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Abstract. In a real Hilbert space, let the GSVI and CFPP represent a general system of varia-
tional inclusions and a common fixed point problem of countable nonexpansive mappings and an
asymptotically nonexpansive mapping, respectively. In this paper, via a new inertial subgradient ex-
tragradient rule we introduce and analyze two iterative algorithms for solving the monotone bilevel
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1. INTRODUCTION

Let (H,||-||) be a real Hilbert space with inner product (-, -). Let Pc be the nearest
point projection from H onto C, where C' is a nonempty closed convex subset of H. A
mapping T : C — C is known as being asymptotically nonexpansive, if there exists a
sequence {0} C [0, 00) such that [|T*z—T*y| < (14+60)||z—yl|| Yo,y € C, k > 1, with
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limg_. oo O = 0. In particular, whenever 0, = 0 Vk > 1, T is known as nonexpansive.
We denote by Fix(T') the fixed point set of the mapping T and by R the set of all
real numbers, respectively. Let A be a self-mapping on H. Consider the classical
variational inequality problem (VIP) of finding «* € C s.t. (Az*,y—a*) > 0Vy € C.
The solution set of the VIP is denoted by VI(C, A).

Suppose that the bifunction ® : H x H — R U {+oo} satisfies ®(x,x2) =0 Vz € C.
Consider the equilibrium problem (EP(C, ®)) for bifunction ® on the constraint do-
main C, which is to find z* € C such that ®(z*,y) > 0 Vy € C. The solution set
of EP(C, ®) is denoted by Sol(C, ®). It is worth mentioning that the EP(C, ®) is a
unified model of some problems, e.g., variational inequality problems, optimization
problems, saddle point problems, complementarity problems, fixed point problems,
Nash equilibrium problems, etc. To the most of our knowledge, the EP(C, ®) and its
extended versions have been widely studied by many authors; see [1], [4], [5], [6], [7].
[8], [10], [12], [13], [14], [15], [16], [17], [18], [19], [22], [25], [27], and references therein.
In 2009, via a viscosity approximation approach, Chang et al. [15] introduced an
iterative algorithm for finding a common solution of the common fixed point problem
(CFPP) of countable nonexpansive mappings {T,,}52, the VIP for inverse-strongly
monotone mapping A and the EP(C, ®) for bifunction ®. Under some suitable as-
sumptions, they proved the strong convergence of the proposed algorithm to a common
solution.

Let F|,Fy : H — H be single-valued mappings and By, By : C — 2% be multi-
valued mappings with Bjy # 0 Yy € C,j = 1,2. Consider the general system of
variational inclusions (GSVI), which is to find (z*,y*) € C x C s.t.

0 € \i(Fiy* 4+ Biz™*) + o* — y*, (1.1)
0 € Xo(Foz* + Boy*) + y* — ™, '

with constants A1, Ao > 0. In particular, if By = By = 0Ji¢c where i¢ is the indicator
function of C defined by ic(z) = 0 Vo € C and i¢(x) = oo Vo € C, then problem
(1.1) reduces to the general system of variational inequalities (GSVIT). It is worth
pointing out that problem (1.1) has been transformed into a fixed point problem in
the following way.

Suppose that the mappings By, By : C — 2% both are maximal monotone. From
[11, Lemma 2|, we see that, for given z*,y* € C, (a*,y*) is a solution of problem
(1.1) if and only if 2* € Fix(G), where Fix(G) is the fixed-point set of the mapping
G = J2H(I = MF)JC(I = \oFy), and y* = JU2 (1 — Ao Fy)a™.

Let the {2 denote the common solution set of the fixed point problem (FPP) of
an asymptotically nonexpansive mapping and the GSVIT for two inverse-strongly
monotone mappings. In 2018, using a modified extragradient technique, Cai et al.
[4] introduced a viscosity implicit rule for finding a common solution of the GSVI™
and FPP. Under some appropriate restrictions they proved the strong convergence
of the proposed algorithm to an element z* € (2. Subsequently, Ceng and Wen [14]
proposed a hybrid extragradient-like implicit method with strong convergence for
finding a common solution of the GSVIT and common fixed-point problem (CFPP).

On the other hand, Anh and An [1] introduced the monotone bilevel equilibrium
problem (MBEP) with the fixed-point problem (FPP) constraint, i.e., a strongly



ON INERTIAL SUBGRADIENT EXTRAGRADIENT RULE 103

monotone equilibrium problem EP({2, ¥) over the common solution set 2 of an-
other monotone equilibrium problem EP(C,®) and the fixed-point problem of K-
demicontractive mapping 7"

Find z* € 2 such that U(z*,y) >0 Vy € 12, (1.2)
where U : C' x C' = R U {+o0} such that U(z,z) =0 Va € C and
2 = Sol(C, @) NFix(T).
Pick the parameter sequences {\,} and {8,} such that

) C (@) C <O,min{ LI }) lim A, = A,

2¢1’ 2¢o n=oo

Bl 0, 280 — B2 <1, Y By = +ox, (1.3)

n=0

1 2n—-27 2
O<T<min{n7T}70<ﬁn<min{ il 77}7

T T2 — 72 72

where T is a constant associated with W. The following modified subgradient extra-
gradient method is proposed in [1, Algorithm 4.1], for finding a unique element of
Sol(£2,W).

Algorithm 1.1.

Initial Step: Choose an initial point 2° € C and {a,} C [r,7] C (0,1 — K). The
parameter sequences {A,} and {8,} satisfy the conditions (1.3).

Iterative Steps: Compute "' (n > 0) as follows:

Step 1. Compute

1
o™ = argmin {)\n@(x”,v) + §||v —2"|?:ve C}

and
1
¢" = argmin {)\n<1>(v",z) + §Hz —2"|?:z € Cn} ,

where Cp, = {y € H: (2" — Aw"™ — o™, 0" —y) > 0} and w" € 0P (a™,v"™).
Step 2. Compute

p"=(1-a,)q" +a,Tq"
and

: i 1 T
2"t = argmin {ﬁn\l’(p ,p) + §||p -p"|*:pe C} .

Set n :=n+ 1 and return to Step 1.

It was proven in [1] that {2} converges strongly to a unique element of Sol({2, ¥)
under some mild conditions. In what follows, let the CFPP indicate a common
fixed-point problem of countable nonexpansive mappings and an asymptotically non-
expansive mapping. In this paper, via a new inertial subgradient extragradient rule
we introduce and analyze two iterative algorithms for solving the monotone bilevel
equilibrium problem (MBEP) with the GSVI and CFPP constraints, i.e., a strongly
monotone equilibrium problem EP (2, ¥) over the common solution set {2 of another
monotone equilibrium problem EP(C,®), the GSVI and the CFPP. Some strong



104 LU-CHUAN CENG, ADRIAN PETRUSEL, X. QIN AND J.C. YAO

convergence results for the proposed algorithms are established under some mild as-
sumptions. Our results improve and extend some corresponding results in the earlier
and very recent literature; see e.g., [1], [9], [4], [15].

