Fized Point Theory, 24(2023), No. 1, 3-22
DOI: 10.24193/fpt-r0.2023.1.01
http://www.math.ubbcluj.ro/~nodeacj/sfptcj.html

BOUNDARY VALUE PROBLEMS FOR SEQUENTIAL
HILFER FRACTIONAL DIFFERENTIAL EQUATIONS AND
INCLUSIONS WITH INTEGRO-MULTISTRIP-MULTIPOINT

BOUNDARY CONDITIONS

BASHIR AHMAD*, SOTIRIS K. NTOUYAS*** AND FAWZIAH M. ALOTAIBI*

*Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group,
Department of Mathematics, Faculty of Science, King Abdulaziz University,
P.O. Box 80203, Jeddah 21589, Saudi Arabia
E-mail: bashirahmad_qau@yahoo.com, foozalotaibi_22@hotmail.com

**Department of Mathematics, University of Ioannina, 45110 Ioannina, Greece
E-mail: sntouyasQuoi.gr

Abstract. We study a novel fractional model of boundary value problems in the setting of Hil-
fer fractional derivative operators. Precisely, sequential Hilfer fractional differential equations and
inclusions with integro-multistrip-multi-point boundary conditions are considered. Existence and
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1. INTRODUCTION

Fractional calculus and fractional differential equations have received considerable
attention of many scientists in view of their extensive applications in the mathematical
modelling of real world phenomena in a variety of fields such as physics, applied
mathematics, control theory, etc. For a detailed account of the subject, we refer the
reader to the books [2], [21], [26], [30] and the references cited therein. For application
of fractional calculus to the other fields of science, for instance, see [11], [17], [22],
[25], [28].

Differential equations and inclusions equipped with various types of boundary con-
ditions have been widely investigated by many researchers, for instance, see the papers
1], (3], (4], [6], [7), [13], [27):
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Keeping in mind the utility of fractional order operators, different forms of such
operators were proposed, for example, see Kilbas et al. in [21]. Hilfer in [18] introduced
a new fractional derivative operator as

d
HD"‘”Bu(t) = I'B(”_“)D"I(l_ﬁ)("_“)u(t),n —l<a<n0<pg<,t>a,D= p7e

where I¢ denotes the Riemann-Liouville fractional integral of order ¢ defined by

I i1

G /a (t —s)" “u(s)ds.

Here ¢ stands for 8(n — «) or (1 — 8)(n — «)). In passing, we remark that the Hilfer
fractional derivative corresponds to the one due to Riemann-Liouville and Caputo for
B =0 and 8 = 1 respectively.

Many authors studied initial value problems involving Hilfer fractional derivatives,
for example, see [12, 16, 30] and references therein. Some recent works on the nonlocal
boundary value problems involving Hilfer fractional derivatives can be found in the
articles [5, 31, 32].

In the present paper, our aim is to enrich the existing literature on nonlocal bound-
ary value problems involving Hilfer fractional derivatives, by studying the nonlinear
sequential fractional differential equation of the form:

Igu(t) =

(HDW +k HD“’LB)x(t) = f(ta(t), teJ:=[ab], a>0,  (L1)
supplemented with integro-multistrip-multipoint boundary conditions:

t@(a)=0,i=0,1,2,...,n—2,
M4i

/ab x(s)ds = Zi: i1 /m_1 x(s)ds + iﬂj z(p;),

where 7 D*# denotes the fractional derivative operator of Hilfer type of order a,
n—1<a<nwithn >3, and type 8, 0 < <1, f:J xR — R is a continuous
function, a < m < M < ... <M < p1 < p2 < ... < pg < b, and k, A,y > 0,
1=2,3,...,p,7=1,2,...,n with p,g € N.

The multi-valued version of the problem (1.1)-(1.2) is also studied by considering
the following inclusion problem:

(1.2)

(HDa,B +k HDa—lﬁ)x(t) € F(t,xz(t)), teJ:=]a,b,

x(i)(a):(),i:0,1,2,.~»,n_23 (13)

/abx(s)ds - i)‘i‘l /’“ z(s)ds + iuj z(pj),

MNi—1

where F': J X R — P(R) is a multi-valued map (P(R) is the family of all nonempty
subsets of R).

