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1. Introduction

In 2008, Kohsaka and Takahashi [12] introduced the concept of nonspreading map-
ping. Let T be a mapping on a subset C of a smooth Banach space E. T is said to
be nonspreading if

φ(Tx, Ty) + φ(Ty, Tx) ≤ φ(Tx, y) + φ(Ty, x) (1.1)

for any x, y ∈ C, where φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2. They proved the existence
of fixed points of T provided C is bounded, closed and convex, and E is reflexive and
strictly convex. In the case where E is Hilbertian, (1.1) is equivalent to

2 ‖Tx− Ty‖2 ≤ ‖Tx− y‖2 + ‖x− Ty‖2. (1.2)

We note the concept of nonspreading mapping is very important because of useful
applications. Inspired by this, many new nonlinear mappings have been introduced;
see [1, 2, 9, 11, 14, 20] and others. Condition (CC) is one of them, which is strictly
weaker than (1.2).

Theorem 1.1 (Corollary 5.3 in [10]). Let T be a mapping on a weakly compact
subset C of a Banach space E which satisfies Condition (CC), that is, there exist a
continuous, strictly increasing function η from [0,∞) into itself with η(0) = 0 and
r, s ∈ [0, 1) such that r + 2 s = 1 and

η
(
‖Tx− Ty‖

)
≤ r η

(
‖x− y‖

)
+ s η

(
‖x− Ty‖

)
+ s η

(
‖Tx− y‖

)
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for any x, y ∈ X. Assume that C has the Opial property. Then {Tnx} converges
weakly to a fixed point of T for any x ∈ C.

Theorem 1.1 deduces the following.

Theorem 1.2 (Corollary 5.5 in [10]). Let (X, d) be a compact metric space and let T
be a mapping on X. Assume that there exist a continuous, strictly increasing function
η from [0,∞) into itself with η(0) = 0 and r, s ∈ [0, 1) such that r + 2 s = 1 and

η
(
d(Tx, Ty)

)
≤ r η

(
d(x, y)

)
+ s η

(
d(x, Ty)

)
+ s η

(
d(Tx, y)

)
for any x, y ∈ X. Then {Tnx} converges to a fixed point of T for any x ∈ X.

In this paper, Theorem 1.2 becomes more important because Theorem 1.2 can
deduce the famous Edelstein’s fixed point theorem (Theorem 6.3 below); see Section
6. In other words, Theorem 1.2 is one of generalizations of Theorem 6.3; see also
[13, 16, 17, 19]. Motivated by this fact, we will study Theorem 1.2 more deeply.
Indeed in Theorem 1.2, η ◦ d does not satisfy the triangle inequality. So we do not
have to assume that the underlying space X is a metric space. We will give an answer
to the question of what works well in the proof of Theorem 1.2.

2. Preliminaries

Throughout this paper we denote by N the set of all positive integers and by R the
set of all real numbers.

The following lemma was crucial in the proofs of main theorems in [10].

Lemma 2.1 (Lemma 4.6 in [10]). Put I0 =
{

(m,n) : m,n ∈ N ∪ {0}, m ≤ n
}

and
I = {(m,n) : m,n ∈ N, m < n}. Let B be a function from I0 into [0,∞) satisfying
the following:

• B(0, n) ≤ 1 for n ∈ N.
• B(n, n) = 0 for n ∈ N ∪ {0}.
• There exist r, s ∈ [0, 1) such that r + 2 s = 1 and

B(m,n) ≤ r B(m− 1, n− 1) + sB(m− 1, n) + sB(m,n− 1)

for (m,n) ∈ I.

Then limnB(n, n+ 1) = 0 holds.

The following three lemmas are obvious.

Lemma 2.2 ([18]). Let η be a continuous, strictly increasing function from [0,∞)
into itself with η(0) = 0. Then the following holds:

(H1) For any sequence {an} in [0,∞), limn η(an) = 0 iff limn an = 0.

Lemma 2.3 ([18]). Let η be a function from [0,∞) into itself satisfying (H1). Then
η−1(0) = {0} holds, that is, η(α) = 0⇔ α = 0.