2. PRELIMINARIES

”

We denote by “ — 7 strong convergence and by “ — ” weak convergence in a real
Hilbert space H. Let () # C C H be convex and closed. A bifunction ¥ : C'x C — R
is said to be

(i) n-strongly monotone, if ¥(z,y) + ¥(y,x) < —n|lz — y||? Yo,y € C;

(i) monotone, if ¥(z,y) + ¥(y,z) <0 Vz,y € C;

(iii) Lipschitz-type continuous with constants c1,co > 0 (see [24]), if

U(w,y) +U(y2) 2 U2, 2) — cille —yl* — cally — 2[|* Va,y, 2 € C.

Also, recall that a mapping F' : C' — H is said to be
(i) L-Lipschitz continuous or L-Lipschitzian if 3L > 0 s.t.
[Fz — Fy|| < Lllz — y|| Va,y € C;
ii) monotone if (Fz — Fy,x —y) > 0 Va,y € C;
iil) pseudomonotone if (Fz,y —x) > 0= (Fy,y — z) > 0 Va,y € C;
iv) n-strongly monotone if In > 0 s.t. (Fz — Fy,z —y) > ||z — y||? Yo,y € C;
v) a-inverse-strongly monotone if Jda > 0 s.t.

(Fr — Fy,x —y) > a||Fx — Fy||* Va,y € C.

(
(
(
(

It is clear that every inverse-strongly monotone mapping is monotone and Lipschitz
continuous but the converse is not true. For each point € H, we know that 3 |
(nearest point) Pcx € C s.t. ||z — Pox| < |z —y|| Yy € C. The mapping Pc is said
to be the metric projection of H onto C. Recall that the following statements hold
(see [20]):

(i) (& —y, Pex — Pey) > ||[Pex — Peyl|® Va,y € H;

(i) (x — Pox,y — Pox) <0Vx € H,y € C;

(iii) [l — ylI* > ||z — Pez|? +|ly — Pex|* Yo € H,y € C;

(iv) llz =yl = llzl? = Iyl — 2z — y,y) Yo,y € H;

(v) sz + (1= s)yll* = sl|=[* + (1 = s)lly[|* — s(1 — s)[la — y||* Yo,y € H,s € [0,1].
Definition 2.1. (see [26]) Let {T;}5°, be a sequence of nonexpansive self-mappings
on C, and {(;}5°; be a sequence in [0,1]. Yk > 1, W) : C — C is the mapping
formulated below:

Uk er1 =1, Up e = GTRUg k1 + (1 — Go),
Uk k—1 = Co—1Th—1Uk k. + (1 — (1)1,

Uk, = GTiUkiv1 + (1 — G,

Uk = Ui s+ (1 — ()1,
Wi =Ugy1 = CT1Uk2+ (1= Q).
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The Wy, which is called a W-mapping, is nonexpansive.
Lemma 2.1. (see [26]) Let {T;}5°, be a family of nonexpansive operators with
Moz, Fix(T;) # 0 and {¢;}52, be a sequence in (0,1]. Then

(i) Wy is nonexpansive and Fix(W},) = ﬂle Fix(T;) Vk > 1;

(ii) the limit limy_, o Uy ;@ exists for all € C and 7 > 1;

(iii) the mapping W defined by

Wex = lim Wiyx = lim Uy 12 Vo € C,
k— o0 k—o00

is nonexpansive with the fact that Fix(W) = (2, Fix(T}).
Lemma 2.2. (see [15]) Let {T;}$2; be a sequence of nonexpansive self-mappings on
C with ;2 Fix(T;) # 0 and {¢;}52, be a sequence in (0,1] for some [ € (0,1). If D
is any bounded subset of C', then

lim sup ||Wix — Wz| = 0.

k—00 zcD

Throughout this paper we always assume that {¢;}$2, C (0,1] for some [ € (0,1).

Let B : C — 2™ be a set-valued operator with Bz # () Vo € C. B is said to be
monotone if for each z,y € C, one has (v —v,x —y) > 0 Vu € Bzx,v € By. Also,
B is said to be maximal monotone if (I + AB)C' = H for all A > 0. For a monotone
operator B, we define the mapping JZ : (I + AB)C — C by J = (I + AB)~! for
each A > 0. Such J? is called the resolvent of B for A > 0.
Proposition 2.1. (see [11, Lemma 1]) Let B : C — 27 be maximal monotone.
Then, for any given A > 0,

||J)\B‘T_J)\By||2 < <x_y7J)\Bw_J/\By> V%QGH-

Lemma 2.3. (see [11, Lemma 4]) Let the mapping F' : H — H be ~-inverse-strongly
monotone. Then, for a given A > 0,

(I = AF)u — (I = AF)v||> < |lu —v||* = M2y = N)||Fu — Fol?, Yu,v € H.

In particular, if 0 < A < 2+, then I — AF' is nonexpansive.

Using Proposition 2.1 and Lemma 2.3, we immediately derive the following lemma.
Lemma 2.4. (see [11, Lemma 5]) Suppose that By, By : C — 2" are two maximal
monotone operators. Let the mappings Fy, Fy : H — H be a-inverse-strongly mono-
tone and S-inverse-strongly monotone, respectively. Let the mapping G : H — C' be
defined as

G = J2H (I = MF)JX (I — Mo Fy).
Then G is nonexpansive for 0 < A\; < 2a and 0 < Ay < 26.

The following inequality is an immediate consequence of the subdifferential in-
equality of the function || - [|2/2.
Lemma 2.5. The inequality holds:

lz+yl* < lle|® + 2(y, 2 +y) Va,y € H.

Lemma 2.6. (see [21]) Let X be a Banach space which admits a weakly continuous
duality mapping, C' be a nonempty closed convex subset of X, and T': C — C be an
asymptotically nonexpansive mapping with Fix(T) # (). Then I — T is demiclosed at
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zero, i.e., if {u*} is a sequence in C such that u* — u € C and (I — T)u* — 0, then
(I = T)u = 0, where [ is the identity mapping of X.

The proposition below is very vital to analyze the convergence of the proposed
algorithms.
Proposition 2.2. (see [23]) Let {T'y} be a sequence of real numbers that does not
decrease at infinity in the sense that there exists a subsequence {T'y;} of {I'x} which
satisfies 'y, < I'j, 11 for each integer j > 1. Let the sequence {7(k)}x>x, of integers
be formulated as 7(k) = max{j < k : T'; < T'j;1}, where integer ko > 1 such that
{j <ko:Tj; <Tji1} # 0. Then, the following hold:

(i) (ko) < 7(ko+1) <--- and 7(k) — oo; and

(i) Trry) < Trpy41 and Ty < Ty VE > ko.

On the other hand, the normal cone N¢(x) of C at x € C is defined as

Ne(z) ={z€H: (z,y—2x) <0VyeC}.
The subdifferential of a convex function g : C' — RU{+o0} at = € C is defined by
dg(x) ={z€H:g(y) —g(z) = (z,y —x) Yy € C}.

