Fized Point Theory, 20(2019), No. 2, 729-740
DOI: 10.24193/fpt-r0.2019.2.48
http://www.math.ubbcluj.ro/~nodeacj/sfptcj.html

ALTERNATIVE CHARACTERIZATIONS OF AGIFSs
HAVING ATTRACTOR

SILVIU-AURELIAN URZICEANU

Faculty of Mathematics and Computer Science, University of Pitesti
Targul din Vale 1, 110040, Pitesti, Arges, Romania
E-mail: fmi_silviu@yahoo.com

Abstract. In this paper we study affine generalized iterated function systems (for short AGIFSs)
which are particular cases of the concept of generalized iterated function system introduced by R.
Miculescu and A. Mihail. Using a technique introduced by F. Strobin and J. Swaczyna, we associate
to each n € N* and each AGIFS F a new AGIFS F,. Our main result states that the following
statements are equivalent: a) F has attractor. b) There exists n € N* such that Fj, has attractor.
¢) There exists n € N* such that F,, is hyperbolic. d) There exists n € N* such that F, is
topologically contractive.
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1. INTRODUCTION

The concept of generalized iterated function system (abbreviated GIFS) was intro-
duced by R. Miculescu and A. Mihail in [8] and [9] as part of the effort to extend
Hutchinson’s classical theory of iterated function systems (IFS). More precisely, a
GIFS of order m consists on a finite family of functions fi,..., f, : X™ — X, where
(X, d) is a metric space. Under certain conditions, Miculescu and Mihail proved the
existence and uniqueness of the attractor of a GIFS and studied its properties (an
upper bound for the Hausdorff-Pompeiu distance between the attractors of two such
GIFSs, an upper bound for the Hausdorff-Pompeiu distance between the attractor of
such a GIFS and an arbitrary compact set of X and the continuous dependence of
the attractor in the f;). The concept of GIFS is a effective generalization of the one
of IF'S since there exists a set which is the attractor of a GIFS but there exists no
IFS having it as attractor (see [8]). Moreover, in [12], F. Strobin proved that for any
m > 2, there exists a Cantor subset of the plane which is an attractor of some GIFS of
order m, but is not an attractor of a GIFS of order m — 1. In [2], algorithms allowing
to generate images of attractors of GIFSs are presented. As the main ingredients
used in [8] and [9] are particular cases of the fixed point for p-contractions, F. Strobin
and J. Swaczyna (see [13]) extended these results for the more general setting of
generalized p-contractions. N. Secelean (see [10]) studied countable iterated function
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systems consisting of generalized contraction mappings on the product space X' into
X, where I C N. A concept of code space for GIFSs was introduced by Strobin and
Swaczyna in [14]. Tt was used to treat the problem of connectedness of the attractor
of a GIFS. In [7], R. Miculescu and A. Mihail proved the existence of an analogue of
Hutchinson measure associated with a GIFS with probabilities and presented some
of its properties. A similar study can be found in [4] for generalized iterated function
systems with place dependent probabilities and in [11] for countable iterated function
systems with probabilities.

A. Kameyama (see [3]) introduced the concept of self-similar topological sys-
tem and raised the following question: given a topological self-similar system
(K, (fi)ie{1,2,...n1), does there exist a metric on K comparable to the topology such
that all the functions f; are contractions? R. Atkins, M. Barnsley, A. Vince and
D. Wilson (see [1]) provided an affirmative answer to Kameyama’s question for self-
similar sets derived from affine transformations on R™. R. Miculescu and A. Mihail
(see [5]) extended this result by replacing R™ with an arbitrary Banach space (X, ||.||)
and the set {1,2,..., N} with an arbitrary set I. See also [6].

In this paper we mix the above two emphasized notions by introducing the notion
of affine generalized iterated function system (for short AGIFS). Our main concern
is to provide alternative characterizations for such a system having attractor. With
this purpose in view, using the techniques used in [14], we associate to each n € N*
and each AGIFS F a new AGIFS F,, and prove that F has attractor if and only if
there exists n € N* such that F,, has attractor if and only if there exists n € N* such
that F,, is hyperbolic if and only if there exists n € N* such that F,, is topologically
contractive.

