POSITIVE SOLUTION FOR NONLINEAR FRACTIONAL DIFFERENTIAL EQUATION WITH NONLOCAL MULTI-POINT CONDITION

PIYACHAT BORISUT*, POOM KUMAM**, IDRIS AHMED*** AND KANOKWAN SITTHITHAKERNGKIE****

*KMU TT Fixed Point Research Laboratory, Center of Excellence in Theoretical and Computational Science (TaCS-CoE) and Department of Mathematics, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), 126 Pracha Uthit Road, Bang Mod, Thung Khru Bangkok 10140, Thailand
E-mail: piyachat.b@hotmail.com

**Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
E-mail: poom.kumam@mail.kmutt.ac.th (Corresponding author)

***Department of Mathematics and Computer Science, Sule Lamido University, Kafin-Hausa, Jigawa State, Nigeria
E-mail: idrisahamedgml1988@gmail.com

****Intelligent and Nonlinear Dynamic Innovations Research Center, Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok (KMUTNB), Wongwawang, Bangsue, Bangkok 10800, Thailand
E-mail: kanokwan.s@sci.kmutnb.ac.th

Abstract. In this paper, we study and consider the positive solution of fractional differential equation with nonlocal multi-point conditions of the from:

$$RLD_0^q u(t) + g(t)f(t, u(t)) = 0, \quad t \in (0, 1)$$
$$u^{(k)}(0) = 0, \quad u(1) = \sum_{i=1}^{m} \beta_i RLD_0^{p_i} u(\eta_i)$$

where $$n - 1 < q < n$$, $$n \geq 2$$, $$n - 1 < p_i < n$$, $$q > p_i$$, $$m \in \mathbb{N}$$, $$k = 0, 1, \ldots, n - 2$$, $$0 < \eta_1 < \eta_2 < \cdots < \eta_m \leq 0$$, $$\beta_i \leq 0$$, $$\kappa \in (0, 1]$$, $$RLD_0^q$$, $$RLD_0^{p_i}$$ are the Riemann-Liouville fractional derivative of order $$q$$, $$p_i$$, $$f : [0, 1] \times C([0, 1], E) \to E$$, $$E$$ be Banach space and $$g : (0, 1) \to \mathbb{R}^+$$ are continuous functions.

The main tools for finding positive solutions of the above problem are the fixed point theorems of Guo-Krasnoselskii and of Boyd and Wong. An example is included to illustrate the applicability of our results.

Key Words and Phrases: Boundary value problems, Riemann-Liouville fractional derivative, fixed point theorems.

2010 Mathematics Subject Classification: 74H10, 54H25, 47H10.

Acknowledgments. The authors thank the Center of Excellence in Theoretical and Computational Science (TaCS-CoE) for financial support. The first author was
supported by the Rajamangala University of Technology Rattanakosin (RMUTR). Moreover, this project was partially supported by the King Mongkuts University of Technology North Bangkok, Contract no. KMUTNB-63-KNOW-033.

References

Received: November 11, 2019; Accepted: January 22, 2020.