Next we are devoted to finding a solution x* € Sol({2, ¥) of problem EP({2, V),
with 2 = N2, Fix(7;) N Fix(G) N Sol(C, ®) and Tp := T. Assume always that the
following hold:

{T;}2, is a sequence of nonexpansive self-mappings on C and T : H — C'is an
asymptotically nonexpansive mapping with a sequence {6;}.

Wi is the W-mapping generated by Ty,Tx_1,...,71 and (g, (k—1,-..,(1, Where
{¢:}52, is a sequence in (0, (] for some [ € (0,1).

B1,Bs : C — 2™ are two maximal monotone operators, and Fy, F» : H — # are
a-inverse-strongly monotone and [(-inverse-strongly monotone, respectively.

G :H — C is defined as G := Jfll(l — AlFl)J)]\B;(I— Ao Fy) for Ay € (0,2a) and
Ao € (0, 25)

Choose the sequences {8}, {7}, {0x} C (0,1) and {ay}, {7}, {sk} C (0,00) such
that

(H1) B+ + 0 =1Vk >1,0< likrgioréfﬁk and 0 < 1ikrgi£f5k;

(H2) 0 < liminf~, < limsupy, < 1 and Zsk = 00;
k—o0

k—o0 1

H3) li =0, i =0, lim 6 =0 and 0 ;
(19) fimy o1 =0, Jim /s = 0. Jim O/ =0 and D 0 < ocs

(H4) {an} C (0, @) C <0,min{1 L }) and lim ag = &

2¢1’ 2¢y k—o00
(H5) 25 — s2 7% < 1,0 < A <min{v, T} and 0 < s5 < min{}\, 3:/27_2/\);, 2TI/2}
Algorithm 2.1. Initial Step: Let £ > 0 and 2°, 2! € C be arbitrary. The sequences
{Br}, {7k}, {0r} in (0,1), and positive sequences {ay}, {7x}, {sr} satisfy conditions
(H1)-(H5).
Iterative Steps: Calculate z**! as follows:
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Step 1. Given the iterates 28~ and 2% (k > 1), choose ¢ such that 0 < &5, < 7%,

where
= min{e,”mkj#w} if Ik #Ikil, (2 1)
e otherwise.

Step 2. Compute t¥ = 2% + ¢ (2% — 2%~1) and
. 1
y* = argmin{ax@(t",y) + 5y —t*|* -y € C}.
Step 3. Chosen w” € 0,®(t*,y*), compute

Ckz{yEH:(tk—akwk—yk,yk—gﬁ >0}
and

1
2* = argmin {akcb(yk,z) + in — M2z € C’k} .
Step 4. Compute u* = Bra® + v, Wip® + 8, T*2F, with p* = Jfll (v* — A\ Fyo¥) and
= J02 (uF = XpFpul).

Step 5. Compute 2! = argmin{s, ¥ (u",t) + I |t — u*|? : t € C}.
Set k := k + 1 and return to Step 1.
Remark 2.1. From (2.1), it is readily known that klim i—:ka — k1 =0.
—o00 7F

We need the following technical propositions in the sequel.

Proposition 2.3. (see [3, Theorem 2.1.3]) Let C be a convex subset of a real Hilbert
space H and g : C — R U {400} be subdifferentiable. Then, & is a solution to the
convex minimization problem min{g(x) : € C} if and only if 0 € 9¢(Z) + N (),
where dg denotes the subdifferential of g.

Proposition 2.4. (see [2, Proposition 23]) Let X and Y be two sets, G be a set-
valued map from Y to X, and W be a real valued function defined on X x Y. Let
the marginal function M be defined as

M(y) ={z* € G(y) : W(a",y) = sup{W(x,y) : x € G(y)} }.

If W and G are continuous, then M is upper semicontinuous (u.s.c.).
Next, we assume that two bifunctions ¥ : C' x C' - R U {400} and & : H x H —
R U {400} satisfy the following conditions:
Assg: (®1) 2 =2, Fix(T;) N Fix(G) N Sol(C, @) # 0 with T :=T.
(®2) @ is monotone and Lipschitz-type continuous with constants c¢1,co > 0, and
® is weakly continuous, i.e., {zF — z and y* — g} = {®(z*,y*) — @(7,79)}.
Assy: (U1) U is v-strongly monotone and weakly continuous.
(V2) Vi € {1,...,m}, 3 (mappings) ¥ W, 1; : C x C — H such that
(a) Wi(e,y) + Wi (y, ) =0 and [ ¥;(z,y)[| < Lillz — y|| Yo,y € C;
(b) Wi(x,x) = 0 and |[¢y(z,y) — %/Jz(u o)l < Lill(z —y) = (u—v)|| Ya,y,u,v € C;
(

) ¥(z,y) +¥(y,2) = ¥(,z) +Z ,y), iy, 2)) Vo, y,2 € C.
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(¥3) For any sequence {y*} C C such that y* — d, we have

, W(d,y")|
limsup —————+ < +o0.
koo ly* —df

It is easy to check that if ¥ satisfies the condition Assg(Us2), then
1 1
Wo,y) + Wl 2) 2 W, 2) — 5Tl — gl = 3Ty — =P,
with

m
T:= Z I_JZIAJZ
i=1

This means that ¥ is Lipschitz-type continuous with constants ¢; = cy = 57T.

1
2
3. MAIN RESULTS
We are now in a position to state and prove the first main result in this paper.
Theorem 3.1. Assume that {2} is the sequence constructed by Algorithm 2.1. Let
the bifunctions ¥, ® satisfy the assumptions Assg-Assy. Then, under the conditions

(H1)-(H5), the sequence {z*} converges strongly to the unique solution z* of the
problem EP({2, ¥) provided

oo
Trak — TE+1gk — 0 and Zekﬂxk — 21| < .
k=1
Proof. First of all, by Lemma 2.1 we know that each W} is a nonexpansive self-
mapping on C. Also, note that the mapping G : H — C' is defined as
G = I3 = M) T2 (I = Ao Fy),

where A1 € (0,2c) and Ay € (0,28). Then, by Lemma 2.4, we know that G is
nonexpansive. Hence, by the Banach contraction mapping principle, we deduce from
{7} € (0,1) that for each k > 1, there exists a unique element u* € C such that

ub = Bra® + Wi GuP + 6, T 2. (3.1)
Take an arbitrary point
g € 2 = Fix(T;) NFix(G) N Sol(C, ®).
i=0

Thanks to klim z—: = 0, we might assume that 0 < %)\sk Vk > 1. Next, we divide

—00
the proof into several claims.