We prove the existence results for the inclusion boundary value problem (1.3) by
using Leray-Schauder nonlinear alternative for multi-valued maps and Covitz-Nadler
fixed point theorem for multi-valued contractions.
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The rest of the paper is composed as follows. Section 2 contains some preliminary
material related to our study. In Section 3, we apply Krasnosel’skii and Banach fixed
point theorems to prove the existence and uniqueness of solutions for the boundary
value problem (1.1)-(1.2). Section 4 is devoted to the study of the inclusion boundary
value problem (1.3) by means of the standard fixed point theorems for multi-valued
maps. The application of the obtained results is demonstrated by numerical examples
to indicate their efficacy.

2. PRELIMINARIES

Let C(J,R) represent the Banach space of all continuous functions from J into R
endowed with the norm || f|| = sup{|f(¢)| : t € J}, while L*(J,R) denotes the Banach
space of functions y : J — R which are Lebesgue integrable normed by

1
Iyl = / [y(0))dt.

In the sequel, we use the notation:

Pu(X)={Y € P(X) : Y is closed},

Pep(X) ={Y € P(X) : Y is compact}, and

Pep.e(X)={Y € P(X):Y is compact and convex}.
Here (X, || - ||) is a Banach space. For further details on multi-valued maps, see the
books [10], [13] and [20].

The composition of Riemann-Liouville fractional integral operator with the Hilfer
fractional derivative operator is presented in the following lemma.

Lemma 2.1. ([19]) Let f € L(a,b),n—1<a<nneN, 0<3<1, [n)0=0)f ¢
AC¥[a,b]. Then

o (t— a)b-(—)1-5) e
([ "D Bf) ZI‘ (n—a)1—-p)+1) tl—>rzrzl+ (I(l B )f)(t)'

3. EXISTENCE AND UNIQUENESS RESULTS FOR THE PROBLEM (1.1)-(1.2)

We begin this section with an auxiliary lemma that plays a key role to transform
the problem (1.1)-(1.2) into a fixed point problem.

Lemma 3.1. Let h € C(J,R) and

_ b—a 5~y lmi—ay (ml—a “
A= L(y+1) ;AH Ty +1) Z:: ————#0. (3.1)

Then x € C(J,R) is a solution of the linear boundary value problem
(HDW e HDa—LB)x(t) = h(t), teJ:=[ab],

x<’>()—0 i=0,12,...,n-2, (3.2)

/ ds—z& 1/ (8)d8+jz:uj%‘

Ni—1
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if and only if
z(t) = I%h(t) —k/tx(s)ds
_ -1 un
+GZW{ / ds—i—Z)\l 1/ M(s)ds + 3wy 1hipy)

—1 ] 1

P;
_kZ)\, 1/77 / duds—k:z,uj/a x(s)ds

j=1

+k / / duds} (3-3)

Proof. Operating fractional integral I® on both sides of equation (3.2) and using
Lemma 2.1, we obtain

(t —a)~(n==6) (t —a)'~(n=)(1=5) N
S i P T ) Al v P () I
(t — a)2~(n—a)(1-8) (t — ) 1= (n=a)(1-5) N
B Ve ey ) B v oy prpupey T G ) +I°hE)
B (t—a)—™" (t —a)y=(»=1
T Th—n-1)  “TH-(n-2)
+cgw RPN il F(C;); — k() + 1), (34)

where y=n—(n—a)(1—p)and ¢; e R,i=0,1,...,n— 1.
Using the boundary conditions (") (a) = 0,7 = 0,1,2,...,n — 2 in (3.4), we obtain
co=c¢1=...=cp_o =0. Thus (3.4) reduces to

(t—a)!
L'(v)

which, together with the last boundary condition, yields

Cho1 = A{—/a I h(s)ds—kz:/\i_l/ 1 h(s)dS—FZujl h(p;)

MNi—1 j=1

2
_kZ)\1 1/77 1/ dUdS_kZﬂj/a x(s)ds

[ [ x duds} -

Inserting the value of ¢,_1 in (3.5), we obtain the solution (3.3). We can obtain the
converse of this lemma by direct computation. The proof is finished. U

z(t) = cpy — kI*z(t) + I*h(t), (3.5)
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Having in mind Lemma 3.1, we introduce an operator G : C(J,R) — C(J,R) as
follows

(Ga)(1)
t _ gt b
= I°f(ta(t) — b / x(s)dsNA){ / 19 £ (s, 2(s))ds

+ZA1 1 / o f(s,a(s)ds + 3 ;1 F(pg, 2(py)) (3.6)

MNi—1 j=1

kaAl 1/ / dudsszu]/a ds+k/ / duds}

Obviously the problem (1.1)-(1.2) is equivalent to the fixed point problem: = = Gz.
Let us now introduce the following notations for the sake of computational conve-
nience:

B N Ut il [ — @) = (g — )
= tarn T A [rmz +ZW B (o +2)

DIl (3.7)
and
T IkIZ\ug
+|k|Z\Az 1| 2(?71 1= o)’ +|k\(b_2a) . (3.8)

3.1. Existence result via Krasnosel’skii fixed point theorem. In the following
result, we prove the existence of solutions for the problem (1.1)-(1.2) by means of
Krasnosel’skii fixed point theorem for a sum of two operators [23].