Lemma 2.4 ([18]). Let η be a function from [0,∞) into itself. Then the following
are equivalent:

(i) η satisfies (H1).
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(ii) There exist a function ϕ from [0,∞) into itself, δ > 0 and a function ψ from
[0, δ] into [0,∞) such that ϕ and ψ are continuous and strictly increasing,
ϕ(0) = ψ(0) = 0, ϕ(a) < η(a) for any a ∈ (0,∞) and η(a) < ψ(a) for any
a ∈ (0, δ].

Assuming something additionally, we obtain the following lemma, which is simpler
than Lemma 2.4.

Lemma 2.5. Let η be a function from [0,∞) into itself. Assume sup{η(a) : a ∈
[0, α]} <∞ for any α > 0. Then the following are equivalent:

(i) η satisfies (H1).
(ii) There exist continuous, strictly increasing functions ϕ and ψ from [0,∞) into

itself such that ϕ(0) = ψ(0) = 0 and ϕ(a) < η(a) < ψ(a) for any a ∈ (0,∞).

A mapping T on a metric space (X, d) is said to be quasinonexpansive [4] if

d(Tx, z) ≤ d(x, z)

for any x, z ∈ C with Tz = z.

Proposition 2.6 (Proposition 4.1 in [10]). Assume that a mapping T on a metric
space (X, d) satisfies Condition (CC). Assume also that T has a fixed point. Then T
is a quasinonexpansive mapping.

Jachymski proved the following, very interesting lemma.

Lemma 2.7 (Lemma 3 in Jachymski [6]). Let ϕ be a continuous, strictly increas-
ing function from [0,∞) into itself satisfying ϕ(a) < a for any a ∈ (0,∞) and
lima→∞ ϕ(a) =∞. Then for any r ∈ (0, 1), there exists a continuous, strictly increas-
ing function η from [0,∞) into itself satisfying η

(
ϕ(a)

)
= r η(a) for any a ∈ [0,∞).

Remark 2.8. In [6], the statement is “η is nondecreasing”. However, from the proof
in [6], we have that η is strictly increasing.

Jachymski and Jóźwik characterized Browder contraction; see [6, 7, 15] and others.

Theorem 2.9 (Theorem 4 in Jachymski and Jóźwik [8]). Let T be a mapping on a
metric space (X, d). Then the following are equivalent:

(i) T is a Browder contraction; see [3].
(ii) There exists a continuous, strictly increasing function ϕ from [0,∞) into itself

satisfying d(Tx, Ty) ≤ ϕ
(
d(x, y)

)
for any x, y ∈ X.

(iii) There exists a function ϕ from [0,∞) into itself satisfying d(Tx, Ty) ≤
ϕ
(
d(x, y)

)
for any x, y ∈ X and

lim sup
b→a

ϕ(b) < a for any a ∈ (0,∞). (2.1)

(iv) A function ϕ from [0,∞) into itself defined by

ϕ(a) = max
{

0, sup{d(Tx, Ty) : x, y ∈ X, d(x, y) = a}
}

for a ∈ [0,∞) satisfies (2.1).
(v) If {xn} and {yn} are sequences in X satisfying limn d(xn, yn) = a for some

a ∈ (0,∞), then lim supn d(Txn, T yn) < a holds.

Proof. We have proved (i) ⇔ (ii) ⇔ (iii) in [8]. (iii) ⇔ (iv) ⇔ (v) is obvious. �
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3. Some generalized quasimetric space

We consider some condition, which is weaker than that of quasimetric space.

Definition 3.1. Let X be a set and let p be a function from X×X into [0,∞). Then
(X, p) is called a metric space if the following hold:

(D1) p(x, x) = 0
(D2) p(x, y) = 0⇒ x = y
(D3) p(x, y) = p(y, x) (symmetry)
(D4) p(x, z) ≤ p(x, y) + p(y, z) (subadditivity or triangle inequality)

Remark 3.2. Let X be a set and let p be a function from X ×X into [0,∞).

