ON BEST PROXIMITY PAIRS WITH APPLICATION TO DIFFERENTIAL EQUATIONS

G. SANKARA RAJU KOSURU

Department of Mathematics, Indian Institute of Technology Ropar
Ropar - 140 001, Punjab, India
E-mail: raju@iitrpr.ac.in

Abstract. In this paper we consider the following system of differential equations,

\[y' = f(x,y), \quad y(x_0) = y_1 \quad \text{and} \quad z' = g(x,z), \quad z(x_0) = z_1, \]

where \(f, g \) are bounded \(L^1 \) functions defined on a rectangle in \(\mathbb{R}^2 \). We give sufficient conditions for the existence of two functions \(\phi \) and \(\psi \), on an interval \(I \) containing \(x_0 \), such that

\[|y_1 + \int_{x_0}^{x} f(t, \phi(t))dt - \phi(x)| \leq |y_1 - z_1|, \]
\[|z_1 + \int_{x_0}^{x} g(t, \psi(t))dt - \psi(x)| \leq |y_1 - z_1| \]

for all \(x \in I \). To establish the same, we introduce a notation of c-cyclic contractive mapping and prove the existence of best proximity pairs for such a mapping.

Key Words and Phrases: Contraction, best proximity points, system of differential equations.

2010 Mathematics Subject Classification: 47H10, 54H25.

Acknowledgement. The author would like to thank the anonymous reviewers for their suggestions and comments.

REFERENCES

Received: October 16, 2019; Accepted: December 23, 2019.