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Abstract. In this paper, under some new appropriate conditions imposed on the parameter and

mappings involved in the resolvent operator associated with an (H, η)-monotone operator, its Lips-
chitz continuity is proved and an estimate of its Lipschitz constant is computed. This paper is also

concerned with the establishment of a new equivalence relationship between the graph convergence

of a sequence of (H, η)-monotone operators and their associated resolvent operators, respectively, to
a given (H, η)-monotone operator and its associated resolvent operator. A new iterative scheme for

approximating a common element of the set of solutions of a variational inclusion problem and the

set of fixed points of a given total asymptotically nonexpansive mapping is constructed. As an ap-
plication of the obtained equivalence conclusion concerning graph convergence, under some suitable

conditions, the strong convergence of the sequence generated by our suggested iterative algorithm to
a common element of the above-mentioned two sets is proved. Our results improve and generalize

the corresponding results of recent works.
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1. Introduction

During the last decades, the theory of variational inequalities has been inten-
sively considered by many authors and a great deal of papers have been devoted
to the existence of solutions for different classes of variational inequality problems,
see, for example, [6, 8] and the references therein. Because of its applications in
different areas of science, social science, engineering and management, the study of
various extensions of variational inequality problems has received a great deal of
interest from the scientific community. One of the most important generalizations
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of variational inequalities is the so-called variational inclusions, see, for example,
[2, 9, 14, 15, 18, 17, 19, 22, 23, 24, 25, 32, 39] and the references therein. The
importance of theory as well as the applications of the variational inclusion inequal-
ity problem in a huge variety of scientific fields were one of the main motivations
of researchers for constructing and developing of various methods for solving differ-
ent classes of variational inclusion inequality problems in the framework of different
spaces. Among the methods appeared in the literature, the resolvent operator method
as an extension of the projection method. For more related details, the readers are
referred to [4, 3, 10, 11, 12, 17, 19, 9, 2, 18, 23, 35] and the references contained
therein. In order to solve and analyze variant classes of variational inequality and
inclusion problems we need to generalize and extend the notion of maximal mono-
tonicity in the context of different spaces. Huang and Fang [23, 17] defined the concept
of maximal η-monotone operator and the resolvent operator associated with such an
operator in the setting of Hilbert spaces, also they define H-monotone operator and
the resolvent operator associated with such an operator for solving a class of varia-
tional inclusion problems involving H-monotone operators. In 2005, Fang et al. [19]
succeeded to introduce other extension of maximal monotone operator the so-called
(H, η)-monotone operator which can be viewed as a unifying framework for the classes
of maximal monotone operators, maximal η-monotone operators and H-monotone op-
erators. The connections between monotone mappings and nonexpansive mappings
lead to a special theory of graph convergence. It establishes an equivalence between
the graph convergence of a sequence of maximal monotone operators and their asso-
ciated resolvent operators, respectively, to a given maximal monotone operator and
its associated resolvent operator. See [7, 9, 2, 24, 35].

Since the appearance of the notion of nonexpansive mapping, due to the existence
of a strong connection between monotone and accretive operators, two classes of
operators which arise naturally in the theory of differential equations, and the class of
nonexpansive mappings, the fixed point theory of nonexpansive mappings has rapidly
grown into an important field of study in both pure and applied mathematics. It
has become one of the most essential tools in nonlinear functional analysis. For this
reason, during the past few decades, many authors have shown interest in extending
the notion of nonexpansive mapping, and the study of the fixed point theory for
generalized nonexpansive mappings has also attracted increasing attention. Recently,
Alber et al. [1] introduced the concept of total asymptotically nonexpansive mapping,
which is more general than asymptotically nonexpansive mapping and some another
generalized nonexpansive mappings existing in the literature. See [12, 13, 29, 20, 1,
16, 27, 28, 34].

The paper is structured as follows. Section 2 provides the basic definitions and
preliminaries concerning (H, η)-monotone operators along with some new examples.
In the end of this section, the Lipschitz continuity of the resolvent operator asso-
ciated with an (H, η)-monotone operator under some new appropriate conditions is
proved and an estimate of its Lipschitz constant is also computed. In Sect.3, we first
recall some background material on some classes of generalized nonexpansive map-
pings and provide a new example for illustration relation between the class of total
asymptotically nonexpansive mappings and the class of asymptotically nonexpansive
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mappings. In this section, the well-known class of variational inclusion problems
(VIP) is considered and with the goal of finding a point lying in the intersection of
the set of solutions of the VIP and the set of fixed points of a given total asymp-
totically nonexpansive mapping, a new iterative algorithm is proposed. Finally, in
Sect.4, the notions of graph convergence and the resolvent operator associated with
an (H, η)-monotone operator are first used and a new equivalence relationship be-
tween the graph convergence of a sequence of (H, η)-monotone operators and their
associated resolvent operators, respectively, to a given (H, η)-monotone operator and
its associated resolvent operator is established. In the end, as an application of the
obtained equivalence relationship, the strong convergence of the sequence generated
by our suggested iterative algorithm to a common element of the above two sets are
proved.

2. Preliminary notations and results

Throughout this paper, we assume that X is a real Hilbert space endowed with a
norm ‖.‖ and an inner product 〈., .〉. For a given multi-valued mapping M : X ⇒ X,

(i) the set Range(M) defined by

Range(M) = {y ∈ X : ∃x ∈ X : (x, y) ∈M} =
⋃
x∈X

M(x)

is called the range of M ;
(ii) the set Graph(M) defined by

Graph(M) = {(x, u) ∈ X ×X : u ∈M(x)},

is called the graph of M .

In what follows, we recall some concepts and known results which will be used in
the sequel.

Definition 2.1. Let T : X → X and η : X ×X → X be the operators. T is said to
be

(i) η-monotone if,

〈T (x)− T (y), η(x, y)〉 ≥ 0, ∀x, y ∈ X;

(ii) strictly η-monotone if, T is η-monotone and equality holds if and only if x = y;
(iii) r-strongly η-monotone if, there exists a constant r > 0 such that

〈T (x)− T (y), η(x, y)〉 ≥ r‖x− y‖2, ∀x, y ∈ X;

(iv) θ-Lipschitz continuous if, there exists a constant θ > 0 such that

‖T (x)− T (y)‖ ≤ θ‖x− y‖, ∀x, y ∈ X.

Definition 2.2. [19, 23] Let η : X ×X → X be a vector-valued operator. A multi-
valued operator M : X ⇒ X is said to be

(i) monotone if,

〈u− v, x− y〉 ≥ 0, ∀(x, u), (y, v) ∈ Graph(M);
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(ii) η-monotone if,

〈u− v, η(x, y)〉 ≥ 0, ∀(x, u), (y, v) ∈ Graph(M);

(iii) ς-strongly η-monotone if, there exists a constant ς > 0 such that

〈u− v, η(x, y)〉 ≥ ς‖x− y‖2, ∀(x, u), (y, v) ∈ Graph(M);

(iii) maximal η-monotone if, M is η-monotone and (I + λM)(X) = X, for every
real constant λ > 0.