• If X satisfies (D1), then X is a premetric space.
• If X satisfies (D1), (D2) and (D3), then X is a semimetric space.
• If X satisfies (D1), (D2) and (D4), then X is a quasimetric space.
• If X satisfies (D1), (D3) and (D4), then X is a pseudometric space.
• If X satisfies (D2), (D3) and (D4), then X is a metametric space.

Let (X, p) satisfy (D1), (D2) and the following:

(D5) For any ε > 0, there exists δ > 0 such that p(x, y) < δ and p(y, z) < δ imply
p(x, z) < ε.

If we name the condition on the space X, ‘generalized quasimetric space’ seems
to be appropriate because (D5) is weaker than (D4). However this name has been
already used for some other condition. So in order to avoid confusion, we do not name
this condition in this paper.

We can define some concepts of ‘convergence’ and others naturally.

Definition 3.3. Let (X, p) satisfy (D1), (D2) and (D5).

• A sequence {xn} in X is said to converge to x ∈ X if limn p(xn, x) = 0.
• X is said to be Hausdorff if limn p(xn, x) = limn p(xn, y) = 0 implies x = y.
• X is said to be sequentially compact if every sequence in X has a subsequence

which converges.
• X is said to be bounded if sup{p(x, y) : x, y ∈ X} <∞.

Lemma 3.4. Let (X, p) satisfy (D1), (D2) and (D5). Then for any n ∈ N with n ≥ 2,
the following holds:

(D5)n For ε > 0, there exists δ > 0 such that p(xj , xj+1) < δ for j ∈ {1, 2, · · · , n−1}
implies p(xi, xj) < ε for i, j ∈ {1, 2, · · · , n} with i < j.

Proof. (D5)2 is obvious and (D5)3 becomes (D5) itself. We only show (D5)4 because
we can show similarly (D5)n with n ≥ 5. Fix ε > 0. Then by (D5), there exists α > 0
satisfying

• p(x, y) < α and p(y, z) < α imply p(x, z) < ε.

By (D5) again, there exists β > 0 satisfying

• p(x, y) < β and p(y, z) < β imply p(x, z) < min{α, ε}.
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Put δ = min{α, β, ε} and fix x, y, z, w ∈ X with p(x, y) < δ, p(y, z) < δ and p(z, w) <
δ. Then since p(x, y) < β and p(y, z) < β, we have p(x, z) < min{α, ε}. Since
p(z, w) < δ ≤ α, we have p(x,w) < ε. �

Lemma 3.5. Let (X, p) satisfy (D1), (D2) and (D5). Let {x(j)n }∞n=1 be a sequence

in X for j ∈ {1, 2, · · · , ν}. Assume limn p(x
(j)
n , x

(j+1)
n ) = 0 for j ∈ {1, 2, · · · , ν − 1}.

Then limn p(x
(i)
n , x

(j)
n ) = 0 holds for i, j ∈ {1, 2, · · · , ν} with i < j.

Proof. The conclusion follows from Lemma 3.4. �

4. Fixed point theorem

In this section, we generalize Theorem 1.2.

Theorem 4.1. Let (X, p) satisfy (D1), (D2) and (D5). Assume that X is Hausdorff,
bounded and sequentially compact. Let T be a mapping on X satisfying that there
exist r, s ∈ [0, 1) such that r + 2 s = 1 and

p(Tx, Ty) ≤ r p(x, y) + s p(x, Ty) + s p(Tx, y)

for any x, y ∈ X. Then {Tnx} converges to a fixed point of T for any x ∈ X.

Remark 4.2. The author thinks that Theorem 4.1 is better than Theorem 1.2 when
we would like to know the mathematical structure on them.

