Positive solutions of monlinear elliptic equations involving critical
Sobolev exponent, Comm. Pure Appl. Math., 36(1983), 437-477.

C.Y. Chen, T.F. Wu, The Nehari manifold for indefinite semilinear elliptic systems involving
critical exponent, Appl. Math. Comput., 218(2012), 10817-10828.

D. Choudhuri, A. Soni, Ezistence of multiple solutions to a partial differential equation involving
the fractional p-Laplacian, J. Anal., 23(2015), 33-46.

L. Ding, S. Xiao, Multiple positive solutions for a critical quasilinear elliptic systems, Nonlinear
Anal., 72(2010), 2592-2607.

P. Drabek, Y. Huang, Multiplicity of positive solutions for some quaslinear elliptic equation in
RN with critical Sobolev exponent, J. Differential Equations, 110(1997), 106-132.

L.C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, AMS, 19(1997).
H. Fan, Multiple positive solutions for a critical elliptic system with concave and conver non-
linearities, Non Linear Anal. Real World Appl., 18(2014), 14-22.

T.S. Hsu, Multiple positive solutions for a critical quasilinear elliptic system with concave convex
nonlinearities, Nonlinear Anal., 71(2009), 2688-2698.

G. Li, The existence of nontrivial solution to the p — q Laplacian problem with nonlinearity
asymptotic to uP~1 at infinity in RN, Nonlinear Anal., 68(2008), 1100-1119.

G. Li, X. Liang, The existence of nontrivial solutions to nonlinear elliptic equation of p — q-
Laplacian type on RY, Nonlinear Anal., 71(2009), 2316-2334.

Q. Li, Z. Yang, Multiplicity of positive solutions for a p — q-Laplacian system withconcave and
critical nonlinearities, J. Math. Anal. Appl., 423(2015), 660-680.

Q. Li, Z. Yang, Multiple positive solutions for quasilinear elliptic systems, Electron. J. Differ-
ential Equations, 15(2013), 1-14.

Q. Li, Z.D. Yang, Multiple positive solutions for quasilinear elliptic systems with critical expo-
nent and sign-changing weight, Comput. Math. Appl., 67(2014), 1848-1863.

Q. Li, Z.D. Yang, Multiple positive solutions for p—q-Laplacian problems with critical exponent,
Acat Math. Sci., 29(2009), 903-918.

W. Liu, G. Dai, N.S. Papageorgiou, P. Winkert, Existence of solutions for singular double phase
problems via the Nehari manifold method, arXiv:2101.00593.

N.S. Papageorgiou, D.D. Repovs, C. Vetro, Positive solutions for singular double phase prob-
lems, J. Math. Anal. Appl., doi.org/10.1016/j.jmaa.2020.123896, 2020.

N.S. Papageorgiou, P. Winkert, Positive solutions for weighted singular p-Laplace equations via
Nehari manifolds, Appl. Anal., https://doi.org/10.1080/00036811.2019.1688791.

P.H. Rabinowitz, Q. Li, Z.D. Yang, Methods in Critical Point Theory with Applications to
Differential Equations, CBMS Res. Conf. Ser. Math., vol. 65, Amer. Math. Soc., Providence,
RI, 1986.



p — q LAPLACIAN SYSTEM 153

[26] O. Rey, A multiplicity results for a variationalproblem with lack of compactness, Nonlinear

Anal., 13(1989), 1241-1249.

[27] K. Saoudi, A singular system involving the fractional p-Laplacian operator via the Nehari man-

ifold approach, Complex Anal. Oper. Theory, 13(2019), 801-818.

[28] K. Saoudi, S. Ghosh, D. Choudhuri, Multiplicity and Holder regularity of solutions for a nonlocal

[29]
(30]

(31]
(32]

(33]
(34]

(35]

elliptic PDE involving singularity, J. Math. Phys., 60(2019), 1-28.

N.E. Sidiripoulos, Ezistence of solutions to indefinite quasilinear elliptic problems of p — q-
Laplacian type, Electron. J. Differential Equations, 162(2010), 1-23.

A. Szulkin, T. Weth, The Method of Nehari Manifold, Handbook of Nonconver Analysis and
Applications, Int. Press, Somerville, MA, 2010, 597-632.

W. Willem, Minimax Theorems, Birkhauser, Boston, 1996.

M.Z. Wu, Z.D. Yang, A class of p — q-Laplacian system with critical nonlinearities, Bound.
Value Probl., (2009), Art. ID 185319, 1-19.

H.H. Yin, Ezistence of multiple positive solutions for a p — q-Laplacian system with critical
nonlinearities, J. Math. Anal. Appl., 403(2013), 200-214.

H.H. Yin, Z.D. Yang, Multiplicity results for a class of concave-convex elliptic systems involving
sign-changing weight functions, Ann. Polon. Math., 102(2011), 51-71.

H.H. Yin, Z.D. Yang, Multiplicity of positive solutions to a p — q-laplacian equation involving
critical nonlinearity, Nonlinear Anal., 75(2012), 3021-3035.

Recewed: January 31, 2021; Accepted: June 30, 2021.



154

DEBAJYOTI CHOUDHURI, MOUNA KRATOU AND KAMEL SAOUDI