2. PRELIMINARIES
The Hausdorff-Pompeiu metric
Let us consider a metric space (X, d).

By K(X) we mean the metric space of nonempty compact subsets of X endowed
with the Hausdorff-Pompeiu metric described by

h(A, B) = max{d(A, B),d(B, A)},
for all A, B € K(X), where d(A, B) = sup(inf d(z,v)).
r€A YEB

We recall that (K(X), k) is complete provided that (X, d) is complete.

Proposition 2.1. If (4;)ic; and (B;)cr are families of elements of K(X) such that
'UIAZ" ‘UIBi € K(X), then
1€ 1€

h (U Ai, U Bl> S sup h(A“BZ)

iel el el
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Proposition 2.2. (see Lemma 2.8 from [5]). If the norms ||.|| and |||.]|| on R™ are
equivalent (i.e. there exist a, B > 0 such that a|.| < |||.|[| < B|.][), then hy is equi-
valent with by (i.e. ahyy < by < Bhyy), where by hy we mean the Hausdorff-
Pompeiu metric associated to the metric induced by ||.||.

Generalized iterated function systems

Let us consider a metric space (X, d) and p € N*.

By X? we denote the Cartesian product of X by itself p times endowed with the
metric dyax described by

Amax ((T15 -, Tp)s (Y15 -0, Yp)) = max{d(z1,91), ..., d(Tp, Yp) },
for all (z1,...,xp), (Y1, ..., yp) € XP.

Definition 2.3. A generalized iterated function system (of order p) is a pair

F=((X,d),(fi)ieq1,2,...N})

where p, N € N* and f; : X? — X is continuous for each ¢ € {1,2,..., N}.
The function Fr : (K(X))? — K(X) described by

Fr(Bi,..B)= |J  fi(Bi,... By,
i€{1,2,...,N}

for all (B1, ..., Bp) € (K(X))? is called the fractal operator associated to F.

We shall use the abbreviation GIFS for a generalized iterated function system.

Remark 2.4. For p =1 we get the concept of iterated function system.
The Strobin-Swaczyna generalized code space

For p, N € N* we define inductively the sets 1, Qo, ...., Q, ... in the following
way:
Ql = {1,2, ,N} and Qk+1 = Qk X Qk- X ... X Qk

p times

for every k € N*.
We also consider the sets

Q=01 X Qo x...x QX ...and Q=0 X Qg X ... X Q,

where k£ € N*.
Fori€ {1,2,...p}, k €N, k>2and a = ala?...a* € 1 Q, where a? = a2a2...a
Q,..., aF = ok ]2“...04’; € €y, we consider

¥ N

a(i) = a?ad..af € ,_10.
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The GIFS F, associated to a GIFS F and to n € N*
Given a metric space (X,d) and p € N*, we define inductively the spaces X7, X,
covy Xf, ... in the following way:
Xi=XxXx..xX and Xg41 = X x Xg X ... x Xy,
—_—————

p times p times

for every k € N*. We endow X} with the maximum metric for every k € N*. Note

that X is isometric to X P" with the maximum metric for every k € N*.
In case that (X, d) = (K(X), h), we denote X}, by Xj.

For a generalized iterated function system (of order p) F = ((X,d), (fi)ic{1,2,....N})
we define inductively a family of functions {f, : Xz — X | a € xQ} for every k € N*
in the following way:

For k = 1, the family is {f1, fa2, ..., fn }.

If the functions f,, where a € €2, have been defined, then, for

a=a'a?.. .aFaFt! Epr1 82,
where o' € Qy, o? € Qy, ...a*F € O, oF € .y 1, we define

foz(xlaw% ceey xp) = fozl (fa(l)(xl)v ) fa(p) ($p)),

for every (z1,%2,....,2p) € Xpt1 = Xpp X Xip X .. X X

p times
Note that if p = 1, then ;,Q = {1,2,..,N}* and if a = ala?..a¥ €, Q, then
fo = far 0...0 for, so the introduced families of functions are natural generalizations
of compositions of functions.