Proof. Put

M := sup{p(x, y) : x, y ∈ X}+ 1 <∞.
Fix x ∈ X and define a sequence {xn} in X by xn = Tnx. Define a function B by

B(m,n) = p(xm, xn)/M

for (m,n) ∈ I0, where I0 is as in Lemma 2.1. Then by Lemma 2.1, we have
limnB(n, n + 1) = 0 and hence limn p(xn, xn+1) = 0. Similarly, putting B(n,m) =
p(xm, xn)/M for (m,n) ∈ I0, we obtain limn p(xn+1, xn) = 0. So by Lemma 3.5, we
have

lim
n→∞

p(xn+j , xn+k) = 0 for any j, k ∈ N. (4.1)

Since X is sequentially compact, there exists a subsequence {f(n)} of the sequence
{n} in N such that {xf(n)} converges to some z ∈ X. By Lemma 3.5 again, we have

lim
n→∞

p(xf(n)+k, z) = 0 for any k ∈ N. (4.2)

From the assumption, we have

p(xf(n)+1, T z) ≤ r p(xf(n), z) + s p(xf(n)+1, z) + s p(xf(n), T z)

and

p(xf(n)+2, T z) ≤ r s p(xf(n), z) + (r + s2) p(xf(n)+1, z)

+ s p(xf(n)+2, z) + s2 p(xf(n), T z).
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We will show by induction

p(xf(n)+k, T z) (4.3)

≤ r sk−1 p(xf(n), z) +

k−1∑
j=1

(r + s2) sk−1−j p(xf(n)+j , z)

+ s p(xf(n)+k, z) + sk p(xf(n), T z)

for any k ∈ N. Indeed (4.3) holds when k = 1, 2. We assume that (4.3) holds for some
k ∈ N with k ≥ 2. Then we have

p(xf(n)+k+1, T z)

≤ r p(xf(n)+k, z) + s p(xf(n)+k+1, z) + s p(xf(n)+k, T z)

≤ r p(xf(n)+k, z) + s p(xf(n)+k+1, z)

+ s
(
r sk−1 p(xf(n), z) +

k−1∑
j=1

(r + s2) sk−1−j p(xf(n)+j , z)

+ s p(xf(n)+k, z) + sk p(xf(n), T z)
)

= r sk p(xf(n), z) +

k∑
j=1

(r + s2) sk−j p(xf(n)+j , z)

+ s p(xf(n)+k+1, z) + sk+1 p(xf(n), T z).

Therefore by induction we have shown (4.3) for any k ∈ N. Fix ε > 0 and choose
δ > 0 appearing in (D5). We also choose k ∈ N satisfying skM < δ. By (4.2) and
(4.3), we have

p(xf(n)+k, T z) < δ for sufficiently large n ∈ N. (4.4)

We also have by (4.1)

p(xf(n), xf(n)+k) < δ for sufficiently large n ∈ N. (4.5)

By (4.4) and (4.5), we obtain p(xf(n), T z) < ε for sufficiently large n ∈ N. Therefore
we have shown that {xf(n)} also converges to Tz. Since X is Hausdorff, we obtain
Tz = z. Using this, we have

p(xn+1, z) ≤ r p(xn, z) + s p(xn+1, z) + s p(xn, z)

and hence p(xn+1, z) ≤ p(xn, z) for any n ∈ N. Since

lim inf
n→∞

p(xn, z) ≤ lim
n→∞

p(xf(n), z) = 0,

we obtain limn p(xn, z) = 0. �

Remark 4.3. The identity mapping on X satisfies the assumption of Theorem 4.1.
So there can be plural fixed points.

Remark 4.4. From the proof of Theorem 4.1, we know that (D5) plays a very
important role.
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5. Metric space case

Theorem 4.1 deduces the following fixed point theorem in compact metric spaces,
which is a generalization of Theorem 1.2.

Theorem 5.1. Let (X, d) be a compact metric space and let T be a mapping on X.
Assume that there exist a bounded function η from [0,∞) into itself with (H1) and
r, s ∈ [0, 1) such that r + 2 s = 1 and

η
(
d(Tx, Ty)

)
≤ r η

(
d(x, y)

)
+ s η

(
d(x, Ty)

)
+ s η

(
d(Tx, y)

)
for any x, y ∈ X. Then {Tnx} converges to a fixed point of T for any x ∈ X.

Remark 5.2. Since X is compact, X is bounded. In this theorem, the boundedness
of η is essentially equivalent to the following:

• sup{η(a) : a ∈ [0, α]} <∞ for any α > 0.