Theorem 3.2. Let f: J xR — R be a continuous function satisfying the conditions:

(A1) |f(t,z) = ft,y)| < Lz —y|, forallt € J, L >0, z,y € R;

(A2) [f(t,w)| < p(t) for all (t,u) € J xR, p € C(J,RT).
Then the sequential Hilfer fractional boundary value problem (1.1)-(1.2) has at least
one solution on J provided that LQ)1 < 1, where Q1 is given by (3.8).

Proof. By the assumption (Ag), (3.7) and (3.8), we fix 7 > (Q|/p]])/(1 — Q1) and
consider a closed ball Br = { € C(J,R) : ||z|| < T}. Next we define operators G; and
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G> on By as follows

g1 b
@a)t) = I°f(ta(D) + “A){ - [ 1 sts.at)as

I ppH / I”‘f(sw(s))ds+Zuj1af(pj,x(pj))},

j=1

(Goa)(t) = —k;/ sds+ L= { kZAZ 1/ il/:x(u)duds
—kzu]/a ds—i—k/ / duds}

Notice that G = G; + Gs. For x,y € B, we find that
G117 + Gayl| = sup G112 + Gy
teJ

IN

« 7“_@)7_1 ’ “|f(s,z(s))|ds
Pl ()] + S5 [/ 1% f(5,2(5))|d
P ni q
3ol | fa|f<s,x<s>>|ds+Z|uj|fa|f<pj,x<pj>>|]
# [ Totopias + 0 {IkIZug/a )lds

+|k|§jin1 / / [y(w)|duds + [K] / / |y<u>|duds}

b-a  G-ap ! [p—aeh
I ”{ Tlatl) Al [I‘(a+2)

IN

a+1

- (i —a)*™' — (=1 — a) - (pj —a)”
+; Aiil T(a +2) * Z L vPesy
+||x||{|k|<b— o+ Pt — [IkIZm
3 =0~ (=) G- H

= |plQ+7Q <T.

This shows that Giz 4+ Goy € Br.
By (A2) and the condition L@y < 1, it can easily be shown that Gs is a contraction

mapping.
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The operator G; is continuous, since f is continuous, and uniformly bounded on B
as

(b—a)® (b—a)’"t|(b—a)>t!
622l < “”{r(w DTl [T+
3 (ni —a)*™ = (gic1 —a)* ™ (pj —a)®
+;|/\H| T(a+2) +;‘M|F(a+1) }

The compactness of the operator G; will be proved next. For a < t; < t5 < b, we
have

Grz(t2) — Gio(t1)]

: ﬁ / [(ta — )71 — (01 — ) (s, 2(5))ds +/t (1 — )77 f(s,2(5))ds
((ta —a) ™' = (L —a) ' | ",
; T { [ 1ol ateas
+ i /m 1% f (s, x(s))lds + ) |Mj|1a|f(Pj7-75(Pj))|}
=2 Ni—1 Jj=1
[l o o o
Smﬂ(tz—a) — (t1 — @)+ 2(t2 — t1)*]
(tz —a) ™' — (1 —a)"" Y[ | (b—a)*"
+ ] l T(a+2)

lall =0,

p a+1 a+1 q e}
(mi —a)**! — (ni—1 —a) (pj —a)
Ai | =
2 Pl T(o+2) +Z'“J|r(a+1)
=2 Jj=1
as t1 —ta — 0, independent of z. Hence, by the Arzela-Ascoli theorem, G; is compact
on Br. Thus all the assumptions of Krasnosel’skii’s fixed point theorem hold true and

hence its conclusion implies that the problem (1.1)-(1.2) has at least one solution on
J, which ends the proof. O

3.2. Uniqueness result via Banach’s fixed point theorem.

Theorem 3.3. Let f: J xR — R be a continuous function satisfying the assumption
(Ay). Then the sequential Hilfer fractional boundary value problem (1.1)-(1.2) has a
unique solution on J if LQ + Q1 < 1, where Q and Q1 are given by (3.7) and (3.8)
respectively.

