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1. Introduction

The Banach Contraction Principle (BCP) which is one of the most important re-
sults of analysis was introduced by the Polish mathematician Stefan Banach in 1922.
It is the main source of metric fixed point theory and the most widely applied fixed
point result in many branches of mathematics because it requires the structure of
complete metric space with contractive condition on the map which is easy to test in
this setting. The BCP was used to study the existence of solutions for integral equa-
tions and differential equations. Therefore, because of its usefulness and simplicity,
it has become a very popular tool in solving existence problems in many branches
of mathematical analysis and scientific applications, and it has been generalized in
many different branches.

One of the branches of this theory is related to the study of common fixed points. In
1966, Jungck [19] introduced common fixed points for commuting mappings in metric
spaces. The concept of commuting mappings has been weakened in several ways
over the years. One such notion which is the concept of compatibility introduced by
Jungck [20]. Since then, several authors have investigated coincidence and common
fixed point results for mappings and generalizations of this concept in different types
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of spaces, see [1, 5, 8, 18, 21, 28] For example, cone metric spaces [16], fuzzy metric
spaces [2], uniform spaces [30], non commutative Banach spaces [32], and etc.

In 1993, Czerwik [10] introduced another axiom for semi metric spaces as
a generalization of metric space, which is weaker than the triangle inequality.
Subsequently, several papers have dealt with fixed point theory in such spaces
[3, 5, 7, 8, 13, 15, 16, 18, 19, 20, 21]. Moreover, Fagin and Stockmeyer [14] discussed
about the same relaxation of the triangle inequality and called this new distance
measure nonlinear elastic matching (NEM). They remark that this measure has been
used, for example, in [9] for trademark shapes and in [26] to measure ice floes. Since
then, Xia [31] used this semi metric distance to study the optimal transport path
between probability measures. Xia has chosen to call these spaces b-metric space (or
quasi metric space). For details of b-metric space, see [22], and references therein.

In 2007, Huang and Zhang [16] firstly introduced cone metric spaces as a generaliza-
tion of metric spaces, and proved some fixed point theorems for contractive mappings.
The existence of a common fixed point on cone metric spaces was investigated recently
in [1, 7, 18, 21].

In [25], the authors introduced the concept of C*-algebra-valued metric spaces.
The main idea consists of using the set of all positive elements of a unital C*-algebra
instead of the set of real numbers. Obviously such spaces generalize the concept of
metric spaces.

In [24], authors, based on the concept of operator-valued metric spaces, introduced
the definitions of operator valued contraction map and expansive and proved the
corresponding fixed point theorems.

In [23], Ma and Jiang, based on the concept and properties of C*-algebras, intro-
duced a concept of C*-algebra-valued b-metric spaces which generalizes the concept
of C*-algebra-valued metric spaces and gives some basic fixed point theorems for
self-map with contractive condition on such spaces.

In 2015, Xin, Jiang and Ma [33] studied common fixed points in the frame of
C*-algebra-valued metric spaces. They proved some common fixed point theorems
for two mappings under the different contractive conditions. Authors furnished suit-
able examples to demonstrate the validity of the hypotheses of their results. They
presented theorems and improved some recent results given in [25].

In this paper, we study common fixed points in the frame of C*-algebra-valued
b-metric spaces. More precisely, we prove some common fixed point theorems for
two mappings under the different contractive conditions. The paper is organized as
follows: Based on the concept and properties of C*-algebras, the paper presents some
common fixed point theorems in C*-algebra-valued b-metric spaces. Finally, as an
application, existence and uniqueness result for one type of integral equation is given.

2. Basic definitions

To begin with, we recall some basic definitions, notations, and facts on the theory
of C*-algebras, which will be needed in the sequel.