So every continuous function η is considered to be bounded in this context.

Proof. We choose functions ϕ and ψ appearing in Lemma 2.5. Since both functions
are strictly increasing, we note that ϕ−1 and ψ−1 exist. Also, for any a ∈ (0,∞),
since ϕ(a) < η(a), we note a < ϕ−1

(
η(a)

)
provided η(a) belongs to the domain of

ϕ−1. Define p by p = η ◦ d. Then since η−1(0) = {0} by Lemma 2.3, (X, p) satisfies
(D1) and (D2). In order to show (D5), we fix ε > 0. We consider the following two
cases:

• p(x, y) < ε for any x, y ∈ X
• ε ≤ p(x, y) for some x, y ∈ X

In the first case, we can choose any δ > 0. In the second case, we note that ε belongs
to the domain of ψ−1. Because ε ≤ η

(
d(x, y)

)
< ψ

(
d(x, y)

)
. We put δ by

δ = ϕ
(
ψ−1(ε)/2

)
.

Let x, y, z ∈ X satisfy p(x, y) < δ and p(y, z) < δ. Then we have

η
(
d(x, y)

)
< ϕ

(
ψ−1(ε)/2

)
and hence

d(x, y) < ϕ−1
(
η
(
d(x, y)

))
< ψ−1(ε)/2.

Similarly we can show d(y, z) < ψ−1(ε)/2. Thus, we have d(x, z) < ψ−1(ε) and hence

p(x, z) = η
(
d(x, z)

)
< ψ

(
d(x, z)

)
< ε.

Therefore we have shown that (X, p) satisfies (D5). We note that (X, d) is se-
quentially compact. From the definition of (H1), limn d(xn, x) = 0 is equivalent to
limn p(xn, x) = 0. This implies that (X, p) is Hausdorff and that (X, p) is sequentially
compact. Since η is bounded, (X, p) is bounded. We have shown the assumption of
Theorem 4.1. So by Theorem 4.1, we obtain the desired result. �

Problem 5.3. We do not know whether Theorem 5.1 is still valid without assuming
of the boundedness of η.

In order to show that Theorem 5.1 is a real generalization of Theorem 1.2, we give
an example.
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Example 5.4. Let f be a injective function from N into N, which is not monotone.
Define a compact subset X of the Euclidean space (R1, d) by

X = {0} ∪ {10−f(n) : n ∈ N}.

Define a mapping T on X by

T (0) = 0 and T (10−f(n)) = 10−f(n+1)

for n ∈ N. Then the assumption of Theorem 5.1 holds. However, the assumption of
Theorem 1.2 does not hold.

Proof. Put xn = 10−f(n) for n ∈ N. It is obvious that 0 is a fixed point of T and
Txn = xn+1 holds for n ∈ N. We note

|10−j − 10−k| = 0. 000 · · · 0︸ ︷︷ ︸
j

999 · · · 9︸ ︷︷ ︸
k−j

and

|10−j − 0| = 0. 000 · · · 0︸ ︷︷ ︸
j−1

1

for any j, k ∈ N with j < k. So the above values are all different. Thus, the values of
d(x, y) (x, y ∈ X, x 6= y) are all different. We next note limn f(n) = ∞ because f is
injective. So

lim
m,n→∞

d(xm, xn) = 0

holds. Therefore there exists a continuous function η from [0,∞) into itself satisfying
(H1) and

η
(
d(xn, xm)

)
= |rn − rm| and η

(
d(xn, 0)

)
= |rn|

for any m,n ∈ N, where r ∈ (0, 1) is arbitrary. We have

η
(
d(Tx, Ty)

)
= r η

(
d(x, y)

)
≤ r η

(
d(x, y)

)
+ s η

(
d(x, Ty)

)
+ s η

(
d(Tx, y)

)
for any x, y ∈ X, where s = (1−r)/2. Hence the assumption of Theorem 5.1 holds. On
the other hand, since f is not monotone, there exists k ∈ N such that f(k) > f(k+1).
Then we have

d(Txk, 0) = 10−f(k+1) > 10−f(k) = d(xk, 0),

which implies that T is not quasinonexpansive. By Proposition 2.6, the assumption
of Theorem 1.2 does not hold. �

6. Edelstein’s fixed point theorem

In this section, we give a proof of the famous Edelstein’s fixed point theorem by
using Theorem 1.2.