We note that M is a maximal η-monotone operator if and only if M is η-monotone
and there is no other η-monotone operator whose graph contains strictly Graph(M).
The maximal η-monotonicity is to be understood in terms of inclusion of graphs.
If M : X ⇒ X is a maximal η-monotone operator, then adding anything to its
graph so as to obtain the graph of a new multi-valued operator, destroys the η-
monotonicity. In fact, the extended operator is no longer η-monotone. In other
words, for every pair (x, u) ∈ X ×X\Graph(M) there exists (y, v) ∈ Graph(M) such
that 〈u− v, η(x, y)〉 < 0. Owing to the above-mentioned arguments, a necessary and
sufficient condition for a multi-valued operator M : X ⇒ X to be η-monotone is that
the property

〈u− v, η(x, y)〉 ≥ 0, ∀(y, v) ∈ Graph(M)

is equivalent to u ∈M(x). The above characterization of maximal η-monotone oper-
ators provides a useful and manageable way for recognizing that an element u belongs
to M(x).

Fang et al. [19] introduced and studied the class of (H, η)-monotone operators
as a unifying framework for the classes maximal monotone operators [38], maximal
η-monotone operators [23] and H-monotone operators [17] as follows.

Definition 2.3. [19] For given vector-valued operators η : X × X → X and H :
X → X, a multi-valued operator M : X ⇒ X is said to be (H, η)-monotone if M is
η-monotone and (H + λM)(X) = X holds, for every real constant λ > 0.

It should be pointed out that for the case when η(x, y) = x − y for all x, y ∈ X,
then Definition 2.3 reduces to the definition of H-monotonicity of the multi-valued
operator M which was introduced and studied by Fang and Huang [17].

It is worthwhile to stress that for given operators η : X×X → X and H : X → X,
an (H, η)-monotone operator may be neither H-monotone nor maximal η-monotone.
For illustration of this fact, the following example is given.

Example 2.4. Let φ : Z→ (0,+∞) and consider the complex linear space l2φ(Z), the

weighted l2(Z) space, consisting of all bi-infinite complex sequences (zn)∞n=−∞ such

that
∞∑

n=−∞
|zn|2φ(n) <∞. It is a well known that

l2φ(Z) = {z = (zn)∞n=−∞ :

∞∑
n=−∞

|zn|2φ(n) <∞, zn ∈ C}
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with respect to the inner product 〈., .〉 : l2φ(Z)× l2φ(Z)→ C defined by

〈z, w〉 =

∞∑
n=−∞

znwnφ(n), ∀z = (zn)∞n=−∞, w = (wn)∞n=−∞ ∈ l2φ(Z),

is a Hilbert space. The inner product defined above induces a norm on l2φ(Z) as
follows:

‖z‖l2φ(Z) =
√
〈z, z〉 = (

∞∑
n=−∞

|zn|2φ(n))
1
2 , ∀z = (zn)∞n=−∞ ∈ l2φ(Z).

Let

δj,(2k+1)ω−j+1 = (. . . , 0, 0, . . . , 0,
1√
2φ(j)

ij , 0,
1√

2φ((2k + 1)ω − j + 1)
i(2k+1)ω−j+1, 0, 0, . . . )

and

δ′j,(2s+1)ω−j+1=(. . . , 0, 0, . . . , 0,
1√
2φ(j)

ij , 0,−
1√

2φ((2k + 1)ω−j+1)
i(2k+1)ω−j+1, 0, 0, . . . ).

Define the operators M : l2φ(Z) ⇒ l2φ(Z), η : l2φ(Z)× l2φ(Z)→ l2φ(Z) and H : l2φ(Z)→
l2φ(Z), respectively, by

M(z) =

{
Φ, z = δα,(2β+1)ω−α+1,

−z +
(√

cos γπn
2(np+θ)φ(n) + i

√
cos γπn

2(np+θ)φ(n)

)∞
n=−∞

, z 6= δα,(2β+1)ω−α+1,

η(z, w) =

{
ς(w − z), z, w 6= δα,(2β+1)ω−α+1,
0, otherwise,

and H(z) = µz + ζ
(√

cos γπn
2(np+θ)φ(n) + i

√
cos γπn

2(np+θ)φ(n)

)∞
n=−∞

, for all z, w ∈ l2φ(Z), where

Φ =
{
δj,(2k+1)ω−j+1 − δα,(2β+1)ω−α+1, δ

′
j,(2k+1)ω−j+1 − δα,(2β+1)ω−α+1 :

k ∈ Z; j = kω + 1, kω + 2, . . . ,
(2k + 1)ω

2

}
,

ς, µ, ζ ∈ R are arbitrary constants such that µ < 0 < ς; p ≥ 2 is an arbitrary
even natural number, θ > 0 and γ are arbitrary real constants, β ∈ Z and α ∈
{βω + 1, βω + 2, . . . , (2β+1)ω

2 } are chosen arbitrarily but fixed, k is an arbitrary but

fixed natural number, and 0 is the zero vector of the space l2φ(Z). Owing to the fact
that

∞∑
n=−∞

cos γπn

np + θ
=

1

θ
+ 2

∞∑
n=1

cos γπn

np + θ

and
∞∑
n=1

cos γπn
np+θ is convergent, it follows that

∞∑
n=−∞

cos γπn
np+θ <∞, and so

(√ cos γπn

2(np + θ)φ(n)
+ i

√
cos γπn

2(np + θ)φ(n)

)∞
n=−∞

∈ l2φ(Z).
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Then, for all z, w ∈ l2φ(Z), z 6= w 6= δα,(2β+1)ω−α+1, we have

〈M(z)−M(w), z − w〉 = 〈w − z, z − w〉 = −‖z − w‖2l2φ(Z)

= −
∞∑

n=−∞
|zn − wn|2φ(n) < 0,

which means that M is not monotone and so it is not an H-monotone operator. For
any given z, w ∈ l2φ(Z), z 6= w 6= δα,(2β+1)ω−α+1, yields

〈M(z)−M(w), η(z, w)〉 = α〈w − z, w − z〉 = α‖w − z‖2l2φ(Z)

= α

∞∑
n=−∞

|zn − wn|2φ(n) > 0.

For each of the cases when z 6= w = δ′α,(2β+1)ω−α+1, w 6= z = δ′α,(2β+1)ω−α+1 and

z = w = δα,(2β+1)ω−α+1, taking into account that η(z, w) = 0, we deduce that

〈u− v, η(z, w)〉 = 0, ∀u ∈M(z), v ∈M(w).

Therefore, M is an η-monotone operator. By virtue of the fact that for any
δα,(2β+1)ω−α+1 6= z ∈ l2φ(Z),

‖(I +M)(z)‖2l2φ(Z) =

∞∑
n=1

cos γπn

np + θ
> 0

and

(I +M)(δ′α,(2β+1)ω−α+1) =
{
δj,(2k+1)ω−j+1, δ

′
j,(2k+1)ω−j+1 :

k ∈ Z; j = kω + 1, kω + 2, . . . ,
(2k + 1)ω

2

}
,

where I is the identity mapping on X = l2φ(Z), it follows that 0 /∈ (I + M)(l2φ(Z)).
Hence, I +M is not surjective and so M is not a maximal η-monotone operator. For
any λ > 0 and z ∈ l2φ(Z), by taking

w =
1

µ− λ
z +

ζ + λ

λ− µ

(√ cos γπn

2(np + θ)φ(n)
+ i

√
cos γπn

2(np + θ)φ(n)

)∞
n=−∞

(λ 6= µ, because µ < 0), we obtain

(H+λM)(w) = (H+λM)

(
1

µ− λ
z +

ζ + λ

λ− µ

(√
cos γπn

2(np + θ)φ(n)
+ i

√
cos γπn

2(np + θ)φ(n)

))∞
n=−∞

= z.