Throughout this paper, suppose that A is an unital C*-algebra with the unit I.
Set Ah = {a ∈ A : a = a∗}. We call an element a ∈ A a positive element, denoted
it by a ≥ 0A if a = a∗ and σ(a) ⊆ [0,∞), where 0A is the zero element in A and σ(a)
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is the spectrum of a.
There is a natural partial ordering on Ah given by a ≤ b if and only if b − a ≥ 0A.
From now on, A+ and A′ will denote the set {a ∈ A : a ≥ 0A} and the set
{a ∈ A : ab = ba , ∀b ∈ A}, respectively.
Definition 2.1. Let X be a nonempty set. Suppose that the mapping d : X ×X → A
is defined, with the following properties:

(1) d(x, y) ≥ 0A for all x and y in X ;
(2) d(x, y) = 0A if and only if x = y;
(3) d(x, y) = d(y, x) for all x and y in X ;
(4) d(x, y) ≤ d(x, z) + d(z, y) for all x, y and z in X .

Then d is said to be a C*-algebra-valued metric on X , and (X ,A, d) is said to be a
C*-algebra-valued metric space.
Definition 2.2. Let X be a nonempty set, and A be a C*-algebra. Let b ∈ A′ be
such that ||b|| ≥ 1. A mapping db : X × X → A is said to be a C*-algebra-valued
b-metric on X if the following conditions hold for all x, y, z ∈ A:

(1) db(x, y) ≥ 0A for all x and y in X and db(x, y) = 0⇔ x = y
(2) db(x, y) = db(y, x)
(3) db(x, y) ≤ b[db(x, z) + db(z, y)]

The triplet (X ,A, db) is called a C*-algebra-valued b-metric space with coefficient b.
The following technical lemmas will be useful later in this paper.

Lemma 2.3. Let (X ,A, db) be a C*-algebra-valued b-metric space:

(1) If {xn}∞n=1 ⊆ A and lim
n→∞

xn = 0A, then for any x ∈ A, lim
n→∞

x∗xnx = 0A.

(2) If x, y ∈ Ah and z ∈ A′+, then x ≤ y deduces zx ≤ zy, where A′+ = A+ ∩A′.
(3) Limit of a convergent sequence in a C*-algebra-valued b-metric space is

unique, i.e., if {xn}∞n=1 is a sequence in X and converges to x and y, re-
spectively, then x = y.

Proof.

(1) By taking the relation ||x∗xnx − 0A|| ≤ ||x||2||xn||, we immediately get the
result.

(2) It is well known that x ≤ y implies y − x ∈ A+, and then there is d ∈ A+

such that y − x = d2. Again, z ∈ A′+, then z = e2 for some e ∈ A+. Note
that

zy − zx = z(y − x) = e2d2 = eded = (ed)∗ed ∈ A+,

which shows zx ≤ zy.
(3) By taking the triangle inequality and c ∈ A′, such that c ≥ 1, we get

db(x, y) ≤ c(db(xn, x) + db(xn, y)),

which, together with lim
n→∞

xn = x and lim
n→∞

xn = y, implies that db(x, y) −→
0A(n→∞). Hence db(x, y) = 0A, which implies that x = y.

Lemma 2.4. ([12, 27]) Let A be a unital C*-algebra with unit I

(1) For any x ∈ A+, we have x ≤ I ⇔ ||x|| ≤ 1.
(2) If a ∈ A+ with ||a|| < 1

2 , then I − a is invertible and ||a(I − a)−1|| < 1.
(3) Suppose that a, b ∈ A with a, b ≥ 0 and ab = ba, then ab ≥ 0.
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(4) Let a ∈ A′, if b, c ∈ A with b ≥ c ≥ 0, and I − a ∈ A′+ is an invertible
operator, then

(I − a)−1b ≥ (I − a)−1c.

The concepts of compatible and weakly compatible were introduced in b-metric
space by some authors. For more details one can see [34, 5, 29].

Now, we introduce these concepts in C*-algebra-valued b-metric spaces.
Definition 2.5. Let T and S be two self-mappings of the set X .

(1) If x = Tx = Sx for some x ∈ X , then x is called a common fixed point of T
and S.

(2) If z = Tx = Sx for some z ∈ X , then x is called a coincidence point of T and
S, and z is called a point of coincidence of T and S.

(3) If T and S commute at all of their coincidence point, i.e., TSx = STx for all
x ∈ {x ∈ X : Tx = Sx}, then T and S are called weakly compatible.

Definition 2.6. The two mappings T and S on a C*-algebra-valued b-metric space
(X ,A, db) is said to be compatible, if for arbitrary sequence {xn}∞n=1 ⊆ X , such that
lim
n→∞

Txn = lim
n→∞

Sxn = t ∈ X , then db(TSxn, STxn) −→ 0A (n→∞).