For a given n € N*, we introduce a new GIFS (of order p™) given by
Frn = ((X,d), (fa)aec,)-
Note that Fr, : (K(X))P" — K(X) is given
Fr(Bi, s By) = | fa(B1,.... By),
Q

acy,

for all (By,...,By) € X,,.
Fixed points for functions f: X? — X
Let us consider a metric space (X,d), p € N* and f: XP — X.

For k € N* we define inductively a family of functions f*! : X?" = X in the
following way: fI = f; f[Q](xl,...,xp) = f(f(z1),..., f(zp)) for every (x1,...,zp) €
XP x ... x XP= XPQ; assuming that we have defined f*!, then
(U —

p times

P @, ) = FEH @), s [ (),



ALTERNATIVE CHARACTERIZATIONS OF AGIFSs HAVING ATTRACTOR 733

for every (z1,...,2p) € XP" x .. x XP" = XP""" Note that for p =1, we have
[ S —
p times
ffl=fo. . of.
——
k times

One can easily check the following:

Lemma 2.5. In the above framework, we have:
a) (N, ey T ), ...,f[“](xpum,puﬂ, ey Tt )
= FENF @, ey g )y ooy PO (@t _pug 1y ooy Tputs)),
fo,r all U,V € N*f (.’L‘l, "'7‘rp'”) euva, ceey (l'pu+v_pv+17...,mpu+v) S va, (.rl,...,xpu),
ceey (mpu+'ufpu+1, ...,$pu+v) 6 Xp .

b) f[“+“](m1,...,xpu+v) = f[“](f[“](ml,...,xpu),...,f[”](xpu+v_pu+1,...,xpquv)), for

all u,v € N*, (21, ..., 2putv) € Xpu“, (@15 ey @pv )y oy (Tputv_po i1y ey Tputv) € xr",

Proof. a) We are going to use the mathematical induction method to prove the above
lemma.

First we treat the case u = 1.

We shall prove, using the same mathematical induction method, that

FUPN @, ey )y oy FN @ g0 o g1y ey Tpi4o))

= U@ ooy )y oy F(@prto i1y ey Tpito)),s (2.1)
for all v € N*, (Z1,cy@po)y ooy (Tpiao_pog1y ey Tprio) € XP, (T, 00y Tp), ey
(.Ip1+u_p+1, ceey xp1+v) € XP.

The above equality is clear for v = 1. The inductive step is justified by the following
sequence of equalities:

f(f[erl] (.131, ooy Lpotl ), ceey f[v+1} (mpv+2 —pv il ees ijv+2))

definiti ff['u+1]
efinition o f(f(f[v](f(xh . xpu)7 . f[v] (l‘pv+1—p’”+17 . .’13pu+1)), ceny
[v] (.Tp71+2 —pV+1s ey mp“‘*z)))
FEF @10 @)oo f(@pris ity ey Tpot))s
f[v](f(xpv+2—pv+1+1, ooy Ttz _prtigp )y e f(Tpot2_py1, s Tpos2)))
finiti ¢ ploti]
definition of f f[”'*‘l](f(xl, ey Tp)y ey (Xpot2_pias oy Tpor2)).

Now the inductive step (over u) is justified by the following sequence of equalities:

f[u+1](f[v] (Il, ceey l’pu), ceey f[v] (:Epu+u+1,pv+1, ceey :Cpu+v+1))

definition of flvt1]
cmtoLe FOUMF N @y, s pe ),y ooy F @ puto o g1y oy Tputo)),y eons
f[u] (f[v] (l‘pu+v+1_pu+v+1, ceey .’)Spu+u+1_pu+u+pv), ceey f[v] (.”[,'pu+u+1_pv+1, ceey mpu+v+1)))
inductive hypothesi
HOVETPORESS p Ll (plul (g, ey Tt )y ey fl (@ putv _pug1s ey Tputo))s ons

f[v] (f[u] (xpu+v+1_pu+u+17 ceey xpu+u+1_pu+v+pu), ceey f[u] (.Z‘pu+v+1_pu+1, ceey l‘pu+v+1)))

f(f[v] (xp7’+2*pv+l+1’ ) xp71+27pv+1+p”)7 ceey f
(2.1)
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definition of fv+1] [v+1] ¢ £lu] [u]
= Ty eoes Tpu )y euny putvtl _puy 1, ey Tputotl
PR @ s ), s [ @ )
= f[v](f<f[u] (.%‘1, ceey .’L'pu)7 ceny f[u] (.’lfpu+1_pu+1, ceey xpu+1)), ceey

f(f[u] (l'pu+u+1_pu+1+1, . ,:Cpu+u+1_pu+1+pu) ,f[u] (gc utv+1_ —pU41s ey p11+7)+1)))
= f (f[qul] (1‘1 . pu+1) ,f[u+1] (1‘ putvHl _putl ], eey .Tpu+v+1)).