Consequently, for any real constant λ > 0, the mapping H +λM is surjective and so
M is an (H, η)-monotone operator.

It is significant to mention that for given operators H : X → X and η : X×X → X,
a maximal η-monotone operator need not be (H, η)-monotone. In support of this fact,
we present the following example.
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Example 2.5. Let m,n ∈ N and Mm×n(F) be the space of all m× n matrices with
real or complex entries. Then

Mm×n(F) = {A =
(
aij

)
|aij ∈ F, i = 1, 2, . . . ,m; j = 1, 2, . . . , n;F = R or C}

is a Hilbert space with respect to the Hilbert-Schmidt norm

‖A‖ =
( m∑
i=1

n∑
j=1

|aij |2
) 1

2 , ∀A ∈Mm×n(F)

induced by the Hilbert-Schmidt inner product

〈A,B〉 = tr(A∗B) =

m∑
i=1

n∑
j=1

āijbij , ∀A,B ∈Mm×n(F),

where tr denotes the trace, that is, the sum of the diagonal entries, and A∗ denotes
the Hermitian conjugate (or adjoint) of the matrix A, that is, A∗ = At, the complex
conjugate of the transpose A. Denote by Dn(R) the space of all diagonal n × n
matrices with real entries. Then Dn(R) is a subspace of Mn×n(R) = Mn(R). Define
the operators H,M : Dn(R)→ Dn(R) and η : Dn(R)×Dn(R)→ Dn(R), respectively,
as H(A) = H(

(
aij

)
) =

(
ãij

)
, M(A) = M(

(
aij

)
) =

(
âij

)
and η(A,B) =

η(
(
aij

)
,
(
bij

)
) =

(
cij

)
for all A =

(
aij

)
, B =

(
bij

)
∈ Dn(R), where for

each i, j ∈ {1, 2, . . . , n},

ãij =

{
α sin γaii, i = j,
0, i 6= j,

âij =

{
β cos γaii, i = j,
0, i 6= j,

and

cij =

{
β(cos γaii − cos γbii), i = j,
0, i 6= j,

where α, β ∈ R and γ ∈ R\{0} are arbitrary real constants.
Then, for any A =

(
aij

)
, B =

(
bij

)
∈ Dn(R), yields

〈M(A)−M(B), η(A,B)〉 = β2
n∑
i=1

(cos γaii − cos γbii)
2 ≥ 0,

which means that M is an η-monotone operator. Let us now define the function
f : R→ R as f(x) := α sin γx+ β cos γx, for all x ∈ R. Then, for any A ∈ Dn(R), we
get

(P +M)(A) = (P +M)(
(
aij

)
) =

(
ãij + âij

)
=
(
dij

)
,

where for each i, j ∈ {1, 2, . . . , n},

dij =

{
f(aii) = α sin γaii + β cos γaii, i = j,
0, i 6= j.

It can be easily observed that R(f) = [−
√
α2 + β2,

√
α2 + β2]. Owing to the fact

that f(R) 6= R, it follows that (H+M)(Dn(R)) 6= Dn(R), which ensures that H+M
is not surjective, and so M is not an (H, η)-monotone operator. Now, assume that
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λ > 0 is an arbitrary real constant and let the function g : R → R be defined by
g(x) := x+ λβ cos γx, for all x ∈ R. Then, for any A =

(
aij

)
∈ Dn(R), we yield

(I + λM)(A) = (I + λM)(
(
aij

)
) =

(
aij + λâij

)
=
(
a′ij

)
,

where I is the identity mapping on Dn(R) and for each i, j ∈ {1, 2, . . . , n},

a′ij =

{
g(aii) = aii + λβ cos γaii, i = j,
0, i 6= j.

Considering the fact that g(R) = R, it follows that (I + λM)(Dn(R)) = Dn(R), that
is, I + λM is surjective. Since λ > 0 was arbitrary, we deduce that M is a maximal
η-monotone operator.

In the light of Example 2.4, for given operators H : X → X and η : X×X → X, an
(H, η)-monotone operator is not maximal η-monotone in general. As a consequent of
Theorem 2.1 in [25], the following assertion, in which the sufficient conditions for an
(H, η)-monotone operator M to be maximal η-monotone are stated, can be derived.

Lemma 2.6. Let η : X × X → X be a vector-valued operator, H : X → X be a
strictly η-monotone operator, M : X ⇒ X be an (H, η)-monotone operator, and let
x, u ∈ X be two given points. If 〈u− v, η(x, y)〉 ≥ 0 holds, for all (v, y) ∈ Graph(M),
then (u, x) ∈ Graph(M), that is, M is a maximal η-monotone operator.

According to Example 2.5, for given operators H : X → X and η : X ×X → X, a
maximal η-monotone operator need not be (H, η)-monotone. In the next conclusion,
the sufficient conditions for a maximal η-monotone operator to be (H, η)-monotone
are provided. Before proceeding to it, let us recall the following definitions.

Definition 2.7. [17, Definition 2.2] An operator H : X → X is said to be coercive if

lim
‖x‖→+∞

〈H(x), x〉
‖x‖

= +∞.

Definition 2.8. [17, Definition 2.3] An operator A : X → X is said to be bounded if
A(B) is bounded for every bounded subset B of X. A is said to be hemi-continuous
if for any fixed x, y, z ∈ X, the function t 7→ 〈A(x+ ty), z〉 is continuous at 0+.

Lemma 2.9. Let η : X × X → X be a vector-valued operator and H : X → X be
a bounded, coercive, hemi-continuous and η-monotone operator. If M : X ⇒ X is a
maximal η-monotone operator, then M is (H, η)-monotone.

Proof. Owing to the fact that H is bounded, coercive, hemi-continuous and η-
monotone, invoking Corollary 32.26 of [38], we conclude that the operator H +λM is
surjective for every λ > 0, that is, the range of H + λM is precisely X for all λ > 0.
Thereby, M is an (H, η)-monotone operator. The proof is completed. �

Theorem 2.10. Let η : X ×X → X be a vector-valued operator, H : X → X be a
strictly η-monotone operator and M : X ⇒ X be an η-monotone operator. Then, for
every real constant λ > 0, the operator (H + λM)−1 from Range(H + λM) to X is
single-valued.
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Proof. Suppose, on the contrary, that there exists z ∈ Range(H + λM) such that
x, y ∈ (H + λM)−1(z) and x 6= y. Then, we have z ∈ (H + λM)(x) and z ∈
(H + λM)(y), and so there exist u ∈M(x) and v ∈M(y) such that

H(x) + λu = H(y) + λv. (2.1)

Since M and H are η-monotone, with the help of (2.1), we derive that

0 ≤ 〈λ(u− v), η(x, y)〉 = −〈H(x)−H(y), η(x, y)〉 ≤ 0,

which guarantees that 〈H(x)−H(y), η(x, y)〉 = 0. In view of the fact that H is strictly
η-monotone, it follows that x = y which is in contradiction to our assumption. �

In order to define the resolvent operator associated with an (H, η)-monotone op-
erator, Fang et al. [19] presented the following statement which is an immediate
consequence of the previous theorem.