Proof. Let us first show that GB, C B,., where G is the operator defined by (3.6) and
r>MQ/(1—LQ— Q1) with M = sup,c;|f(t,0)] and B, = {z € C(J,R) : ||z|| < r}.
By the assumption (A;), we have that |f(¢,2)| < Lr + M. Hence, for any = € B,., we
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find that
|Gz || = sup [Gz(2)|
teJ

(b—a)*  (b—a) [(b —a)t!

IA

(LT+M){P(04+1)+ A | Ta+2)

oz+1 g

+§p:‘)\ ‘(ni_a’)a—i_ (777, l_a' +§:| |p]
1=2 o F(a+2 ]
( Z

+|k|Z\AH\ i — )’ _2(’”‘1_“) +|k\( _2@) H

= (Lr+M)Q+1rQ1 <,

which implies that GB, C B,. Next, we will prove that G is a contraction.
For z,y € C(J,R) and t € J, we get

|G2(t) — Gy(D)]

o (tia)V71
< sup I%f(t, x(t) — f(ty(0)] + A
#Y el [ 1) — S s
i=2 Mi—1
+> I fps, 2(p;)) — f(pjay(pj))IH

j=1

+\l<;|/ 15(s) — y(s)|ds + = IA\ {|’f|z%/ la(s) — y(s)|ds

|k|Z|/\l 1|/ /|:c |duds+|k|/ / () — y(u |duds}
—g)et! — 2,71_aoc-i-1 J

+Z|AZ iz a) F(oH(—T]Q) +Z\ il (s

SL{ (b—a)®  (b—a)y [(b—a)a“
}le —
+{|k|<b e — [kIZIM

Tlatr D) JA| | T(at2)
P = a)? — (n_y — a)? b—a)2
4R Y oy B im0l 0o ”nxmu:m@l)nzyn.

b
{ / 19 (s, 2(5)) — f(s, y(s))|ds

q

2
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Therefore |Gz — Gy|| < (LQ + Q1)||z — y||. Since LQ + Q1 < 1, the operator G is a
contraction. Hence the operator G has a unique fixed point by contraction mapping
principle. Consequently the sequential Hilfer fractional boundary value problem (1.1)-
(1.2) has a unique solution on J. This completes the proof. O

Example 3.4. Consider the nonlinear sequential Hilfer fractional differential equa-
tion:

1
(HD7/2>1/2 +1/2 HD5/2>1/2)x(t) = tan~'z 4, te J=[0.1), (3.9)

subject to integro-multistrip-multipoint boundary conditions:

m(O)—m(O)—w (0)=0,n=4

i 2
/ s)ds = Z i 1/ x(s)ds + Z,uj z(pj), (3.10)

MNi—1

where 1 = 1/12,n0 = 1/4,m3 = 1/3,m4 = 5/12,p1 = 7/12,p2 = 2/3,v = 15/4. It is
clear that L = 1/18 and (A;) is satisfied. Let Ay = Ay = A3 = 3 = pg = 1. Then we
have A = 12.374118, Q = 0.09427, Q; = 0.583335, and LQ+Q; = 0.588572 < 1. Thus
all the assumptions of Theorem 3.3 are satisfied and hence its conclusion implies that
the problem (3.9)-(3.10) has a unique solution on [0, 1].

Remark 3.5. Notice that the above example illustrates Theorem 3.2 as

|f(t,z)] < p(t) = €' + 7/36 and LQ; = 0.583335/18 < 1.

4. EXISTENCE RESULTS FOR THE PROBLEM (1.3)

Before stating and proving our main existence results for problem (1.3), we will
give the definition of its solution.

Definition 4.1. A function z € AC("~1 (J,R) is said to be a solution of the problem
(1.3) if there exists a function v € L(J,R) with v(t) € F(¢,z) a.e. on J such that

o) = k/ s)ds + t_z)w 1{—/ablav(s)ds

+Z)\Z 1/ av(s)ds—l—ZuanU(pj)—kzp:)\i_l/m /sx(u)duds

MNi—1 j=1 i=2 Ni—1 Ja

q Pj
_k;ZMJ/ dS—l—k‘/ / duds}

4.1. The upper semicontinuous case. Assuming that F' has convex values and
is L'-Carathéodory, we prove an existence result for the inclusion problem (1.3) by
applying Leray-Schauder nonlinear alternative for multi-valued maps [15].