Claim 1. We assert that
125 = al* < [1t* = qll* = (1 = 2ape)[ly" = *)1? = (1 = 2apca)||2" —y*||* Yk > 1.
In fact, using Proposition 2.3, one obtains that for

. 1
y* = argmin{a, ®(t*,y) + §||il/ —th]2y ey,
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Juwk € 9@ (tF, y*) s.t. apw”® +y* — t* € —Ne(y*). This hence arrives at
(apw® + % —t* x —yF) >0vVe e C.
According to w¥ € 9,®(t*, y*), one gets
ap[®(tF, z) — (%, y")] > (apw®, z —y*) Ve H.
Thus, we get
ar[®@(tF,z) — (% y") 4+ (W* —tFx —yF) >0 Vzel. (3.2)
It follows from z* € C}, and the definition of C}, that
(t* — apw® — y* v —yF) <0,
and hence ay, (wF, 2% — yF) > (tF — yF 2% — yF). It is easy to see that
ap[@(t*, 2F) — (t*, y")] > ap(w®, 2" — ¢¥),

and hence
ar[®(t*, 2F) — (t*, y")] = (tF —¢F, 25 — o). (3.3)

Using Proposition 2.3, one obtains that for
= axgmin{a@(s*,y) + Sl — 47 1y € Gu),
Jnk € 0,®(y*, 2%) and Ir* € Ng, (2F) s.t. aph® + 28 —t*F + 7% = 0. So it follows that
ar(hF y — 28 > (th — 28y — 2% vy € Oy,
and
O(y*,y) — (Y, 2") > (W y - 2F) Wy e
Putting y = ¢ € C C C}, in two last inequalities and later adding them, one gets
a[®(y*, @) — @(y*, 2M)] = (" — 2%, q = 2F).
Using the monotonicity of ®, ¢ € Sol(C,®) and y* € C, one gets
o(y",q) < —®(¢,9") <O0.

Consequently, —a;®(y*, 2F) > (t* —2* g—2z*). Combining this and the Lipschitz-type
continuity of @,

(", y") + (y",2°) = (17, 2F) — ettt — y*|? - cally” — 2F|P%,
one deduces from (3.3), ensures that
(th = 2828 —q) > (=" 2 =) — e |tF = PP - aneallyt - 2P (34)
Therefore, applying the equality
1
(u,v) = 5 (lu+ol* = Jul* = [|v]|*) Yu,v € H,
for (tk — 2% 2k —¢q) and (y¥ — t*, 2% — y*) in (3.4), we derive the desired claim.
Claim 2. We assert that

||33k+1 — :1c||2 < Huk — :13||2 — ||9r:k+1 — uk'||2 + 23k[\11(uk,x) — \I/(uk,a:k+1)] Vo e C.
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In fact, thanks to
1
2P = argmin{s, U (u*, t) + §||t —uP|?teCy,
ImF € oW (uF, 2% H1) s.t. 0 € spmF + 2%+t — uF + N (2FF1). Using the normal cone
N¢ and subgradient mF, one gets
(spgmF 4+ 2"t — ok oz — kY > 0ve e C

and
sp[U(u”, z) — U(u, 28] > (spmh, 2z — 2% 1) v € C.

Adding these two inequalities, one has

25, [0 (u”, ) — U(ub, 2] 4 22 —uF 2 — 2P >0 vz e C. (3.5)
Setting v = 2%t — u¥ and v =  — 2F*! in the equality
1
(u,v) = 5 (|lu + ol = [l = [[v]]?) Yu, v € H,
one gets

255, (W (z* L, 2) — Wk, 2] + || — z)|)? — |28 — )2 = |2F T — 2|2 > 0 Ve e C.

Claim 3. We assert that if 2* is a solution of the MBEP with the GSVI and CFPP
constraints, then

2" — ] < melle® = 27| < (1= Ase) Ju® = 27,

where )
uf = argmin{s, ¥ (z*,v) + 5“0 —2*? v e,
1 2v—2\
e = \/1—28kV+8%T2, 0 <A< min{r, T}, 0< sg <min{/\,Tl/2_/\2},
and
r =Y Li.
i=1
In fact, set

uf = argmin{s, ¥ (z*,v) + %HU —2*?:ve ).
Using the similar reasonings to those of (3.5), one also gets
sp[U(x*, x) — Uz ub)) + Wk —2* 2 —ub) >0 VzeC. (3.6)
Putting x = u¥ € C in (3.5) and z = 2%+ € C in (3.6), respectively, one obtains
0 < 285 [W(uf, ub) — Wk, 2P ) 4 (2, 2P ) — U (a*, ub)] + Ju* — 2|2
=k — k|2 ok — b (3.7)

From Assy(VUs) it follows that

U, uf) = (2", ) < Wk, ") ~ Z(\T’i(uk,x*)ﬂﬁi(ﬁ,df)>
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and
W(a®, 2™ — Wb, ) < Wt ub) =Y (T (", ub), i (W, 2 ).
Therefore, one has
U (uf, ul) — O 25T 4 (2, 2 — O(a*,ub) < Tk, 2*) + U(a*, uP)
Z ) = DD ) )

Then, using Assy(Ps), and the v-strong monotonicity of ¥ in Assy(¥1), one gets
U(uk, ufy — O, o) 4 U (a*, 2F ) — Wz, ub)

< —vlfut = 2P Y (it ), dau, 2R ) = (e, )
=1
< vl — 2P+ Tlu® - ol = 2 =2 . (3-8)

Combining (3.7) and (3.8), one has
0 < (1 —2spw)|Ju® — 2%||® + 285 T||Ju® — || ||u” — 2" — 2 + |

e [

< (125004 S T)|uf — |2 — [F+ — k.

Using 0 < A < min{y, '} and 0 < s < min {%, 2T”2’_2)\)5 }, we get

1= Asp > /1 - 240 + 8272 = g > 0.

This attains the desired claim.
Claim 4. We assert that {z*} is bounded. In fact, setting

X:=C, Y :=[0,1], G(s):=CVseY,

s:= 8k, W(z,s) :=—sU(z",z)— %H:z: —2*||2 VY(x,5) € X x Y,
we have that

M (sy) = argmin {sk\If(:c*,m) + %Hx = C’} = {u"}.

k

Note that M is continuous and klim uy = x*. By the continuity of ¥ on C', one gets
— 00

lim W(2*, u?) = U(z*, z*) = 0.

k—o00
According to Assy(¥3), 3 (constant) M(z*) > 0 s.t.
(", )] < M(2")|lul — 27| Yk > 1.

Setting = z* in (3.6) and using ¥(z*, z*) = 0, one has

) =
luf — " |* < sl (™, uf)] < s M (27)|Juy — 2™ VE > 1.
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This hence ensures that ||uf — z*|| < s, M(z*) Vk > 1. Also, in terms of Lemma
2.3 we know that I — A1 F; and I — Ao F5 both are nonexpansive for A; € (0,2«) and
A2 € (0,28). Moreover, by Lemma 2.4, we know that G is nonexpansive. We write
Yy = Jﬁ"’([ — AoFp)x*. From [11, Lemma 2|, we get z* = Jfll(l - MF)y* = Gz*
and hence
Ip* = 2% = |Gu" —a*|| < [|u* —2*|. (3.9)
Also, by Remark 2.1 we know that & |z* —2F=1|| — 0 as k — oo, which hence implies
that 3My > 0 s.t. Z—:ka —xFl < My Vk > 1. Accordingly,
15 — 2| = ||l2* — 2% + en(a® — 2* )| < ||l2* — 2%|| + Mosg. (3.10)
Using the result in Claim 1, from (3.10) we have
|28 — 2*|| < [|t* — 2*| < ||a* — 2| + Mos,, Vk > 1. (3.11)

This along with the nonexpansivity of Wy, G and asymptotically nonexpansivity of
T, yields

¥ — 2||* < (1 + ) (l2* — || + Mosi) u* — 2* || + yllu® = 2*[* + 64.(1 + 6)
x (|l2* — @ || + Mosi)l|u* — 2|
= (1= ) (1 + 0) (¥ — || + Mos) [u" — 2% || + yelu® — 27|,
which hence leads to [Juf — 2*|| < (1 + 6;)(||z* — z*|| + Mosy,). Consequently,
%1 — 2% || < (1= Asp)(1+ 0)(||2* — 2*|| + Mosy) + sp M (2*)

gmax{w—x*n,W}. (3.12)

By induction, we get

2[My + M (z*
r— Smax{||x1x*||,W} Vi > 1.

