
Fixed Point Theory, 23(2022), No. 1, 179-198

DOI: 10.24193/fpt-ro.2022.1.11

http://www.math.ubbcluj.ro/∼nodeacj/sfptcj.html

A STOCHASTIC PRODUCTION PLANNING PROBLEM

E.C. CANEPA∗, D.-P. COVEI∗∗ AND T.A. PIRVU∗∗∗

∗University Politehnica of Bucharest,
Department of Mathematical Methods and Models,
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Abstract. Stochastic production planning problems were studied in several works; the model with
one production good was discussed in [3]. The extension to several economic goods is not a trivial

issue as one can see from the recent works [8], [9] and [13]. The following qualitative aspects of the

problem are analyzed in [9]: the existence of a solution and its characterization through dynamic
programming/Hamilton Jacobi Bellman (HJB) equation, as well as the verification (i.e., the solution

of the HJB equation yields the optimal production of the goods). In this paper, we stylize the

model of [8] and [9] in order to provide some quantitative answers to the problem. This is possible
especially because we manage to solve the HJB equation in closed form. We point to a fixed point

characterization of the optimal production rates. Among other results, we find that the optimal
production rates adjusted for demand are the same across all the goods and they also turn to be

independent of some model parameters. Moreover we show that production rates (adjusted for

demand) are increasing in the aggregate number of goods produced, and they are also uniformly
bounded. Numerical experiments show some patterns of the output.
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