b) The proof is similar to the one of a).

Definition 2.6. In the above framework, x € X is called a fixed point of f provided
that f(x,...,z) = x.

Proposition 2.7. In the above framework, if f'" has a unique fized point, then f
has a unique fized point. Moreover, fI™ and f¥1 have the same unique fized point for
every k € N*.

Proof. If x € X is the fixed point of fI™, ie. f("l(z,...,2) = x, then

FOU @, ), f (2, 1) = f(2y 1),
so, using Lemma 2.5, we have fI"l(f(z,...,x), ..., f(z,...,x)) = f(, ..., ).
Consequently f(z, ...,z) is the fixed point of f[" and, based on the uniqueness of it,
we infer that f(x,...,x) =z, i.e. x is a fixed point of f.

In addition, f(f(z,....z), ..., f(z,...,2)) = f(z,...,z) = z, ie. fCl(z, .., 2) =2
and, using the method of mathematical induction, we conclude that f*¥(z, ...,z) =z
for every k € N*.

Moreover, if y € X is a fixed point of f, then f(™(y,...y) =y, i.e. y is a fixed
point of fI"l. Hence, as fI"} has a unique fixed point, we infer that y = 2. Therefore
f has a unique fixed point. O

Proposition 2.8. For a GIFS F, we have fJ[f] = Fr, for every n € N*.
Proof. Note that 7' Fr  (K(X))P" — K(X).

We will use the method of mathematical induction to prove that
FIE(AL, . AY) = Fro (A, A,

for every n € N* and every (44,...,4,) € X,,.
The statement is obvious for n = 1.
The statement is true for n = 2 since

Fry(Ar, o Ap) = | falA, s 4y)
a€ax)
N

= U U for (fay (A1), ooy fa) (4p))

al=1 a(l)e,...,a(p)e 122

N
U far U Ja(1)(A1), U Jaw) (A

al=1 04(1)619 ( €19

= Fr(Fr(AL), ., Fr(Ay) = FE(A4, .., A),
for all (44, ...,4,) € Xo.
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Suppose now that the statement is true for every k € {1,2,...,n}. Then it is also
true for k = n + 1 since

From(Ar o Ap) = | fa(Ar, s Ap)

a€ ny192

N
= U U fal(fa(l)(A1)7"-afa(p)(Ap))

N
= U fal U fa(l)(Al)a"'a U fa(P)(Ap)

al=1 a(1)EnQ a(p)eEnQl
= Fr(FPNAL), o, FE(A)) = FET(AL ., A,
for all (A1, ..., 4p) € Xp41. O

Corollary 2.9. For a generalized iterated function system F, we have ]-'[an] = ]:;-T:]
for every m,n € N*.

Proof. We shall use the mathematical induction method in order to prove the above
corollary.

Let us note by P(m) the proposition: f][;mn](Al, vy Apmn) = fJ[TTZ](Al, ey Apmn)
for all n € N* and all A4, ..., A,mn € K(X).

In view of Proposition 2.8, P(1) is true.

Now we suppose that P(m) is true and prove that P(m + 1) is true.

Indeed, we have

f¥m+1)n] (1417 ~-~7Ap(’!n+1)n) _ f;mn+n] (JA17 ”.7Ap(m+1)")

Lemma 2.5, b) mn n n
350 R P Ay Ay FE et o A

= FIFr (AL, o Agn )y oy Fry (At sty ooes Apimann)
= _7:][;:—*_1] (44, ..., Ap(m,+1)n),
for all Al, . Ap(m+1)n S K(X) O
Affine generalized iterated function systems

Definition 2.10. An affine generalized iterated function system (of order p) is a pair
F o= ((R™.11), (fi)ief1,2,....n}), where p,m, N € N* and, for each i € {1,2,..., N},
there exist b; € R™ and a linear function 4; : (R™)? — R™ such that f; = A; + b;.