The following lemma is used in forthcoming result.
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Lemma 4.2. ([24]) Let F : [a,b] xR — Pe,p o(R) be an L' — Carathéodory multivalued
map and let © be a linear continuous mapping from L'([a,b],R) to C([a,b],R). Then
the operator

©0Sp: C([a,b],R) = Pep.(C([a,b],R)), x+— (©0Sp)(z) =0O(SFs)

is a closed graph operator in C([a,b],R) x C([a,b],R).

Theorem 4.3. Assume that Q1 < 1 and the following conditions hold:

(H1) F:J xR — P (R) is L*-Carathéodory;
(Hg) there exists a continuous nondecreasing function ¢ : [0,00) — (0,00) and a
Junction p € C(J,RT) such that
|F(t,2)lp = sup{lyl - y € F(t,2)} < p(e)(llz]) for each (t,2) € J x B;
(Hj3) there exists a positive constant M satisfying

(1-Q1)M

_— 1
ODplQ ~

where Q and Q1 are given by (3.7) and (3.8) respectively.

Then the sequential Hilfer inclusion fractional boundary value problem (1.3) has at
least ome solution on J.

Proof. Introduce a multi-valued map: N : C(J,R) — P(C(J,R)) as

k/' $)ds + . ?*ﬂ{_lfpm@@

+Z)‘1 1/ i ds—l—Zuanv(pj)

N(z) = —1

ka)\t . / w)duds

MNi—1
Pj
_kzu]/ ds—i—k/ / duds}, v € Sp g,

where Sp, = {f € L*([a,b],R) : f(t) € F(t,z) for a.e. t € [a,b]}. Notice that the
fixed points of N are solutions of the problem (1.3). It will be shown in several steps
that the map IV satisfies the hypothesis of the Leray-Schauder nonlinear alternative
for multi-valued maps [15].

heC(JR):

Step 1. For each z € C(J,R), N(z) is convez.
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Let hy, ho € N(x). Then there exist v1, vy € S, such that, for each ¢t € J, we have

(t—a)r! b
hi(t) = I%v;(t) k/ d8—|— A —/ I%v;(s)ds

P 7 p b s
+ Z Aic1 / I%v;(s)ds + Z wil%vi(p;) — k Z Aic1 / / x(u)duds

it j=1 i=2 i
Pj
—kzu]/ ds+l<:// duds} i=1,2

Let 0 < 6 < 1. Then, for each t € J, we have

-

[0h1 + (1 — 0)h2](t)
= I%0vi(t) + (1 — O (t)] — k/ x(s)ds

(t—a)~!

b
n { - /a I*[0v1(s) + (1 — @)va(s)]ds

+Z/\i_1/77i I%[0vy(s) + (1 — 0)wa(s dS+Z“J [Bv1(p;) + (1 = O)va(py)]

_kZ)\z 1/7]1 / duds—kZuj/a ds+k/ / duds}

Jj=1

Since F' has convex values, that is, Sg, is convex, we have 0hy + (1 — 0)hy € N(z).
Step 2. Bounded sets are mapped by N into bounded sets in C(J,R).

For a fixed r > 0, let B, = {x € C(J,R) : ||z|]| < r} be a bounded ball in C(J,R).
Then, for each h € N(z),x € B,, there exists v € Sp, such that

W) = k/ s)ds + t‘X)H{ —/abm(s)ds

+Z:)‘i—1 /’“ I%v(s)ds + Zﬂjlav(/)j) - kzp:/\i—1 /?7 /s x(u)duds

MNi—1 j=1 i=2 nNi—1Ja

—kijuj/m ds+k// duds}
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For t € J, we obtain

IN

IN

<

ol
t—a) 1 i
12 (t)] + |X)| /mv( |ds+Z|/\l 1|/ I*Ju(s)|ds
1=2 Mi—1
+Z|u]|1‘“lvm +|k|/|x (s)lds + L= W {lkIZug/ j(s)\ds

+|k|Z|/\z 1|/ /|x \duds+|k|/ / o (u |duds}

—a)®  (b—a)7t|(b—a)t!

(o
||p||w<||x||>{ fesD T A | Tetd

—a)*M — (i —a)t

” (n: (pj —a)°
+|x||{k|<b— o)+ i — |k|ng

_ . —a 2 —a 2
||p||¢(||$||)Q +[[zllQ,

}

and consequently

12l < llpll(r)@ + Q1.