Thus, {z*} is bounded, and so are the sequences {p*}, {t*}, {u*}, {v¥}, {v*}, {z*}.
Claim 5. We assert that if z¥ — 3, % — 2% — 0 and t* —y* — 0 for {k;} C {k},
then & € Sol(C, ®). In fact, thanks to tk¢ — x% — 0 and t*# — y* — 0, one gets

+ [|1t% = yFi) = 0 (i — o0). (3.13)

So it follows from x*: — & that t** — % and y* — 2. Using {y*} C C, y* — & and
the weak closedness of C, we obtain that & € C. From (3.2), we get

o, B4, ) > g, ®(tF Y™ + (yF —thi Yk —g) Vo e C.

e =y < flae — o

k

Taking the limit as ¢ — oo and using the conditions that

lim ap =a >0,
k—o0

®(#,%) = 0, {y*} is of boundedness and ® is of weak continuity, we deduce that
a®(z,2) > 0 Va € C. This means that & € sol(C, D).
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Claim 6. We assert that z* — 2*, a unique solution of the MBEP with the GSVI
and CFPP constraints. In fact, since each Wy and G both are nonexpansive and T’
is asymptotically nonexpansive, one obtains that

1+ b} 0, M
e T R o L i

1)
R L | LB

where

sup(2 + 03, ([|2% — 2*|| + Mosp)? < M
E>1

for some M > (0. This hence arrives at

lu —2*|* < [Bella® — 2™ + 6kll2* — 2™ + 0x M — Brf|2* — u*||?

Tl
— 0| T 2% — ¥ (3.14)
Using the results in Claims 1 and 2 we infer from (3.11) and (3.14) that
* 1 * *
|l285% = 2" |1* < = {Bella® — 2711 + Ok [[1t" — 27|
— Tk

= (1= 2ager)lly* — %% = (1 = 2ae2) | 2" — ¢ ]
+ 0k M — Byl|a* — u||? = G| T — ¥ )7}
— [l =t 28 [P () - (b, M)

Ok )
[(1— 2ape1)|y* — %2
— Yk

< (o - 2*|| + Mos)? - -

6 M
+ (1= 20p02)12" =y 7) + -
L=
1
= ——[Bull=" — u"|* + 6| TF2F — )
1—
Tk
— [|l2"t = uF|? + s K, (3.15)
where sup{2|¥(u¥, z*) — ¥(uF, 2¥*1)|} < K for some K > 0.
k>1
Next, we put T, = ||2* — 2*||?> and demonstrate the convergence of {I'x} to zero in

the following two aspects:
Aspect 1. Suppose that 3 (integer) kg > 1 s.t. {I'y} is non-increasing. Then the
limit klim 'y =h<+o0and I'y — Tyy1 — 0 (k — 00). From (3.15), we get
—00
3 (1 = 2agen)lly* — %) + (1 = 2a00) |27 — y*||°]
+ Bella® — w4 G| TR R — PP 4[|l — P

0, M
L=

< Ty — Thyr + Mosp(2y/Tx + Mosy,) + + s.K. (3.16)
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Since Sk — 0, Gk — 0, I‘k — Fk+1 — 0,

0 < liminf Bk, 0 < liminf §; and 0 < liminf(1 — ),
k— 00 k—00 k—o0

we deduce from {a}} C (o, @) C (O,min{ L1 }) that

2¢17 2¢3
lim [lz% — ¥ = lim ||T%2* — | =0, (3.17)
k— o0 k— o0
klim ¥ —t*| = lim ||2* — %] = lim [2** —u*|| = 0. (3.18)
—00 k—o0 k— o0

We now claim that [Ju* —p¥|| = 0 as k — co. In fact, we put y* = J22(z* — Ay Foz*).
A2

Note that p* = Gu*. Using Lemma 2.3 one has
l0F =y I* < lu® = 2™[|* = X2(28 = Ao) || Fau® — Faa™|?, (3.19)
Ip* = 2*|* < 0" = y*II* = A (20 — M) | Fro® — Fuy* | (3.20)

Substituting (3.19) for (3.20), by (3.11) and (3.14) one gets

Ip* = 2*|? < flu” = 2*|? = Ao (28 = Xo) || Fou® — Foa™||?

— M1 (20— \))||[Fro® — Fry®|)?

— 0, M
< (ka —z*|| + Mosk)2 4+
1=

= A2(28 — )| Fou® — Fox™||? — A\ (2a — ) || Fio® — Fuy* ). (3.21)
Also, substituting (3.21) for (3.15), one has
2%+ — 2|2 < [Ju — 2*|% + siK
< Bi(1+ 0,7 (2* — || + Mose)* + ellp™ — 2™ + 0k(1 + 04)* |12 — 2> + s K

T 0, M .
< (|2 — 2*|| + Mosk)? + liifyk — W[A2(28 = Ao) || Fou® — Foa™||?
+ M (20— \))||Fro* — Fuy*||?] + si K,
which hence leads to
W[A2(28 — Ao) || Fou® — Fox™||? + Ay (20 — Ay) | Fro® — Fry* ||’
0, M
1=
Since A1 € (0,2a), A2 € (0,28), s — 0, 6 — 0, Ty —Tpiq — 0,

<I'y—Trp +M08k(2\/ Ty +M05k)+ + s, K.
liminf~y, > 0 and liminf(1 — ~) > 0,
k—o00 k—o00

we get
lim ||Fou® — For*[| =0 and  lim ||Fyo* — Fiy*|| = 0. (3.22)
k—o0 k—o0

On the other hand, we have
[p* =™ [* < [lo* —y*|1? = [[o* =p* + " =y + 2\ | Fay* — Fro®|l|[p* —*|. (3.23)
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Similarly, we have
" =y 17 <l = | = u® —o* 4 y* =[P+ 20| Foa™ — Fyu[[v* — g (3.24)
Combining (3.23) and (3.24), by (3.11) and (3.14) one has
" —2*|* < Jlu® = 2*|* — u* = o +y* —a*|® —|l* —p* 2t -y
+ 20| Fry” — Fyo®|[pF — 2| + 222 Far™ — Fau®|||0* — |
0, M
L=
e L A
+ 20| Fry* = Fro®|[[p* — 2| + 2% Faa” — Fou®|[|lv" 57|l (3.25)
Substituting (3.25) for (3.15), from (3.11) one gets
24— 2*|* < [luf = 2" |* 4+ sk K < (1= ) [L+ 0u(2 + 00)] (2% — 27| + Mosi)”