We shall use the abbreviation AGIFS for an affine generalized iterated function
system.

Remark 2.11. Note that if F is a AGIFS of order p, then F,, is a AGIFS of order
p", for every n € N* (see [2]).

Definition 2.12. An AGIFS F := (R™, ||.]), (fi)ie{1,2,....n}) is called contractive if
there exists C' € [0,1) such that ||4;]] < C for every i € {1,2,..., N}.
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Definition 2.13. An AGIFS F := ((R™,|.|]), (fi)ief1,2.....n}) is called hyperbolic if
there exists a norm |[[|.||| on R™ such that the AGIFS ((R™, [|[.[||), (fi)ief1,2,...,n}) 18
contractive.

Definition 2.14. A convex body is a compact convex subset of (R™,].]|) with non-
empty interior.

Definition 2.15. We say that an AGIFS F has attractor if there exists (a unique)
A € K(R™) such that:

i) Fr(4,..,A) = A;

ii) lim F¥(B, ..., B) = A for every B € K(R™).

k—o0
Definition 2.16. An AGIFS F is called topologically contractive if there exists a
convex body K such that Fr(K,...,K) C K.

Definition 2.17. For A and B subsets of (R™,||.||), we define
A,B)= inf —b.
d.1(A, B) enf la— bl

Remark 2.18. If K is a convex body, then K — K is a bounded, balanced, convex
neighborhood of 0.

Definition 2.19. If K is a bounded, balanced, convex neighborhood of 0 from
(R™]].]]), then the Minkowski norm associated with K is described by

|z|lx = inf{\ > 0| z € AK for every x € R™}.
Remark 2.20. The norms ||.|| and ||.|| ;- are equivalent.

Lemma 2.21. (see Lemma 2.4 from [5]). If 6 (A, R™\ B) > a, where a > 0, A and
B are subsets of (R™, ||.]|) such that A is a bounded, balanced, convex neighborhood of

0, then A C (1 —0)B, where 0 = ar )

Lemma 2.22. (see Lemma 2.6 from [5]). Let A, B, Ay and By be subsets of (R™,||.|)
such that 6”“ (Al,Rm \ A) >0 and (SH.H(Bl,Rm \ B) > 0. Then

8).1(A1 — B1,R™\ (A - B)) > 0.

Lemma 2.23. (see Lemma 2.7 from [5]). Let A be a bounded, balanced, convex
neighborhood of 0 from (R™,||.||) and f : R™ — R™ a bounded linear operator such
that f(A) C pA, where > 0. Then || f]| 4 < p.

3. THE MAIN RESULT

Theorem 3.1. Given an AGIFS F, the following statements are equivalent:
1. There exists n € N* such that F,, is hyperbolic.
2. There exists n € N* such that F,, has attractor.
3. F has attractor.
4. There exists n € N* such that F, s topologically contractive.



ALTERNATIVE CHARACTERIZATIONS OF AGIFSs HAVING ATTRACTOR 737

Proof. Let us consider the AGIFS F = ((R™, ||.||), (fi)ie{1,2,...,n}) of order p.

71 = 2”. Since F,, is hyperbolic, there exists a norm [||.||| on R™, equivalent
with ||.||, such that the AGIFS ((R™, |||./|]), (fa)ae,q) is contractive, i.e. there exists
C € [0,1) such that |||Aa|]| < C for every « € ,Q2. In the sequel we denote by p the
metric on X,,, where X is (R™, |||.||])-

Claim. Fr, is a contraction.
Justification of the claim. We have

h(Fr, (Av, ..y Ap), Fr, (Bi, ..., By))

Proposition 2.1

= hyp ( U fa(A1, s Ap), U fa(Bl,...,Bp)> <
Q Q

acy acy

S()lseupQ rIlaX{Clm|H(fa(1417 ...,Ap), fa(BL ceey Bp))’dHHH(fo‘(Bl’ ceey Bp), fa(Ah ,Ap))}