Example 2.7. ([23]) Let X = R and A = Mn(R). Define

d(x, y) = diag(c1|x− y|p, c2|x− y|p, . . . , cn|x− y|p),

which ”diag” denotes a diagonal matrix, and x, y ∈ R, ci ≥ 0 (i = 1, 2, . . . , n) are
constants and p > 1. It is easy to verify that d(., .) is a complete C*-algebra-valued
b-metric, for proving (3) of 2.2 we only need to use the following inequality:

|x− y|p ≤ 2p(|x− z|p + |z − y|p),

which implies that d(x, y) ≤ A[d(x, z)+d(z, y)] for all x, y, z ∈ X , where A = 2pI ∈ A′
and A > I by 2p > 1. But |x−y|p ≤ |x− z|p + |z−y|p is impossible for all x > z > y.
Thus (X ,Mn(R), d) is not a C*-algebra-valued metric space.
Lemma 2.8. If the mappings T and S on the C*-algebra-valued b-metric space
(X ,A, db) are compatible, then they are weakly compatible.
Proof. The proof is the same as [33].
In the following example, we show that the converse of the above lemma dose not
hold.
Example 2.9. Let X = [0, 6] and A = M2(C). Define db : X × X → A by

db(x, y) =

[
c1|x− y|p 0

0 c2|x− y|p
]
,

where p > 1 and c1, c2 ≥ 0 are constant. Then (X ,A, db) is a C*-algebra-valued
b-metric space. Set

Tx =

{
5− x ; x ∈ [0, 52 ],

5 ; x ∈ ( 5
2 , 6],

and Sx =

{
4x ; x ∈ (1, 4],
x ; x ∈ [0, 1] ∪ (4, 6].

It is easy to compute that the set of their coincidence points is singleton set {5},
and it is clear that T and S commute at this point. Therefore, T and S are weakly
compatible.
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Now, we show that they are not compatible. In order to do this, suppose that {xn}
is a sequence in X suth that xn = 1 + 1

n ∈ X for n ∈ N with n ≥ 2. We get

Txn = 5− (1 +
1

n
) = 4− 1

n
and Sxn = 4(1 +

1

n
) = 4 +

4

n
.

Then lim
n→∞

Txn = lim
n→∞

Sxn = 4. In fact, we have

db(Txn, 4) = db(4−
1

n
, 4) =

[
c1| 1n |

p 0
0 c2| 1n |

p

]
−→ 0 (n→∞).

db(Sxn, 4) = db(4 +
4

n
, 4) =

[
c1| 4n |

p 0
0 c2| 4n |

p

]
−→ 0 (n→∞).

But

db(TSxn, STxn) = db(T (4 +
4

n
), S(4− 1

n
)) = db(5, 16− 4

n
)

=

[
c1|11− 4

n |
p 0

0 c2|11− 4
n |

p

]
−→

[
11pc1 0

0 11pc2

]
,

which yields db(TSxn, STxn) 9 0.
Lemma 2.10. ([1]) Let T and S be weakly compatible mappings of a set X . If T
and S have a unique point of coincidence, then it is the unique common fixed point
of T and S.

3. Main results

By using the above results, we are now ready to prove the main theorem of this
paper.
Theorem 3.1. Let (X ,A, db) be a compatible C*-algebra-valued b-metric space and
let T, S : X → X be two self-mappings satisfy

db(Tx, Sy) ≤ a∗db(x, y)a for any x, y ∈ X , (3.1)

where a ∈ A with ||a|| < 1. Then T and S have a unique fixed point in X .
Proof. Let x0 ∈ X and {xn}∞n=0 be a sequence in X such that: x2n+1 = Tx2n,
x2n+2 = Sx2n+1. From 3.1, we have

db(x2n+2, x2n+1) = db(Sx2n+1, Tx2n)

≤ a∗db(x2n+1, x2n)a

≤ (a∗)2db(x2n, x2n−1)a2

...