Lemma 2.11. [19, Lemma 2.1] Let η : X × X → X be a vector-valued operator,
H : X → X be a strictly η-monotone and M : X ⇒ X be a (H, η)-monotone operator.
Then, for every real constant λ > 0, the operator (H + λM)−1 is single-valued.

Based on Lemma 2.11, for an arbitrary real constant λ > 0, Fang et al. [19]

defined the resolvent operator RH,ηM,λ associated with an (H, η)-monotone operator M
as follows.

Definition 2.12. [19, Definition 2.4] Let η : X×X → X be a vector-valued operator,
H : X → X be a strictly η-monotone operator and M : X ⇒ X be an (H, η)-

monotone operator. The resolvent operator RH,ηM,λ : X → X is defined by

RH,ηM,λ(u) = (H + λM)−1(u), ∀u ∈ X,

where λ > 0 is an arbitrary real constant.

Let us emphasize that in the rest of the paper, we say that M is an (H, η)-γ-
strongly monotone operator, means that M is a γ-strongly η-monotone operator and
(H + λM)(X) = X, for every real constant λ > 0.

We now prove the Lipschitz continuity of the resolvent operator RH,ηM,λ associated

with an (H, η)-monotone operator M and an arbitrary real constant λ > 0 under
some appropriate conditions and compute an estimate of its Lipschitz constant. For
this end, we need to recall the following definition.

Definition 2.13. A vector-valued operator η : X ×X → X is said to be τ -Lipschitz
continuous if there exists a constant τ > 0 such that ‖η(x, y)‖ ≤ τ‖x − y‖ for all
x, y ∈ X.

Theorem 2.14. Let η : X×X → X be a τ -Lipschitz continuous operator, H : X → X
be a %-strongly η-monotone operator and let M : X ⇒ X be an (H, η)-γ-strongly

monotone operator. Then, the resolvent operator RH,ηM,λ : X → X is τ
λγ+% -Lipschitz

continuous, i.e.,

‖RH,ηM,λ(u)−RH,ηM,λ(v)‖ ≤ τ

λγ + %
‖u− v‖, ∀u, v ∈ X.
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Proof. Owing to the fact that M is an (H, η)-monotone operator, for any given points

u, v ∈ X with ‖RH,ηM,λ(u)−RH,ηM,λ(v)‖ 6= 0, yields

RH,ηM,λ(u) = (H + λM)−1(u) and RH,ηM,λ(v) = (H + λM)−1(v),

which implies that

λ−1(u−H(RH,ηM,λ(u))) ∈M(RH,ηM,λ(u)) and λ−1(v −H(RH,ηM,λ(v))) ∈M(RH,ηM,λ(v)).

Since M is γ-strongly η-monotone, we deduce that

λ−1〈u−H(RH,ηM,λ(u))− (v −H(RH,ηM,λ(v))), η(RH,ηM,λ(u), RH,ηM,λ(v)))〉

≥ γ‖RH,ηM,λ(u)−RH,ηM,λ(v)‖2.

In virtue of the fact that λ−1 > 0, the last inequality ensures that

〈u− v, η(RH,ηM,λ(u), RH,ηM,λ(v))〉 ≥ λγ‖RH,ηM,λ(u)−RH,ηM,λ(v)‖2

+ 〈H(RH,ηM,λ(u))−H(RH,ηM,λ(v)), η(RH,ηM,λ(u), RH,ηM,λ(v))〉.

Considering the facts that the operator η is τ -Lipschitz continuous and the operator
H is %-strongly η-monotone, the preceding inequality guarantees that

‖u− v‖‖RH,ηM,λ(u)−RH,ηM,λ(v)‖ ≥ ‖u− v‖‖η(RH,ηM,λ(u), RH,ηM,λ(v))‖

≥ λγ‖RH,ηM,λ(u)−RH,ηM,λ(v)‖2

+ 〈H(RH,ηM,λ(u))−H(RH,ηM,λ(v)), η(RH,ηM,λ(u), RH,ηM,λ(v))〉

≥ λγ‖RH,ηM,λ(u)−RH,ηM,λ(v)‖2 + %‖RH,ηM,λ(u)−RH,ηM,λ(v)‖2

= (λγ + %)‖RH,ηM,λ(u)−RH,ηM,λ(v)‖2. (2.2)

Since ‖RH,ηM,λ(u)−RH,ηM,λ(v)‖ 6= 0, by (2.2), it follows that

‖RH,ηM,λ(u)−RH,ηM,λ(v)‖ ≤ τ

λγ + %
‖u− v‖.

The proof is finished. �

3. Formulation of the problem and iterative algorithms

Recall that a mapping T : X → X which has Lipschitz’s constant equal to 1,
that is, ‖T (x) − T (y)‖ ≤ ‖x − y‖ for every x, y ∈ X, is said to be nonexpansive. In
the last forty years, there has been a major activity in the study of nonexpansive
mappings under appropriate conditions and there is an extensive literature on the
iterative methods to approximate fixed points of them, see, for example, [21, 33, 37].
Goebel and Kirk [20] defined in 1972 a class of generalized nonexpansive mappings,
the so-called asymptotically nonexpansive mappings as an extension of the class of
nonexpansive mappings as follows.

Definition 3.1. [20] A mapping T : X → X is said to be asymptotically nonexpansive
if, there exists a sequence {kn} ⊆ [1,∞) with lim

n→∞
kn = 1 such that for all x, y ∈ X,

‖Tn(x)− Tn(y)‖ ≤ kn‖x− y‖, ∀n ∈ N.
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In 2005, Sahu [29] made an effort to unify some generalizations of nonexpansive
mappings. He introduced the class of nearly asymptotically nonexpansive mappings as
an extension of nonexpansive and asymptotically nonexpansive mappings as follows.

Definition 3.2. [29] A mapping T : X → X is said to be nearly asymptotically
nonexpansive if, there exist real sequences {kn} ⊆ [1,+∞) and {µn} ⊆ [0,+∞) with
kn → 1 and µn → 0 as n→∞, such that for all x, y ∈ X,

‖Tn(x)− Tn(y)‖ ≤ kn(‖x− y‖+ µn), ∀n ∈ N.

Remark 3.3. It should be pointed out that if kn = L for all n ∈ N, then the class
of nearly asymptotically nonexpansive mappings coincides with the class of nearly
uniformly L-Lipschitzian mappings [29]. In the meanwhile, for the case when kn = 1
for all n ∈ N, then the class of nearly asymptotically nonexpansive mappings becomes
actually the same class of nearly nonexpansive mappings [29].