< Chy((A1, ..., Ap), (Bi, ..., By)),

for all (A1, ..., Ap), (Bi, ..., Bp) € X,, and the justification is done.
As (K(R™), hy.) is complete, based on the contraction principle, we con-
clude that there exists a unique A € K(R™) such that Fr, (A4,..,A) = A and

klim ]-"ﬁf] (B,...,B) = A for every B € K(R™). Hence F, has attractor.
—00 "

72 = 3”. By hypothesis, there exists a unique A € K(R™) such that
Fr, (A,...,A) = A. Therefore, according to Proposition 2.8, we get ]-'J[,_?] (4,..,A)=A
and, using Proposition 2.7, we conclude that Fr(A4,...,A) = A.

The proof of this implication is done if we prove the following implication:

lim FX(B,...B) = A= lim F¥(B,...B) = A
k‘i{{olof]:”( ) ) ) :>ki>nolo]:]-‘( ) ) ) )

for every B € K(R™).
Here is the justification of the above implication: For ro € {1,2,...,n — 1} fixed,
with the notations ¢ = nk + r¢ and }-;fo](B) = C, we have
; lax] 7 [nk] ( —[ro] [ro]
kl;n;off (B,...,B) —klingoff (FF"(B), ... F"(B))

Corollary 2.9

. nk . k
= kl;ngof; le,...,0) klinéofj[fi (C,...C) = A,

for every B € K(R™). Consequently the implication is true.
73 = 47. By hypothesis, there exists A € K(R™) such that Fr(A4,...,A) = A and
ILm ]-"LT"](K,...,K) = A, where K def {anzr + ... + apxy | n € N* ay, ..., ap € ]0,1],

a1+ .. +an =1and 21, ...z, € B[A,1] Y {z e R™ | inf [z — af| <1} € K®™)} is
ac

a convex body. Therefore there exists ng € N* such that fJ[‘—fl] (K,..,K)C B(A,3) def
{z e R™| inlfé'1 |z —al < 3} C K for every n € N*, n > ng. Using Proposition 2.8,
a€c
[e]
we get that Fr, (K,...,K) C K, so F, is topologically contractive, for every n € N*,
n > ng.
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"4 = 17. By hypothesis, there exists a convex body K € K(R™) such that
Fr (K, ., K) C K.
Claim. §, | (Fr, (K, ..., K),R™\ K) > 0.
Justification of the claim. Since Fr, (K,...,K) C Io(, we infer that
Fr (K,...K)N(R™\ K) = 0.

not

With the notation M =" Fg, (K,...,K) € K(R™), we consider the continuous

function g : M — R given by ¢g(z) = d(x, R™\K) for every x € M. There exists u € M
t

such that g(u) = in]fwg(z) "2 ¢ > 0. For every x € M we have d(z,R™ \ K) > &,
x€

so d(z,y) > ¢ for every y € R™ \ K. Consequently d(M,R™\ K) > 0 and the
justification is done.

Note that |.|| is equivalent to ||.||, where C' YK,

Taking into account Lemma 2.22 for Ay = B; = Fr, (K,..,K)and A = B =K,
we deduce that 8 (Fz, (K, ..., K) — Fr, (K, .. K),R™\ C) "2 X\ > 0.

We have

An(C,...,C) = Au(K, ... K) — Au (K, ..., K)
= fulK, . K) = fo(K, .. K) C Fr (K, ... K) — Fr (K, ..., K),

s0 0| (Aa(C,...,C),R™\ C) > X for every a € ,Q.

Using Lemma 2.21 for A = A,(C,...,C) and B = C, we get that A,(C,...,C) C
(1 -6)C for every a €, Q, where 6 = 2(}\711)

Finally we take into account Lemma 2.23 for f = A, and = 1 — 6 to obtain that
Aol £1 =0 <1 for every a €, (.

Therefore F,, is hyperbolic. O

Remark 3.2. The collocation ” There exists n € N*” from the statement of Theorem
3.1 could be replaced by the following one: ”There exists ng € N* such that for every
n e€N* n>ng”.
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