— 0, M
+vel(Ja® = 2*|| + Mosg)? + ——
1=

= Jlut = o* oyt =2t P o =t 2 =y 20 Pyt - B
x |Ip* — || + 2X2|| o™ — Fopu|[[v" —y*[] + su K

* T ekﬂ * *
< ([la* — 2*|| + Mosk)? + T =l =0y — |

< (lla* — 2| + Mosk)? +

+ of = pF 2 — 7]
+ 2\ || Fry* — Fuo®||||lph — || + 2ho|| Foz™ — Fou®||||o* — || + s K.
This hence yields
Wlllu® — 0" 4y — 2P+ (o = pF 2t =y
0, M
1=
+ 2\ || Fry* — Fuo®||||lph — || + 2Xo|| Foz™ — Fou®||||o* — || + sp K.

Since Sk — 0, gk — O, I‘k — Fk+1 — 0,

STy =T+ MOSk(Q\/ r,+ Mosk) +

liminf~, > 0 and liminf(1 — ~) > 0,
k—o0 k—o0
one obtains from (3.22) that
lim [Ju® — o +y* —2*|| = lim |o* —p* +2* —y*|| =0.
k—oo k— o0

Thus

[uf = Gu¥|| = [lu® = p*|| < [[u* —o* +y* — 27|
+o* —pF+ a2~y =0 (k- ). (3.26)
Noticing t* = ¥ + e (2F — 2¥~1), by Remark 2.1 we get

||tk — .’L‘kH = 5k||a:k — J:k_1|| — 0 (k — 00).
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Also, note that
0 = Br(a" — uF) + v (Wip" — u¥) + 6,(T"2" — u).
Since likm inf v > 0, from (3.17) and (3.26) we have
—00

1
IWip" —u*|| = %Ilﬂk(wk — ) + 0p(TF2" — )|

1
< —(lla® — ¥l + T2 = a®])) > 0 (k — o0),

and hence ||[Wyu* — u*|| — 0 (k — o). Therefore,
lim [t* —2%| =0 and lim |[Wiu* — | = o0. (3.27)
k—o0 k—o0

Using (3.17) and (3.18), we get

2% — 2| < [|2* — uF| + |Ju* — 2T =0 (k- 0), (3.28)
12 = < 112" =yl 4+ lly* =¥l =0 (k = o0). (3.29)

Combining (3.17) and (3.26), one gets
2% — Ga®|| < 2|2 — u¥|| + ||uf — Gu¥|| - 0 (k — o). (3.30)

We claim that [|[Wyz* — 2%|| — 0 and ||T2* — 2¥|| — 0 as k — oo. In fact, using
Lemma 2.1 (i) we obtain from (3.17) and (3.27) that

Wiz — 2% < 2||z% — u*| + [Wiu* — uF|| =0 (k= o0). (3.31)
Combining (3.27) and (3.29), we have
2P — 25| < ||l2® —t*|| + ||t — 2F| = 0 (k — o0). (3.32)

Using (3.17) and (3.32), we deduce from the asymptotical nonexpansivity of T that
¥ = T*ak|| < [la* —ub[| + [[u* = T*24)| + (1 +6p)[|2" —2*| = 0 (k= 00). (3.33)
This along with the assumption || T*2z% — T*+12¥|| — 0, implies that
|z% — Ta¥|| < (24 61)||a" — TFa*|| + | T*2F — T 2% -0 (k— o00). (3.34)
Next we claim that limy_, o |#* — 2*|| = 0. In fact, by the boundedness of {u*} and
{x*}, we know that 3 (subsequence) {u*'} C {u*} s.t. u¥* — & € C and
liminf[¥(2*, u®) + U (u®, 25 1)) = Jim [ (", uFt) 4+ W (uhi i), (3.35)

k— o0
From (3.17) and (3.18) it follows that 2% — & and x**! — . Then, by the result
in Claim 5, we obtain that & € Sol(C, ®).

It is clear from (3.34) that 2% — T2* — 0. Since Lemma 2.6 guarantees the
demiclosedness of I —T at zero, we get & € Fix(T'). Also, since Lemma 2.6 guarantees
the demiclosedness of I — G at zero, from 2% — % and 2% — Gz* — 0 (due to (3.30))
one has Z € Fix(G). We claim that

ze ﬁ Fix(T;) = Fix(W).
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In fact, by Lemma 2.1 (iii) we know that W is a nonexpansive mapping satisfying
Fix(W) = [ Fix(T)).
i=1

Using (3.31) and Lemma 2.2, we get

|2k — Wak|| < ||z* — Wia®| + |[Wia* — Wz*|| = 0 (n = o0).

k

Since Lemma, 2.6 ensures the demiclosedness of I — W at zero, from z* — Z it follows

that
& € Fix(W) = () Fix(Ty).
i=1

Consequently,

& € () Fix(T;) NFix(G) N Sol(C, @) = 2.
=0

In terms of (3.35), we have

lim inf[ ¥ (z*, u®) + U (u*, 25 T1)] = O(z*, &) > 0. (3.36)

k—o0

Since U is v-strongly monotone, we have

lim sup[¥(z*, u®) + U (u”, 2*)] < limsup(—v|u* — z*|?) = —vh. (3.37)
k— o0

k—o0

Combining (3.36) and (3.37), we obtain

lim sup[W¥ (u, 2*) — U (uF, 2¥+1))
k—o0

= limsup[¥ (u®, 2*) + (2%, u¥) — U(z*, ub) — U(uF k1)
k—o0
< lim sup[V (u¥, 2*) + U (z*, u*)] — likm inf[U(x*, uk) + U (uF, 2P 1)) < —vh.
k—00 —0o0
(3.38)
We claim h = 0. Conversely, in case i > 0, then we might assume that Jkg > 1 s.t.
h
Wk, ) — Uk, 2k 1) < —% Yk > ko, (3.39)
which together with (3.15), implies that for all k > ko,
1 —
[t —2¥||? < —— [Billa® — 2% |1 + 6 |t* — 2% + 6, M]
+ 255 [ U (u”, %) — U(u®, 2F )]
1 .
<7 {Bellz® — 2*|1? + o [lla* — 2™||* + ex |l
— Tk
— 2P Y(2)|2® — 27| + enl|z® — Y] + 0. M} — spvh
—~ OM
< la* = 2?4 ez — 2P| My + 22— — spwh, (3.40)

1=
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where sup{2||z* — z*| + ex||* — 2%~1||} < M; for some M; > 0. So it follows that
k>1

— r k—1
S M
Ty —Tg < ) <ej||xﬂ — 7Y My + Zi ) —vh Y sj Vk>ke o (341)

1 _ .
i=Fo Vi i=Fo

Letting &k — oo in (3.41), we have

k—1
_ _ i J
00 < h—Ty, < kli)rrgo z ( il

Jj=ko

) —VHZS] = —oc0.