≤ (a∗)2n+1db(x1, x0)a2n+1,
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where we use the property: if b, c ∈ Ah, then b ≤ c implies a∗ba ≤ a∗ca. Similarly

db(x2n+1, x2n) = db(Sx2n, Tx2n−1)

≤ a∗db(x2n, x2n−1)a

...

≤ (a∗)2ndb(x1, x0)a2n,

In fact, we can easily obtain for any n ∈ N,

db(xn+1, xn) ≤ (a∗)ndb(x1, x0)an.

Now, by using the triangle inequality for any p ∈ N, we have

db(xn+p, xn) ≤ b[db(xn+p, xn+p−1) + db(xn+p−1, xn)]

≤ bdb(xn+p, xn+p−1) + b2[db(xn+p−1, xn+p−2) + db(xn+p−2, xn)]

≤ bdb(xn+p, xn+p−1) + b2db(xn+p−1, xn+p−2) + . . .

+ bp−1db(xn+2, xn+1) + bp−1db(xn+1, xn)

≤ b(a∗)n+p−1db(x1, x0)an+p−1 + b2(a∗)n+p−2db(x1, x0)an+p−2 + . . .

+ bp−1(a∗)n+1db(x1, x0)an+1 + bp−1(a∗)ndb(x1, x0)an

= b(a∗)n+p−1B0a
n+p−1 + b2(a∗)n+p−2B0a

n+p−2 + . . .

+ bp−1(a∗)n+1B0a
n+1 + bp−1(a∗)nB0a

n

=

p−1∑
k=1

bk(a∗)n+p−kB0a
n+p−k + bp−1(a∗)nB0a

n

=

p−1∑
k=1

((a∗)n+p−kb
k
2B

1
2
0 )(B

1
2
0 b

k
2 an+p−k) + ((a∗)nb

p−1
2 B

1
2
0 )(B

1
2
0 b

p−1
2 an)

=

p−1∑
k=1

(B
1
2
0 b

k
2 an+p−k)∗(B

1
2
0 b

k
2 an+p−k) + (B

1
2
0 b

p−1
2 an)∗(B

1
2
0 b

p−1
2 an)

≤
p−1∑
k=1

||B
1
2
0 b

k
2 an+p−k||21A + ||B

1
2
0 b

p−1
2 an||21A

≤ ||B
1
2
0 ||2

p−1∑
k=1

||a||2(n+p−k)||b||k1A + ||B
1
2
0 ||2||b

p−1
2 ||2||an||21A

≤ ||B0||
||b||p||a||2(n+1)

||b|| − ||a||2
1A + ||B0||||b

p−1
2 ||2||a||2n1A

−→ 0 (n→∞),

where 1A is the unit element in A and db(x1, x0) = B0 for some B0 ∈ A+, this can
be done since db(x1, x0) ∈ A+.



FIXED POINT THEOREMS IN C*-ALGEBRA-VALUED B-METRIC SPACES 655

By the definition of cauchy sequence, we get that {xn}∞n=1 is a cauchy sequence
in X and from the completeness of X it follows that there exists x ∈ X such that
lim
n→∞

xn = x.

In fact from the triangle inequality and 3.1, we have

db(x, Sx) ≤ b[db(x, x2n+1) + db(x2n+1, Sx)]

≤ b[db(x, x2n+1) + db(Tx2n, Sx)]

≤ b[db(x, x2n+1) + a∗db(x2n, x)a].

Taking n→∞, the right hand side of the above inequality approaches 0A, and then
Sx = x. Again, nothing that

0A ≤ db(Tx, x) = db(Tx, Sx) ≤ a∗db(x, x)a = 0A.

That is db(Tx, x) = 0A, which means Tx = x.
To prove the uniqueness of common fixed point in X , assume that there is another
point y ∈ X such that Ty = Sy = y. From 3.1, we have

db(x, y) = db(Tx, Sy) ≤ a∗db(x, y)a,

The above inequality with ||a|| < 1 yields that

0 ≤ ||db(x, y)|| ≤ ||a||2||db(x, y)|| < ||db(x, y)||.
The above inequality holds only when ||db(x, y)|| = 0 and db(x, y) = 0A, which gives
y = x. Hence, T and S have a unique common fixed point in X .