Recently, Alber et al. [1] introduced the notion of total asymptotically nonexpan-
sive mappings as a unifying framework for some classes of generalized nonexpansive
mappings available in the literature as follows.

Definition 3.4. [1] A mapping T : X → X is said to be total asymptotically non-
expansive (also referred to as ({an}, {bn}, φ)-total asymptotically nonexpansive) if,
there exist nonnegative real sequences {an} and {bn} with an, bn → 0 as n→∞ and
a strictly increasing continuous function φ : R+ → R+ with φ(0) = 0 such that for all
x, y ∈ X,

‖Tn(x)− Tn(y)‖ ≤ ‖x− y‖+ anφ(‖x− y‖) + bn, ∀n ∈ N.

They further studied the iterative approximation of fixed point of total asymptot-
ically nonexpansive mappings using a modified Mann iterative process.

It should be remarked that from the definitions, it is obvious that every nonexpan-
sive mapping is asymptotically nonexpansive with kn = 1 for all n ∈ N, every asymp-
totically nonexpansive mapping is total asymptotically nonexpansive with bn = 0,
an = kn − 1 for all n ∈ N and φ(t) = t for all t ≥ 0, and every nearly asymptotically
nonexpansive mapping is also total asymptotically nonexpansive with bn = µnkn,
an = kn − 1 for all n ∈ N, and φ(t) = t for all t ≥ 0.

The following example illustrates that the class of total asymptotically nonexpan-
sive mappings is more general than the class of asymptotically nonexpansive map-
pings.

Example 3.5. For 1 ≤ p <∞, consider the classical space

lp =
{
x = (xn)n∈N :

∞∑
n=1

|xn|p <∞, xn ∈ F = R or C
}
,

consisting of all p-power summable sequences, with the p-norm ‖.‖p defined on it by

‖x‖p =

( ∞∑
n=1

|xn|p
) 1
p

, ∀x = (xn)n∈N ∈ lp.
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Let B be the closed unit ball in the Banach space lp and consider the subset

X := [σ, δ]×B

of R× lp with the norm ‖.‖X = |.|R + ‖.‖p defined on R× lp, where σ < 0 and δ ≥ 1
are arbitrary real constants. Furthermore, let the self-mapping T of X be defined by

T (u, x) =

 (u, x̃), if u ∈ [σ, 0),
(α, x̃), if u = 0,
(αu, x̃), if u ∈ (0, δ],

where

x̃ = (0, 0, . . . , 0︸ ︷︷ ︸
k times

, β sin |xm|
qm+2

3 , 0,
β

p
√

2p+1
(sin |xm+1|

sm+2
3 − |xm+1|

tm+2
3 ), 0,

β
p
√

2p+1
(|xm+2|

lm+2
3 − sin

km+2
3 |xm+2|), 0, βxm+3, 0, βxm+4, . . . ),

α, β ∈ (0, 1) are arbitrary real constants; m ∈ {3j − 2|j ∈ N}, k ≥ m + 2 and
ki, li, qi, si, ti ∈ N\{1} (i = 1, 2, . . . , m+2

3 ) are arbitrary but fixed natural numbers.
It can be easily seen that the mapping T is discontinuous at the points (0, x) for

all x ∈ B. Taking into account that every asymptotically nonexpansive mapping is
Lipschitzian and every Lipschitzian mapping is continuous, it follows that T is not
Lipschitzian and so it is not an asymptotically nonexpansive mapping.

It is easy to prove that for all (u, x), (v, y) ∈ [σ, 0)×B,

‖T (u, x)− T (v, y)‖X = ‖(u− v, x̃− ỹ)‖X

≤ |u− v|+ βmax
{ qi∑
r′′=1

|x3i−2|qi−r
′′
|y3i−2|r

′′−1,

si∑
s′=1

|x3i−1|si−s
′
|y3i−1|s

′−1,

ti∑
j=1

|x3i−1|ti−j |y3i−1|j−1,

li∑
r=1

|x3i|li−r|y3i|r−1,
ki∑
r′=1

|x3i|ki−r
′
|y3i|r

′−1, 1 : i = 1, 2, . . . ,
m+ 2

3

}
‖x− y‖p.

(3.1)

Considering the fact that x, y ∈ B, and making use of (3.1) it follows that for all
(u, x), (v, y) ∈ [σ, 0)×B,

‖T (u, x)− T (v, y)‖X ≤ |u− v|+ βξ‖x− y‖p, (3.2)

where ξ = max{ki, li, qi, si, ti : i = 1, 2, . . . , m+2
3 }. By following the same arguments

as above, on can prove that

(i) for all (u, x), (v, y) ∈ {0} ×B,

‖T (u, x)− T (v, y)‖X ≤ βξ‖x− y‖p ≤ |u− v|+ βξ‖x− y‖p; (3.3)

(ii) for all (u, x), (v, y) ∈ (0, δ]×B,

‖T (u, x)− T (v, y)‖X ≤ |u− v|+ βξ‖x− y‖p + αδ; (3.4)
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(iii) for all (u, x) ∈ [σ, 0)×B and (v, y) ∈ (0, δ]×B,

‖T (u, x)− T (v, y)‖X ≤ |u− v|+ βξ‖x− y‖p + αδ; (3.5)

(iv) for all (u, x) ∈ [σ, 0)×B and (v, y) ∈ {0} ×B,

‖T (u, x)− T (v, y)‖X ≤ |u− v|+ βξ‖x− y‖p + α; (3.6)

(v) for all (u, x) ∈ {0} ×B and (v, y) ∈ (0, δ]×B,

‖T (u, x)− T (v, y)‖X ≤ |u− v|+ βξ‖x− y‖p + α. (3.7)

Using (3.2)–(3.7) and in virtue of the fact that α > 0 and δ ≥ 1, we conclude that for
all (u, x), (v, y) ∈ X,

‖T (u, x)− T (v, y)‖X ≤ |u− v|+ βξ‖x− y‖p + αδ

≤ |u− v|+ ‖x− y‖p + βξ(|u− v|+ ‖x− y‖p) + αδ.
(3.8)

For all (u, x) ∈ [σ, 0)×B and n ≥ 2, we have Tn(u, x) = (u, x̂), where

x̂ =
(

0, . . . , 0︸ ︷︷ ︸
(2n−1)k times

, βn sin |xm|
qm+2

3 , 0, . . . , 0︸ ︷︷ ︸
(2n−1) times

,

(
β

p
√

2p+1
)n(sin |xm+1|

sm+2
3 − |xm+1|

tm+2
3 ), 0, . . . , 0︸ ︷︷ ︸

(2n−1) times

,

(
β

p
√

2p+1
)n(|xm+2|

lm+2
3 − sin

km+2
3 |xm+2|),

0, . . . , 0︸ ︷︷ ︸
(2n−1) times

, βnxm+3, 0, . . . , 0︸ ︷︷ ︸
(2n−1) times

, βnxm+4, . . .
)
.