Proposition 6.1. Let (X, d) be a compact metric space and let T be a mapping on
X. Then the following are equivalent:
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(i) T is an Edelstein contraction, that is, for any x, y ∈ X with x 6= y,

d(Tx, Ty) < d(x, y) (6.1)

holds.
(ii) For any r ∈ (0, 1), there exists a continuous, strictly increasing function η

from [0,∞) into itself satisfying η(0) = 0 and

η
(
d(Tx, Ty)

)
≤ r η

(
d(x, y)

)
(6.2)

for any x, y ∈ X.
(iii) There exist r ∈ (0, 1) and a continuous, strictly increasing function η from

[0,∞) into itself satisfying η(0) = 0 and (6.2) for any x, y ∈ X.

Remark 6.2. See Theorem 2 in Jachymski [6]. In a compact metric space, T is an
Edelstein contraction iff T is a Browder contraction.

Proof. Both (ii)⇒ (iii) and (iii)⇒ (i) are obvious. Let us prove (i)⇒ (ii). We assume
(i). Arguing by contradiction, we assume that T is not a Browder contraction. Then
by Theorem 2.9 (v), there exist a ∈ (0,∞) and sequences {xn} and {yn} in X such
that

lim
n→∞

d(xn, yn) = a and lim sup
n→∞

d(Txn, T yn) ≥ a.

Since X is compact, taking subsequences, without loss of generality, we may assume
that {xn} and {yn} converge to x and y, respectively. Then we have

d(Tx, Ty) ≥ d(x, y) = a > 0,

which implies a contradiction. By Theorem 2.9 (ii), there exists a continuous, strictly
increasing function ψ from [0,∞) into itself satisfying ψ(a) < a for any a ∈ (0,∞) and
d(Tx, Ty) ≤ ψ

(
d(x, y)

)
for any x, y ∈ X. Define a function ϕ from [0,∞) into itself by

ϕ(a) =
(
ψ(a)+a

)
/2. Then ϕ is continuous, strictly increasing and lima→∞ ϕ(a) =∞.

We can choose η satisfying the conclusion of Lemma 2.7. Then we have

η
(
d(Tx, Ty)

)
≤ η

(
ψ
(
d(x, y)

))
≤ η

(
ϕ
(
d(x, y)

))
= r η

(
d(x, y)

)
for any x, y ∈ X. Therefore we obtain (ii). �

Theorem 6.3 (Edelstein [5]). Let (X, d) be a compact metric space and let T be a
mapping on X satisfying (i) of Proposition 6.1. Then T has a unique fixed point z.
Moreover {Tnx} converges to z for any x ∈ X.

Proof. Let r ∈ (0, 1) be arbitrary and put s = (1 − r)/2. By Proposition 6.1, there
exists a function η satisfying (6.2). Then we have

η
(
d(Tx, Ty)

)
≤ r η

(
d(x, y)

)
≤ r η

(
d(x, y)

)
+ s η

(
d(x, Ty)

)
+ s η

(
d(Tx, y)

)
for any x, y ∈ X. So by Theorem 1.2, {Tnx} converges to a fixed point for any x ∈ X.
The uniqueness of fixed point follows from (6.1). �

From the proofs of Theorems 5.1 and 6.3, the following theorem is a generalization
of Theorem 6.3.
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Theorem 6.4. Let (X, p) satisfy (D1), (D2) and (D5). Assume that X is Hausdorff,
bounded and sequentially compact. Let T be a mapping on X. Assume that there
exists r ∈ [0, 1) such that

p(Tx, Ty) ≤ r p(x, y)

for any x, y ∈ X. Then {Tnx} converges to a fixed point of T for any x ∈ X.

Proof. The conclusion follows from Theorem 4.1. �
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