An easy consequence of Theorem 3.1 is the following result.
Corollary 3.2. Let (X ,A, db) be a complete C*-algebra-valued b-metric space and
let T, S : X → X be two mappings such that,

||db(Tx, Sy)|| ≤ ||a||||db(x, y)|| for any x, y ∈ X ,
where a ∈ A with ||a|| < 1. Then T and S have a unique common fixed point in X .
Corollary 3.3. Let (X ,A, db) be a complete C*-algebra-valued b-metric space and
let the mapping T : X → X satisfies

db(T
mx, Tny) ≤ a∗db(x, y)a, for any x, y ∈ X ,

where a ∈ A with ||a|| < 1, and m and n are fixed positive integers. Then T has a
unique fixed point in X .
Proof. Set T = Tm and S = Tn in 3.1, then the result follows from Theorem 3.1.
Remark 3.4. Note that in Theorem 3.1, if we take S = T , then 3.1 becomes:

db(Tx, Ty) ≤ a∗db(x, y)a, for any x, y ∈ X ,
where a ∈ A with ||a|| < 1. Thus, we have the following corollary, for details one can
see [25, Theorem 2.1].
Corollary 3.5. Let (X ,A, db) be a complete C*-algebra-valued b-metric space with
coefficient b and let the mapping T : X → X satisfies

db(Tx, Ty) ≤ a∗db(x, y)a,

where a ∈ A with ||a|| < 1, then T has a unique fixed point in X .
Now, we have the following interesting theorem.
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Theorem 3.6. Let (X ,A, db) be a complete C*-algebra-valued b-metric space and
let T, S : X → X be two self-mappings such that

db(Tx, Ty) ≤ a∗db(Sx, Sy)a for any x, y ∈ X , (3.2)

where a ∈ A with ||a|| < 1. If R(T ) is contained in R(S), and R(S) is complete in X ,
then T and S have a unique point of coincidence in X .
Moreover, if T and S are weakly compatible, then T and S have a unique common
fixed point in X .
Proof. Let x0 ∈ X be an arbitrary point, choose x1 ∈ X such that Sx1 = Tx0, this
can be done since R(T ) ⊆ R(S). Let x2 ∈ X such that Sx2 = Tx1. Continuing this
process, we obtain a sequence {xn}∞n=1 in X satisfying Sxn = Txn−1. Then from 3.2
we have

db(Sxn+1, Sxn) = db(Txn, Txn−1)

≤ a∗db(Sxn, Sxn−1)a

...

≤ (a∗)ndb(Sx1, Sx0)an,

which shows that {Sxn}∞n=1 is a cauchy sequence in R(S). By completion of R(S) in
X , there exists q ∈ X such that lim

n→∞
Sxn = Sq. Thus

db(Sxn, T q) = db(Txn−1, T q) ≤ a∗db(Sxn−1, Sq)a.

From lim
n→∞

Sxn = Sq and Lemma 2.3 (1), we get a∗db(Sxn−1, Sq)a → 0 as n → ∞,

and then lim
n→∞

Sxn = Tq. It follows from Lemma 2.3 (3) that Tq = Sq. If there is a

point w in X such that Tw = Sw, 3.2 implies

db(Sq, Sw) = db(Tq, Tw) ≤ a∗db(Sq, Sw)a.

Following an argument similar to that given in Theorem 3.1 we obtain Sq = Sw,
Because

0 ≤ ||db(Sq, Sw)|| ≤ ||a||2||db(Sq, Sw)||
⇒ ||db(Sq, Sw)|| = 0⇒ db(Sq, Sw) = 0⇒ Sq = Sw.

Hence, T and S have a unique point of coincidence in X . From Lemma 2.10, T and
S have a unique common fixed point in X .
Theorem 3.7. Let (X ,A, db) be a complete C*-algebra-valued b-metric space and
let two mappings T, S : X → X satisfy

db(Tx, Ty) ≤ adb(Tx, Sx) + adb(Ty, Sy), for any x, y ∈ X . (3.3)

where a ∈ A′+ with ||a|| < 1
2 . If R(T ) is contained in R(S) and R(S) is complete in

X , then T and S have a unique point of coincidence in X .
Moreover, if T and S are weakly compatible, then T and S have a unique common
fixed point in X .
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Proof. Similar to Theorem 3.6, choose {xn}∞n=1 in X and set Sxn = Txn−1. Then
from 3.3,

db(Sxn+1, Sxn) = db(Txn, Txn−1)

≤ adb(Txn, Sxn) + adb(Txn−1, Sxn−1)

= adb(Sxn+1, Sxn) + adb(Sxn, Sxn−1).