Jj=ko

This reaches a contradiction. Therefore, limy_,o, I'ry = 0 and hence {xk} converges
strongly to the unique solution a* of the problem EP(2, ¥).

Aspect 2. Suppose that 3{T'y;} C {T'x} s.t. Ty, < Ty, 41 Vj € N, where N is the
set of all positive integers. Let the mapping 7 : N' — A be defined as

T(k) :==max{j <k:T; <T;u1}.

By Proposition 2.2, we get

F'r(k) § F'r(k)—i—l and Fk S rr(k)+1- (342)
Using the same reasonings as in (3.18) and (3.28), we deduce that
lim [Jz7®H — "B = Lim [[7®) — R = Jim |y™ ™) — 7B =0, (3.43)
k—o0 k—o0
lim [|z"®)* — 27| = 0. (3.44)
k—o0

According to the boundedness of {u*}, there exists a subsequence of {u”*)} converg-
ing weakly to #. We might assume that u™*) — 7. Then, using the same reasonings
as in Aspect 1, we can infer that

Ten= ﬂ Fix(T;) N Fix(G) N Sol(C, ).
i=0
From u™®) — & and (3.43), we get 27(®)+1 ~ 4.
Using the condition {ax} C (o, @) C <O,min {i, i}), we have from (3.15) that
25, () [ (™), 27OH) — (7, 2]
1 —
< 2™ =2 P ™ Bria 2™®) = 272 + 8-y 1675 — 2|2 + 0,4 M]
T ‘r — AT 07’ k M
< Ty = Drgyt + gy l27® — ™72 + 2 —
= V7 (k)
Oy M

<en wT(k‘) T(k) 1 M +
)l | "



ON INERTIAL SUBGRADIENT EXTRAGRADIENT RULE 119

which hence leads to
ql(uT(k)’wT(k)—‘rl) _ \IJ(UT(k), CC*>

T(k) _ .71(k)—1 T
iyl x M 0, M
L =l | B by | )
Sr(k) 2 Sr(k) 2(1 - 77’(1@))
Since ¥ is v-strongly monotone on C, we get
vllu™® — 2|2 < — (R 2%y — B, um W), (3.46)
Combining (3.45) and (3.46), we obtain from Remark 2.1, Assg(¥;) and & € £2 that
(k) _ .7(k)—1 T s
er M 0, M
vlim sup||u”™® — 2*||? = lim sup|— GIE ’ | R B ON
k—o00 k— o0 Sr(k) 2 Sr(k) 2(1 - ’YT(k‘))

+ofu™™® — a7

< limsup[—¥(u™®, 2T®F) @ (2", umW)]

k—o00
=-U(z,z) - ¥(z*,z) <0.
Hence,

lim ||z"®) — 2*||2 = 0.
k—o00

From (3.44) and Ty, < T )41, we get
||3:’k o 1’*”2 < for(k)+1 . 'T*HQ

< er(k) _ m*HQ + 2Hx7—(k)+1 _ mT(k)HHxT(k) _ x*H + ||:L,T(k)+1 _ .%‘T(k)HQ.

So it follows from (3.44) that 2% — x* as k — oo. This completes the proof. O
Next, we introduce another iterative algorithm by using the inertial subgradient

extragradient rule.

Algorithm 3.1. Initial Step: Let € > 0 and 2°, ' € C be arbitrary. The sequences

{Br}, {7k} {0k} in (0,1), and positive sequences {ax}, {7}, {sr} satisfy conditions

(H1)-(H5).

Iterative Steps: Calculate z*t! as follows:

Step 1. Given the iterates z*~1 and z* (k > 1), choose gj such that 0 < g < &,

where
. ) ek k—1
7: mln{&,m} lf.'I/' 7533 s
15 otherwise.

k=1) and

Step 2. Compute t* = 2* + ¢ (2F — 2
. 1
y* = argmin {ak(I’(tk,y) + §||y — M2y e C’} .
Step 3. Chosen w” € 0,®(t*,y*), compute
Cr={veM: {t"—apw® —y* v—y* <0}

and

1
z* = argmin {ak@(yk,z) + §Hz —th2: 2 € Ck} .
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Step 4. Compute u* = Bra? + v WiuF + 6, TFp*, with pF = Jﬁl (vF — A\ Fyof) and
oF = T3 (F = AP,

Step 5. Compute z**! = argmin{s, ¥ (u*,t) + 3|t — u*|? : t € C}.

Set k := k + 1 and return to Step 1.
Theorem 3.2. Assume that {2} is the sequence constructed by Algorithm 3.1. Let
the bifunctions ¥, ® satisfy the assumptions Assg-Assy. Then, under the conditions
(H1)-(H5), the sequence {z*} converges strongly to the unique solution x* of the
problem EP({2, ¥) provided

o0
TFek — TF+1zk 5 0 and Zskﬂxk —zF Y| < 0.
k=1
Proof. From Lemma 2.1 (i), it is readily known that each W} is nonexpansive. Then,

using the Banach contraction mapping principle, we know from {7y} C (0,1) that
Vk>1,3|uk € O st uf = pra® + v, Wput + 5, TFp*. Take an arbitrary point

g € 2 = Fix(T;) NFix(G) N Sol(C, ®).
i=0
Noticing klim 2—’; = 0, we might assume that 0 < %)\sk Vk > 1. Next we divide the
— 00

proof into several claims below.
Claims 1-3. We assert that the results in Claims 1-3 of the proof of Theorem 3.1
are still valid. In fact, using the same reasonings as in the proof of Theorem 3.1, we
obtain the desired claims.
Claim 4. We assert that {z*} is bounded. In fact, using the similar reasonings to
those in the proof of Theorem 3.1, we obtain that the inequality (3.11) still holds.
Since W}, and G are nonexpansive mappings, and 7" is asymptotically nonexpansive,
we deduce from (3.11) and p* = G2* that
[uf — 2|12 < Brlla® —a*||llu® — ™[ + yxllu® — 2 + (1 + ) [[2* — 2*[[u® — 27

< (1= ) (L4 Or) (2" — 2| + Mos)lu® — ™[] + yul|u® — 2",
which hence yields |[u* — z*|| < (1 + 0;)(||z*¥ — 2*|| + Mysy). Consequently,

"+t — 2| < [l =l ffud = 2] < (= Asp)l[u® = 2] 4 ud 2
< (1= Ase)(1+6)([la* — 2™ || + Mosy) + s M(a")

2(Mo +M(x*)]}
S :

< max{||xk' —z",

By induction, we get

2[Mo + M (z*
|zF — || <max{||x1—x*||,[0+/\(x)]} vk > 1.