Step 3. Bounded sets are mapped by N into equicontinuous sets of C(J,R).

Let x € B, and h € N(z). Then there exists v € S, such that, for each t € J, we

have

h(t)

t —a v—1 b
= I%(t) —k/ x(s)ds + (tA){ —/ I%v(s)ds

p i 4q p ni s
—I—Z)\i_l/ Iav(s)ds—l—z,ujlo‘v(pj) - ka\i_1/ / x(u)duds

Ni—1 j=1 i=2 Ni—1Ja

q Pj
_kZu]/ z( ds+k// duds}
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Let t1, to € J, t1 < ts. Then
|h(t2) — h(t1)]

1 " —g)t = —$)% u(s)ds - —5)% Lu(s)ds
@/autg L~ (1 — s) }<>d+/t1<t2 ) <>d‘

_ (b2 —a) " — (i —a) " | ",
+E[(t2 —t1) + Al {/a I*v(s)|ds

IN

P i q
+> il I*w(s)lds + > 1| T |v(p))]
=2

MNi—1 j=1
P Pj
+|k\ZAH/ / |z (u |duds+\k|zuj/ |2 (s)|ds
i=2 Mi—1 j=1 a
+|k\// duds}
lIplle(r) 2

IN

+ [k|r(t2 — t1)

/at1 [(ta — 5)27 1 — (t; — 5)* Y]ds Jr/ (ty — 5)* 1ds

t1

I(a)

|(t2 — a) ' = (1 —a)"" ] l(b —a)*t!
|A] I'(a+2)

+

P —a)*tt = (g, — a)ot? ki ;i —a)®
+Z|’\i‘1|(m )r(ainz) ! +Z;“j(l“p(cwri)

a2— i — 70,2
+Ik\r2|uj fa+|k\rz|xz @ (ies 2 )
Y
+|k\r( 2“) ] 0,

as t; — to independently of z € B,. It follows by Arzeld-Ascoli theorem that N :
C(J,R) — P(C(J,R)) is completely continuous.

Next, using the fact that a completely continuous operator is upper semicontinuous
if it has a closed graph [10, Proposition 1.2], it will be shown that the operator N is
upper semicontinuous. This will be established in the following step.

Step 4. N has a closed graph.

Let x, — ., h, € N(z,) and h, — h,. Then we show that h, € N(x.). Now
hyn, € N(z,) implies that there exists v,, € Sp,, such that, for each ¢ € J, we have

_ g1 b
hn(t) = I%( k/ ds+ (t X) {—/ I%v,(s)ds
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n;

+i)\i_1/m I%v,(s d5+z,ujf Un(p;) kZ)\Z 1/ u)duds
i=2

i Mi—1

szuj/pj ds+kz// duds}

For each t € J, we must have v, € Sg,, such that

_ g1 b
ha(t) = 1%, (1) k;/ sds + & X) {—/ [%v,(s)ds

p Ni p i s
+Z)\i_1/ T%v,(s ds—i—z,ujlo‘v*(pj) _’fZAi—l/ / x(u)duds
i=2 - 1Ua

Uy i=2 MNi—

_kiw/ sk [ [ duds}

Consider the continuous linear operator © : L*(J,R) — C(J) by
v — O(v)(t)

= I%(t) k/atz(s)der W{ /ablo‘v(s)dsqtzp:)\i_l /n I%v(s)ds
+Zuj XP:AH/W / x(u)duds

—kzﬂj/ ds+k/ / duds}

Observe that ||h, — h«| — 0 as n — oo, and thus, it follows from Lemma 4.2, that
O o Sp, is a closed graph operator. Moreover, we have

hyn, € ©(SFs,).

Since x,, — =, Lemma 4.2 implies that

¢ _ gt b
hi(t) = I%v.(t) — k‘/ x(s)ds + (tA){ 7/ I%v,(s)ds

p Ni 9q P i s
+ Z Aic1 / I%v,(s)ds + Zujf"‘v* (pj) — k Z Aic1 / / z(u)duds

i—1 j*l

szpj/pj ds+k:// duds}

for some vy € S g, .