At the same time, for each n ∈ N, Tn(u, x) = (αn, x̂) and Tn(u, x) = (αnu, x̂) for all
(u, x) ∈ {0}×B and (u, x) ∈ (0, δ]×B, respectively. Then, using the same arguments
as for (3.1)–(3.8), one can show that for all (u, x), (v, y) ∈ X and n ≥ 2,

‖Tn(u, x)− Tn(v, y)‖X ≤ |u− v|+ βnξ‖x− y‖p + αnδ

≤ |u− v|+ ‖x− y‖p + βnξ(|u− v|+ ‖x− y‖p) + αnδ.
(3.9)

Thereby, employing (3.8) and (3.9), it follows that for all (u, x), (v, y) ∈ X and n ∈ N,

‖Tn(u, x)− Tn(v, y)‖X ≤ |u− v|+ ‖x− y‖p + βnξ(|u− v|+ ‖x− y‖p) + αnδ

= ‖(u, x)− (v, y)‖X + βnξ‖(u, x)− (v, y)‖X + αnδ.
(3.10)

Taking an = βn and bn = αnδ for each n ∈ N, since α, β ∈ (0, 1), we deduce that
an, bn → 0, as n → ∞. Defining the mapping φ : [0,+∞) → [0,+∞) as φ(w) = ξw
for all w ∈ [0,+∞), making use of (3.10), for all (u, x), (v, y) ∈ X and n ∈ N, yields

‖Tn(u, x)− Tn(v, y)‖X ≤ ‖(u, x)− (v, y)‖X + anφ(‖(u, x)− (v, y)‖X) + bn,

that is, T is an ({an}, {bn}, φ)-total asymptotically nonexpansive mapping.
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Let P : X → X be a single-valued operator and M : X ⇒ X be a multi-valued
operator. We now consider the problem of finding x ∈ X such that

0 ∈ P (x) +M(x), (3.11)

which is called the variational inclusion problem (VIP).
The VIP (3.11) has been studied by many authors in the setting of Hilbert spaces

when M is maximal monotone and P is strongly monotone, see, for example, [22]. For
the case when M is an H-monotone operator, where H : X → X is a single-valued
operator, and P is strongly monotone with respect to H and Lipschitz continuous, the
VIP (3.11) is the same variational inclusion problem involving H-monotone operator
considered by Fang and Huang [17, 39]. Note, in particular, that the VIP (3.11) has
been studied by Bi et al. [15] and Fang and Huang [18] in the setting of Banach
spaces.

The following conclusion tells the VIP (3.11) is equivalent to a fixed point problem.

Lemma 3.6. Let η : X × X → X and P : X → X be vector-valued operators,
H : X → X be a strictly η-monotone operator and M : X ⇒ X be an (H, η)-mono-
tone operator. Then x ∈ X is a solution of the VIP (3.11) if and only if

x = RH,ηM,λ[H(x)− λP (x)],

where λ > 0 is a real constant.

Proof. It follows directly from Definition 2.12 and some simple arguments. �

Let S : X → X be a total asymptotically nonexpansive mapping and let M,H,P
and η be the same as in Lemma 3.6. We denote by Fix(S) and VIP(X,M,H,P, η),
respectively, the set of all the fixed points of S and the set of the solutions of the VIP
(3.11). We now characterize the problem. If x∗ ∈ Fix(S) ∩ VIP(X,M,H,P, η), then
from Lemma 3.6 it follows that for all n ≥ 0,

x∗ = Snx∗ = RH,ηM,λ[H(x∗)− λP (x∗)] = SnRH,ηM,λ[H(x∗)− λP (x∗)]. (3.12)

The fixed point formulation (3.12) allows us to construct the following resolvent
iterative algorithm for approximating a common element of the two sets Fix(S) and
VIP(X,M,H,P, η).

Algorithm 3.7. Let P : X → X and ηn : X × X → X (n ≥ 0) be vector-valued
operators, Hn : X → X be a strictly ηn-monotone operator, and Mn : X ⇒ X
be an (Hn, ηn)-monotone operator. Suppose further that S : X → X is a total
asymptotically nonexpansive mapping. For an arbitrary chosen initial point x0 ∈ X,
compute the iterative sequence {xn}∞n=0 in X in the following way:

xn+1 = (1− αn)xn + αnS
nRHn,ηnMn,λn

[Hn(xn)− λnP (xn)], (3.13)

where n = 0, 1, 2, . . . ; λn > 0 is a real constant for each n ≥ 0; and {αn}∞n=0 is a

sequence in the interval [0, 1] with
∞∑
n=0

αn =∞.

If S ≡ I, the identity mapping on X, Algorithm 3.7 collapses to the following
iterative algorithm.
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Algorithm 3.8. Suppose that P, ηn, Hn,Mn (n ≥ 0) are the same as in Algorithm
3.7. For an arbitrary chosen initial point x0 ∈ X, define the iterative sequence
{xn}∞n=0 in X by the iterative scheme

xn+1 = (1− αn)xn + αnR
Hn,ηn
Mn,λn

[Hn(xn)− λnP (xn)],

where n = 0, 1, 2, . . . ; and λn > 0, {αn}∞n=0 are the same as in Algorithm 3.7.

4. Graph Convergence and an Application

Definition 4.1. Given multi-valued operators Mn,M : X ⇒ X (n ≥ 0), the sequence

{Mn}∞n=0 is said to be graph-convergent to M , denoted by Mn
G−→ M , if for every

point (x, u) ∈ Graph(M), there exists a sequence of points (xn, un) ∈ Graph(Mn)
such that xn → x and un → u as n→∞.

In the next theorem, the equivalence between the graph convergence of a sequence
of (H, η)-strongly monotone operators and their associated resolvent operators, re-
spectively, to a given (H, η)-strongly monotone operator and its associated resolvent
operator is proved.

Theorem 4.2. Let η : X × X → X be a vector-valued operator, H : X → X be a
strictly η-monotone operator, and let M : X ⇒ X be an (H, η)-monotone operator.
Suppose that for each n ≥ 0, ηn : X ×X → X is a τn-Lipschitz continuous operator,
Hn : X → X is a %n-strongly ηn-monotone and σn-Lipschitz continuous operator such
that {σn}∞n=0 is a bounded sequence, and Mn : X ⇒ X is an (Hn, ηn)-γn-strongly
monotone operator. Moreover, assume that lim

n→∞
Hn(x) = H(x) for any x ∈ X,

{λn}∞n=0 is a sequence of positive real constants convergent to a positive real constant

λ such that the sequence { τn
λnγn+%n

}∞n=0 is bounded. Then, Mn
G−→ M if and only if

lim
n→∞

RHn,ηnMn,λn
(z) = RH,ηM,λ(z), for all z ∈ X.

Proof. Suppose first that lim
n→∞

RHn,ηnMn,λn
(z) = RH,ηM,λ(z), for all z ∈ X. Then, for any

(x, u) ∈ Graph(M), we have x = RH,ηM,λ[H(x)+λu] and so lim
n→∞

RHn,ηnMn,λn
[H(x)+λu] = x.

Letting xn = RHn,ηnMn,λn
[H(x) + λu] for each n ≥ 0, we deduce that H(x) + λu ∈

(Hn + λnMn)(xn). Thereby, for each n ≥ 0, we can choose un ∈ Mn(xn) such that
H(x) + λu = Hn(xn) + λnun. Then, we derive for all n ≥ 0,

‖λnun − λu‖ = ‖Hn(xn)−H(x)‖ ≤ ‖Hn(xn)−Hn(x)‖+ ‖Hn(x)−H(x)‖
≤ σn‖xn − x‖+ ‖Hn(x)−H(x)‖.

