
Fixed Point Theory, 21(2020), No. 2, 805-818

DOI: 10.24193/fpt-ro.2020.2.57

http://www.math.ubbcluj.ro/∼nodeacj/sfptcj.html

PROPERTIES AND ITERATIVE METHODS

FOR THE ELASTIC NET WITH `p-NORM ERRORS

LILING WEI∗ AND HONG-KUN XU∗∗

∗School of Science, Hangzhou Dianzi University, Hangzhou, 310018, China
E-mail: wll.1225@foxmail.com

∗∗School of Science, Hangzhou Dianzi University, Hangzhou, 310018, China

E-mail: xuhk@hdu.edu.cn (Corresponding author)

Abstract. The p-elastic net (p-EN) with 1 < p <∞ is introduced to recover a sparse signal x ∈ Rn

from m (< n) linear measurements with noise. The p-EN, which extends the elastic net of Zou
and Hastie [23] and was implicitly suggested by Tropp [16], amounts to minimizing the objective

function (1/p)‖Ax− b‖pp +λ‖x‖1 + (µ/2)‖x‖22 over x ∈ Rn, where A is the measurement matrix, b is

the observation, and λ > 0, µ > 0 are regularization parameters. Some basic geometric properties
of the p-EN such as how the solution curve of the minimization depends on the parameters λ and

µ are investigated. Moreover, iterative algorithms such as the proximal-gradient algorithm and the
Frank-Wolfe algorithm are studied for solving the p-EN.
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