Step 5. We show that there exists an open set U C C(J,R) with x ¢ ON(x) for any
6 € (0,1) and all x € OU.
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Let x € ON(z) for some 6 € (0,1). Then there exists v € L*(J,R) with v € Sp, such
that, for t € J, we have

x(t) = OI%(t) Hk/tx(S)ds+0(t_ALml{ /bI“v(s)dS

i p i
+Z/\l 1/ ds+Zu]I v(pj) — kZ)\i_l/
n

Ni—1 =2

szuj/pj ds+k// duds}

Following the computation as in Step 2, for each ¢t € J, we have

(b—a)  (-ay™ [(b—a)&ﬂ
['(a+1) |A| IMNa+2)

@@ < loldle |>{
3 (mi—a)* ™ = (i —a)*™ & pj —
+Z\)\i—1\ [(a+2) +Z| W a1 +1
+||x||{k|<b— ot — [m@my

+|k|Z\>\z & 2(”1 1= @ ‘2“) H
= ||p||¢(||a?\|)Q+||xHQ1.

1)

In consequence, we get

(1— Q)=
s(lDlple ="

By the assumption (Hs), we can find M such that ||z|| # M. Let us set
U={ze€C(JR):|z|| < M}.

Note that N : U — P(C([a,b], R)) is a compact, upper semicontinuous multi-valued
map with convex closed values, and there is no € 9U such that = € N (z) for some
6 € (0,1), from the choice of U. Hence, by the Leray-Schauder nonlinear alternative
for multi-valued maps [15], we deduce that N has a fixed point € U which is a
solution of the sequential Hilfer inclusion fractional boundary value problem (1.3).
This completes the proof. O

Example 4.4. Consider the sequential Hilfer fractional differential inclusion:

(HD7/2’1/2 +1/2 HD5/2’1/2>x(t) € F(t,z), teJ:=0,1], (4.1)
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subject to integro-multistrip-multipoint boundary conditions (3.10), where

1 ( x? e 1 —? 1)
t+5\10(1+22)  © " 15° 10/’

F(t,xz) = [

(1+ Qe_t)(sinx + %arctan(w) + 5)} (4.2)

It is easy to find that p(t) = 1+ 2¢7 ¢, ||p|| = 3,4 (||z]|) = ||z|| + 3/4. Using the values
Q = 0.09427, Q1 = 0.583335 obtained in Example 3.4, we find from the condition (Hs)
that M > M; ~ 1.584606. Clearly all the assumptions of Theorem 4.3 are satisfied
and hence the sequential Hilfer fractional differential inclusion (4.1) supplemented
with the boundary conditions (3.10) has a solution on [0, 1].

4.2. The Lipschitz case. Here we prove an existence result for the problem (1.3)
with a non-convex valued multi-valued map via a fixed point theorem for multivalued
maps due to Covitz and Nadler [9].

Theorem 4.5. Assume that the following conditions hold:

(Hy) F:J xR = Pp(R) is such that F(-,x) : J — Pep(R) is measurable for each
r € R;

(Hs) Hu(F(t,x), F(t,z)) < m(t)|lz — Z| for almost all t € J and z,T € R with

m € C(J,R") and d(0, F(t,0)) < m(t) for almost all t € J.

Then the sequential Hilfer inclusion fractional boundary value problem (1.3) has at
least one solution on J if

Qllm| + Q1 <1,
where @ and Q1 are given by (3.7) and (3.8) respectively.

Proof. We verify that the operator N : C(J,R) — P(C(J,R)), defined at the begin-
ning of the proof of Theorem 4.3, satisfies the hypothesis of Covitz and Nadler fixed
point theorem [9].

Step I. IV is nonempty and closed for every v € Sg,.

It follows by the measurable selection theorem (e.g., [8, Theorem III.6]) that the
set-valued map F(-,z(-)) is measurable and hence it admits a measurable selection
v:J — R. In view of the assumption (Hs), we get |v(t)| < m(t) + m(t)|x(¢)|, that
is, v € L*(J,R) and hence F is integrably bounded. In consequence, we deduce that
SF,m 7é @

Now we show that N(z) € Py(C(J, R)) for each x € C(J,R). For that, let
{tn}n>0 € N(z) be such that u, — v (n — o0) in C(J,R). Then v € C(J,R) and
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there exists v,, € Sg,, such that, for each ¢ € J,

—_ g1 b
U () = 1%, (¢) k:/ ds+ (t K) {—/ I%v,(s)ds

i P i s
+ Z)\, 1 /n I*v,(s)ds + Zujlavn(pj) — kz A1 / /a x(u)duds

-1 j=1 i=2 MNi—1

—kzq:%/pj ds+k// duds}

Since F has compact values, we pass onto a subsequence (if necessary) to obtain that
vy, converges to v in L'(J,R). Thus v € Sg, and for each t € J, we have

un(t) = v(t)

t_ a)PY71 e
= k/ d8—|— A { / ds—l—Z)\zl/mlI v(s)ds
i s
+ZMJI v(pj) — kZ)\i,l/ / z(u)duds
j=1 i=2 i-1va

—kijuj/pj ds—l—k// duds}

Thus v € N(z).