Since the sequence {σn}∞n=0 is bounded, xn → x and lim
n→∞

Hn(x) = H(x), it follows

that lim
n→∞

λnun = λu. At the same time, for all n ≥ 0, yields

λ‖un − u‖ = ‖λun − λu‖ ≤ ‖λnun − λun‖+ ‖λnun − λu‖
= |λn − λ|‖un‖+ ‖λnun − λu‖.
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The facts that lim
n→∞

λn = λ and lim
n→∞

λnun = λu imply that the right-hand side of

the last inequality tends to zero, as n → ∞. Accordingly, un → u, as n → ∞. Now,

invoking Definition 4.1, we conclude that Mn
G−→M .

Converse, assume that Mn
G−→ M , and let z ∈ X be chosen arbitrarily but fixed.

Taking into account that M is an (H, η)-monotone operator, it follows that the range
of H+λM is precisely X and so there exists (x, u) ∈ Graph(M) such that z = H(x)+
λu. Thanks to Definition 4.1, there exists a sequence {(xn, un)}∞n=0 ⊂ Graph(Mn)
such that xn → x and un → u, as n → ∞. Relying on the facts that (x, u) ∈
Graph(M) and (xn, un) ∈ Graph(Mn) (n ≥ 0) we get

x = RH,ηM,λ[H(x) + λu] and xn = RHn,ηnMn,λn
[Hn(xn) + λnun], ∀n ≥ 0. (4.1)

Putting zn = Hn(xn) + λnun for all n ≥ 0, utilizing Theorem 2.14, (4.1) and the
assumptions, yields

‖RHn,ηnMn,λn
(z)−RH,ηM,λ(z)‖

≤ ‖RHn,ηnMn,λn
(z)−RHn,ηnMn,λn

(zn)‖+ ‖RHn,ηnMn,λn
(zn)−RH,ηM,λ(z)‖

≤ τn
λnγn + %n

‖zn − z‖+ ‖RHn,ηnMn,λn
[Hn(xn) + λnun]−RH,ηM,λ[H(x) + λu]‖

≤ τn
λnγn + %n

‖zn − z‖+ ‖xn − x‖

=
τn

λnγn + %n
‖Hn(xn) + λnun −H(x)− λu‖+ ‖xn − x‖

≤ τn
λnγn + %n

(‖Hn(xn)−H(x)‖+ ‖λnun − λu‖) + ‖xn − x‖

≤ τn
λnγn + %n

(‖Hn(xn)−Hn(x)‖+ ‖Hn(x)−H(x)‖

+ ‖λnun − λnu‖+ ‖λnu− λu‖) + ‖xn − x‖

≤ (1 +
σnτn

λnγn + %n
)‖xn − x‖+

τn
λnγn + %n

‖Hn(x)−H(x)‖

+
λnτn

λnγn + %n
‖un − u‖+

|λn − λ|τn
λnγn + %n

‖u‖.

Since the sequences {σn}∞n=0 and { τn
λnγn+%n

}∞n=0 are bounded and lim
n→∞

λn = λ, we

conclude that the sequences { σnτn
λnγn+%n

}∞n=0 and { λnτn
λnγn+%n

}∞n=0 are also bounded. Us-

ing the assumptions, it is easy to see that the right-hand side of the preceding in-

equality approaches zero, as n→∞, which ensures lim
n→∞

RHn,ηnMn,λn
(z) = RH,ηM,λ(z). The

proof is now complete. �

Before turning to the convergence analysis of the suggested iterative algorithm for
computation of a common element of the two sets Fix(S) and VIP(X,M,H,P, η), let
us give the following lemma which will be used efficiently in the proof of our main
result in this section.
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Lemma 4.3. [36] Let {an}∞n=0 be a nonnegative real sequence and {bn}∞n=0 be a real

sequence in [0, 1] such that
∞∑
n=0

bn =∞. If there exists a positive integer n0 such that

an+1 ≤ (1− bn)an + bncn, ∀n ≥ n0,
where cn ≥ 0 for all n ≥ 0 and lim

n→∞
cn = 0, then lim

n→∞
an = 0.

Theorem 4.4. Let η : X×X → X be a τ -Lipschitz continuous operator, H : X → X
be a %-strongly η-monotone and σ-Lipschitz continuous operator, M : X ⇒ X be an
(H, η)-γ-strongly monotone operator, and P : X → X be a ω-Lipschitz continuous
operator. Assume that for each n ≥ 0, ηn : X ×X → X is a τn-Lipschitz continuous
operator, the operator Hn : X → X is %n-strongly ηn-monotone, κn-strongly mono-
tone with respect to P , and σn-Lipschitz continuous. Suppose that for each n ≥ 0,
Mn : X ⇒ X is an (Hn, ηn)-γn-strongly monotone operator and lim

n→∞
Hn(z) = H(z)

for any z ∈ X. Let κn → κ, τn → τ , γn → γ, %n → %, σn → σ and Mn
G−→ M ,

as n → ∞. Furthermore, let S : X → X be a ({νn}, {µn}, φ)-total asymptotically
nonexpansive mapping such that Fix(S) ∩ VIP(X,M,H,P, η) 6= ∅. If there exist real
constants λn > 0 (n ≥ 0) satisfying (3.13) and a real constant λ > 0 such that λn → λ
as n→∞, and√

σ2 − 2λκ+ λ2ω2 <
λγ + %

τ
, 2λκ < σ2 + λ2ω2, (4.2)

then

(i) VIP(X,M,H,P, η) is a singleton set;
(ii) the iterative sequence {xn}∞n=0 generated by Algorithm 3.7 converges strongly

to the only element x∗ of Fix(S) ∩VIP(X,M,H,P, η).

Proof. Let us define a mapping Q : X → X by

Q(x) = RH,ηM,λ[H(x)− λP (x)], ∀x ∈ X. (4.3)

Then, making use of (4.3) and Theorem 2.14, for all x, y ∈ X, yields

‖Q(x)−Q(y)‖ = ‖RH,ηM,λ[H(x)− λP (x)]−RH,ηM,λ[H(y)− λP (y)]‖

≤ τ

λγ + %
‖H(x)−H(y)− λ(P (x)− P (y))‖.