Thus, {z*} is bounded, and so are the sequences {p*}, {t*}, {u*}, {vF}, {v*}, {z*}.
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Claim 5. We assert that if z¥ — 3, tF — 2% — 0 and t* —y* — 0 for {k;} C {k},
then & € Sol(C,®). In fact, using the same reasonings as in the proof of Theorem
3.1, we derive the desired claim.
Claim 6. We assert that ¥ — z*, a unique solution of the MBEP with the GSVI
and CFPP constraints.

In fact, set Ty = ||z* — 2*||2. Since each W} and G are nonexpansive mappings
and T is asymptotically nonexpansive, we obtain that

1+ 0
luf —2*|? < @Hffk — 2P+ Sk — a2 S — 2
2 2 2
k2 _ Ok ook, k k2
L
where sup(2 + 0;,)(||z* — z*|| + Mosk)z < M for some M > 0. This implies that
k>1

1
I—
+ kM — Bylla® — PP — i [|T*p" — |7 (3.47)
By the results in Claims 1 and 2 we deduce from (3.11) and (3.47) that

2" = [ < flu® = 2P = 2 = P 4 28 [P (0", 27) — W (a2t

I — 2™ < Brlle® — 2> + dkllp* — 2|

< {Brlla® — ™| 4+ 0x[I[t* — 2™ [|* — (1= 2aen) 1y —¢||* = (1 - 2anc2) || 2" —y"|]

I =%
0. M — Billa® —u®|? = 0| T p" — u |} — [la* =2

+255 [ U (u”, %) — U(u®, 25 1)]

< (|a* —2* |+ Mosy)? = ——[(1 = 2ager) [y* —t* |2+ (1—2apea) || 2% —y* | 2]+ —
11— 1—
1
T [Brlla® —u® |2 4 6| TP — u|[] — [|l2*F! — u¥|? + si K, (3.48)

where supy;{2|¥(uF, z*) — ¥(uF zF*+1)|} < K for some K > 0.

Lastly, we show the convergence of {T'x} to zero in the following two aspects:
Aspect 1. Suppose that 3 (integer) kg > 1 s.t. {I'y} is non-increasing. Then the
limit

lim T'y, =h < 400 and lim (T —T4q1) =0.
k—o0 k—o0

From (3.48), we get

1= [(1 = 2ae)lly* — ¢5]* + (1 = 2ane2)]|2* — yF||?]

1
+ m[ﬂkllxk = uP|? 4 | T " — 7] + 2 — b

— — 0, M
<Tp —Thy1 + Mosk(24/Tx + Mysy) + T b S + s K.
- Tk
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From {ay} C (a, @) C (O,min{i, i}), we find that

lim ||z —«”|| = lim | T*p" —u*| =0, (3.49)
k—o0 k— o0
lim [|y* —t*]| = lim ||2% —¢*|| = lim [j2*T! — | = 0. (3.50)
k—o0 k—oo k— o0
Next we show that
lim [jz* — 2| = 0.
k—oo

In fact, using (3.21), we deduce from (3.47) and (3.48) that
2" — 2| <l — 2| + sp K

1 § . —
= q[ﬁknﬁ—x 12 + 0nllp® — %% + 61 M] + s K
20]@]’\\4/ - 6}6

L=y 1=

+ /\1(20& — )\1)||F1’Uk — F1y*||2] + SkK.

[)\2(25 — )\2)||F2Zk — Fg‘r*Hz

IN

(l2* — 2*|| + Mosk)? +

Since A\ € (0,20[), Ao € (O,Qﬂ), s =0, 0 =0, T'y —Tk41 — 0,

0 < liminf d; and 0 < liminf v, < limsupy; < 1,
k— o0 k— o0 k— 00

we get
lim ||Foz® — Fox*| =0 and lim |[Fio® — Fiy*|| = 0. (3.51)
k—o0 k—o0

On the other hand, using the same reasonings as those of (3.25) we get

0p M
1=
—[l2* = oF oyt =P = P = ph e -y

+ 20| Fry® = Frot|[lp* = 2| + 22| Faa” — Faz®|[o" -y,

Ip* = a*|* < (ll* — 27| + Mosp)* +

which along with (3.47) and (3.48), implies that

" — 2% |)? < ||uf — 2% |* + s, K
1
T—%

< Bellz® — a*|? + 8llp* — 2*|1? + 0 M] + sp K

20, M
1=y

IN

(la* = 2™ || + Mosy,) +

Ok
1=
+2M\ || iy — F1Uk||Hpk — || + 2X2|| Foa™ — ngkHHvk —y*| + sk K.

(12 = v +y* — 2| + [Jv* = p* + 2" —y|]
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This immediately leads to

51@ * * * *
T (2% = oF +y* =2 + " = p* + 2" —y*|1?)
— Yk
<Tp —Thyr + Mosk(24/Ti + Mosy)
+ 1 _k% + 2\ || Fry* — Fuo®||||pF — || + 2o || Fox™ — Fo2®||[|o* — y*|| + si K.

Since Sk — 0, Gk — 0, I, — Fk-i—l — O,

0 < liminf dg, 0 < liminf v, < limsupyg < 1,
k—oco k—o0

k—o0

we deduce from (3.51) that
Jim 25— 0" +y* — 2| = lim [lo* = p* + 27—y =0.
Thus,
125 =G2" | = 2% =p¥|| < [|2F —v*+y* —a*[|+ 0" —p* +a* —y*|| = 0 (k — o0). (3.52)
Using the similar reasonings to those of (3.27), we get
kli—>Holo [t* —2*|| =0 and leII;o [Wiu® —u®|| = 0. (3.53)
Using (3.49) and (3.50), we obtain that
o — R <l — ]+t — 2] 2 0 (k= o)
and
12 = 2l < 2% = g* )+ lly = 5]+ 1" = 2F =0 (k= o). (3.54)
Combining (3.52) and (3.54), we get
|zF — Gz*|| = 0 (k — o).

We show that ||[Wiz* — 2%|| — 0 and || T2* — 2*|| — 0 as k — oo. In fact, using
Lemma 2.1 (i) we deduce from (3.49) and (3.53) that

||kak — ka < 2ka — uk|| + ||W;€uk — uk|| — 0 (k= o).

Using (3.49), (3.52) and (3.54), we infer from the asymptotical nonexpansivity of T
that

I = Tha*| < [la® — uf[| + |lu® = T*pF|| + | T"p" = T + | T%2F — TFa||
< fla® = af )+ = TEF( + (14 00)[lp* — 2" + 12 — 2¥[l] = 0
Using the same reasonings as those of (3.34) we have limy_, o ||2* — T2¥|| = 0.

Further, using the same arguments as in Aspect 1 of the proof of Theorem 3.1, we
deduce that klim T, = 0, and hence {z"} converges strongly to the unique solution

— 00
a* of the problem EP(£2, ¥).
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Aspect 2. Suppose that I{Ty,} C {T} s.t. Ty, <Ty;41 Vj € N, where NV is the
set of all positive integers. Let the mapping 7 : N' — A be defined as

T(k) ==max{j <k:T; <T;u1}.

In the remainder of the proof, using the same reasonings as in Aspect 2 of the proof
of Theorem 3.1, we derive the desired claim. This completes the proof. U
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