Step IL. We show that there exists 0 < 6 < 1 ( Q|lm|| + Q1) such that
Hy(N(z),N(z)) < 0|z — Z|| for each 2,z € AC™" "V (J,R).

Let 2,7 € AC™V(J,R) and h; € N(z). Then there exists vy (t) € F(t,z(t)) such
that, for each t € J,

¢ _ gt b
hi(t) = I%vy(t) — k/ x(s)ds + (tA){ f/ I%v1(s)ds

P } q p i s
+ Z Aic1 / I*vi(s)ds + Z wil%vi(pj) — k Z Aic1 / / x(u)duds

n
Ni—1 j=1 =2

Pj
_k;z,u]/ x( ds+k// duds}

By (Hj), we have
Hy(F(t,z), F(t,z)) < m(t)|z(t) — Z(t)].
So there exists w(t) € F(t,Z(t)) such that
[v1(t) — w| < m(t)|z(t) — Z(t)], t € J.
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Let V:J—=PR) b

V(t) ={w e R : v (t) — w| <m(t)|z(t) — z(t)|}.
There exists a function vy(t) which is a measurable selection for V, since the mul-
tivalued operator V(t) N F(t,Z(t)) is measurable (Proposition III.4 [8]). Hence
va(t) € F(t,Z(t)) and for each t € J, we have |v1(t) — v2(t)| < m(t)|x(t) — Z(t)].
For each t € J, let us define

t y—1 b
ha(t) = I%va(t) — k/ Z(s)ds + (t_X){ —/ I%va(s)ds

i

q P i s
+ Z)\z 1 / “va(s)ds + Zujfo‘vz(pj) — kz Xic1 / / Z(u)duds
1 a

-1 =2 Mi—

—kZu]/ ds+k/ / duds}
Thus

|71 (t) = o (D))
< I%wa(s) — vi(s)lds + [k[(b — a)|z(s) — 2(s)]

(b_a)’y_l ’ « .
+A|{/a I%vq(s) — v1(s)|ds

p s q
+> it : Ifva(s) = vi(s)lds + D 11 |va(p;) — va(p;)]
i=2 i1

Jj=1

3 A [ [ et - a o)uds + 1613 [ ots) — 2(5) s

i=2 Mi— j=1 a

i | b JAECE x<s>|duds}

(b—a)” (b—a)V_l [(b— a)a'H EP:MZ 1|( a)a‘f‘l — (Mi—1 —a)a+1

JTTTA | Tar2) T(a+2)

+_Z|uj|% }|m||x—f||+{|k|<b—a>

Jo—a™ —a)’ — (i1 — a)?
Ao [mZm —a +|k\Z|AZ |

i O an—xn.

[P = hall < (Qllm]| + Qu)llx — .

IN
—
=
Q
+
—
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By interchanging the roles of x and z, we obtain
Ha(N(z),N(z)) < (Q[lm| + Q1)l|lz — z|.
Hence N is a contraction. Consequently, by Covitz and Nadler fixed point theorem

[9], the operator N has a fixed point = which is a solution of the sequential Hilfer
inclusion fractional boundary value problem (1.3). This completes the proof. O

Example 4.6. Consider the sequential Hilfer fractional differential inclusion:
(HD7/2’1/2 +1/2 HD5/2’1/2)x(t) € F(t,z), teJ:=|0,1], (4.3)

subject to integro-multistrip-multipoint boundary conditions (3.10), where
1+ tan™! VE+3\ [1+6
Plta(t) = | L (VLE3) (10 |
81 +¢2 30 1+ 5z
Clearly F' is measurable for all z € R and that

Ha(F(t,2), F(t,7)) < (”333

Here m(t) = v/t + 3/30 with ||m| = 1/15 and d(0, F'(¢,0)) < m(t), t € [0,1]. With
the given data, it is found that Q|m/| + @1 ~ 0.589620 < 1. Thus all the conditions

of Theorem 4.5 are satisfied and consequently there exists a solution for the inclusion
(4.3) complemented with the boundary conditions (3.10) on [0, 1].

(4.4)

>x—3‘v|,x,f€R,t€[0,1].
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