(4.4)

Since H is κ-strongly monotone with respect to P and t-Lipschitz continuous, and
P is ω-Lipschitz continuous, utilizing well known property of the norm arising from
inner product in Hilbert space X, it follows that for all x, y ∈ X,

‖H(x)−H(y)− λ(P (x)− P (y))‖2

= ‖H(x)−H(y)‖2 − 2λ〈H(x)−H(y), P (x)− P (y)〉
+ λ2‖P (x)− P (y)‖2

≤ (σ2 − 2λκ+ λ2ω2)‖x− y‖2,
which implies that

‖H(x)−H(y)− λ(P (x)− P (y))‖ ≤
√
σ2 − 2λκ+ λ2ω2‖x− y‖. (4.5)
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Substituting (4.5) into (4.4), we obtain

‖Q(x)−Q(y)‖ ≤ θ‖x− y‖, (4.6)

where θ = τ
λγ+%

√
σ2 − 2λκ+ λ2ω2. Taking into account (4.2), we know that θ ∈ [0, 1)

and so (4.6) ensures that the mapping Q is contraction. Invoking Banach fixed point
theorem, Q has a unique fixed point in X, that is, there exists a unique point x∗ ∈ X
such that Q(x∗) = x∗. In virtue of (4.3), it follows that x∗ = RH,ηM,λ[H(x∗)− λP (x∗)].

According to Lemma 3.6, x∗ ∈ X is a unique solution of the VIP (4.4). Thereby,
VIP(X,M,H,P, η) is a singleton set.
Now, we prove the conclusion (ii). Owing to the fact that VIP(X,M,H,P, η) = {x∗},
from Fix(S) VIP(X,M,H,P, η) 6= ∅, we conclude that x∗ ∈ Fix(S). Hence, for all
n ≥ 0, one can write

x∗ = (1− αn)x∗ + αnS
nRH,ηM,λ[H(x∗)− λP (x∗)], (4.7)

where the sequence {αn}∞n=0 is the same as in Algorithm 3.7. Applying (4.6), (4.7)
and the fact that S is a ({νn}, {µn}, %)-total asymptotically nonexpansive mapping,
we get

‖xn+1 − x∗‖ ≤ (1− αn)‖xn − x∗‖+ αn‖SnRHn,ηnMn,λn
[Hn(xn)− λnP (xn)]

− SnRH,ηM,λ[H(x∗)− λP (x∗)]‖

≤ (1− αn)‖xn − x∗‖+ αn
(
‖RHn,ηnMn,λn

[Hn(xn)− λnP (xn)]

−RH,ηM,λ[H(x∗)− λP (x∗)]‖+ νnφ(‖RHn,ηnMn,λn
[Hn(xn)− λnP (xn)]

−RH,ηM,λ[H(x∗)− λP (x∗)]‖) + µn
)
.

(4.8)

Using Theorem 2.14 and the assumptions, for each n ≥ 0, we obtain

‖RHn,ηnMn,λn
[Hn(xn)− λnP (xn)]−RH,ηM,λ[H(x∗)− λP (x∗)]‖

≤ ‖RHn,ηnMn,λn
[Hn(xn)− λnP (xn)]−RHn,ηnMn,λn

[H(x∗)− λP (x∗)]‖

+ ‖RHn,ηnMn,λn
[H(x∗)− λP (x∗)]−RH,ηM,λ[H(x∗)− λP (x∗)]‖

≤ τn
λnγn + %n

‖Hn(xn)− λnP (xn)− (H(x∗)− λP (x∗))‖

≤ τn
λnγn + %n

(
‖Hn(xn)−H(x∗)− λn(P (xn)− P (x∗))‖

+ |λn − λ|‖P (x∗)‖
)

+ ‖Γn‖

≤ τn
λnγn + %n

(√
σ2
n − 2λnκn + λ2nω

2‖xn − x∗‖

+ |λn − λ|‖P (x∗)‖
)

+ ‖Γn‖

= θn‖xn − x∗‖+
τn|λn − λ|
λnγn + %n

‖P (x∗)‖+ ‖Γn‖,

(4.9)

where for each n ≥ 0,

Γn = RHn,ηnMn,λn
[H(x∗)− λP (x∗)]−RH,ηM,λ[H(x∗)− λP (x∗)]
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and

θn =
τn

λnγn + %n

√
σ2
n − 2λnκn + λ2nω

2.

Substituting (4.9) into (4.8) and considering the fact that φ is an increasing function,
yields

‖xn+1 − x∗‖ ≤ (1− αn)‖xn − x∗‖+ αn
(
θn‖xn − x∗‖

+
τn|λn − λ|
λnγn + %n

‖P (x∗)‖+ ‖Γn‖
)

+ νnφ(θn‖xn − x∗‖+
τn|λn − λ|
λnγn + %n

‖P (x∗)‖+ ‖Γn‖) + µn
)

= (1− αn(1− θn))‖xn − x∗‖+ αn
(τn|λn − λ|
λnγn + %n

‖P (x∗)‖+ ‖Γn‖

+ νnφ(θn‖xn − x∗‖+
τn|λn − λ|
λnγn + %n

‖P (x∗)‖+ ‖Γn‖) + µn
)
.

(4.10)

Taking into account of the facts that τn → τ , λn → λ, γn → γ, %n → %, σn → σ
and κn → κ, as n → ∞, we deduce that θn → θ, as n → ∞, where θ is the same

as in (4.6). Since θ ∈ (0, 1) there exist θ̂ ∈ (0, 1) (take θ̂ = θ+1
2 ∈ (θ, 1)) and

n0 ∈ N such that θn ≤ θ̂ for all n ≥ n0. Consequently, for all n ≥ n0, we have

1− αn(1− θn) ≤ 1− αn(1− θ̂). Then, by (4.10), for all n ≥ n0, it follows that

‖xn+1 − x∗‖ ≤ (1− αn(1− θ̂))‖xn − x∗‖

+ αn(1− θ̂)Ψn + νnφ(θ̂‖xn − x∗‖+ Ψn) + µn

1− θ̂
,

where Ψn = τn|λn−λ|
λnγn+%n

‖P (x∗)‖+‖Γn‖. Let us now take for each n ≥ n0, an = ‖xn−x∗‖,
bn = αn(1− θ̂) and

cn =

τn|λn−λ|
λnγn+%n

‖P (x∗)‖+ ‖Γn‖+ νnφ(θ̂‖xn − x∗‖+ τn|λn−λ|
λnγn+%n

‖P (x∗)‖+ ‖Γn‖) + µn

1− θ̂
.

It is obvious that
∞∑
n=0

bn = ∞, because of
∞∑
n=0

αn = ∞. Thanks to the fact that

Mn
G−→M , in the light of Theorem 4.2, we deduce that RHn,ηnMn,λn

[H(x∗)− λP (x∗)]→
RH,ηM,λ[H(x∗) − λP (x∗)], as n → ∞ and so lim

n→∞
Γn = 0. Since λn → λ, νn → 0 and

µn → 0, as n→∞, we conclude that cn → 0, as n→∞. Owing to the fact that all
the conditions of Lemma 4.3 are satisfied, Lemma 4.3 guarantees that lim

n→∞
an = 0,

and so xn → x∗ as n→∞. This completes the proof. �

As an immediate consequence of the above theorem we obtain the following assertion.

Corollary 4.5. Let P, η, ηn, H,Hn,M,Mn (n ≥ 0) be the same as in Theorem 4.4
and let all the conditions of Theorem 4.4 hold. If there exist real constants λn > 0
(n ≥ 0) satisfying (3.13) and a real constant λ > 0 such that λn → λ as n→∞, and
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(4.2) holds, then the iterative sequence {xn}∞n=0 generated by Algorithm 3.8 converges
strongly to the unique solution of the VIP (3.11).
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