Thus,

(1− a)db(Sxn+1, Sxn) ≤ adb(Sxn, Sxn−1).

Since ||a|| < 1
2 , then 1 − a is invertible, and furthermore (1 − a)−1 =

∞∑
n=0

an, which

together with a ∈ A′+, implies (1− a)−1 ∈ A′+. By Lemma 2.3 (2), we have

db(Sxn+1, Sxn) ≤ bdb(Sxn, Sxn−1), (3.4)

where b = (1− a)−1a ∈ A′+ with ||b|| < 1. Now, by induction and Lemma 2.3 (2), we
get

db(Sxn+1, Sxn) ≤ bndb(Sx1, Sx0).

For any m ≥ 1, p ≥ 1, and c ∈ A′ where ||c|| > 1,

db(Sxm+p, Sxm) ≤ c[db(Sxm+p, Sxm+p−1) + db(Sxm+p−1, Sxm)]

= cdb(Sxm+p, Sxm+p−1) + cdb(Sxm+p−1, Sxm)

≤ cdb(Sxm+p, Sxm+p−1) + c2[db(Sxm+p−1, Sxm+p−2)

+ db(Sxm+p−2, Sxm)]

≤ cdb(Sxm+p, Sxm+p−1) + c2db(Sxm+p−1, Sxm+p−2)

+ c3db(Sxm+p−2, Sxm+p−3) + . . .

+ cp−1db(Sxm+2, Sxm+1) + cp−1db(Sxm+1, Sxm)

≤ cbm+p−1db(Sx1, Sx0) + c2bm+p−2db(Sx1, Sx0)

+ c3bm+p−3db(Sx1, Sx0) + · · ·+ cp−1bm+1db(Sx1, Sx0)

+ cp−1bmdb(Sx1, Sx0)

= cbm+p−1B0 + c2bm+p−2B0

+ c3bm+p−3B0 + · · ·+ cp−1bm+1B0 + cp−1bmB0

=

p−1∑
k=1

ckbm+p−kB0 + cp−1bmB0

=

p−1∑
k=1

|B
1
2
0 b

m+p−k
2 c

k
2 |2 + |B

1
2
0 c

p−1
2 b

m
2 |2
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≤ ||B0||
p−1∑
k=1

||c||k||b||m+p−k1A + ||c||p−1||b||m||B0||1A

≤ ||B0||
||c||p||b||m+1

||c|| − ||b||
1A + ||c||p−1||b||m||B0||1A

−→ 0 (m→∞),

where B0 = db(Sx1, Sx0). Hence {Sxn}∞n=0 is a cauchy sequence in R(S). By the
completeness of R(S), there exists q ∈ X such that lim

n→∞
Sxn = Sq.

Again by 3.4, we have

db(Sxn, T q) = db(Txn−1, T q) ≤ bdb(Sxn−1, Sq).

This implies that lim
n→∞

Sxn = Tq. By Lemma 2.3 (3), the uniqueness of a limit in

C*-algebra-valued b-metric space tells us that Tq = Sq.
Therefore T and S have a point of coincidence in X . Now, we will show the

uniqueness of points of coincidence. To do this, suppose that there is p ∈ X such that
Tp = Sp. Using 3.3, we have

db(Sp, Sq) = db(Tp, Tq) ≤ adb(Tp, Sp) + adb(Tq, Sq).

This implies that ||db(Sp, Sq)|| = 0, and then Sp = Sq. Hence by Lemma 2.10, T and
S have a unique common fixed point in X .
Theorem 3.8. Let (X ,A, db) be a complete C*-algebra-valued b-metric space and
let T, S : X → X be two mappings satisfy

db(Tx, Ty) ≤ adb(Tx, Sy) + adb(Sx, Ty) for any x, y ∈ X , (3.5)

where a ∈ A′+ with ||ab|| < 1
2 . If R(T ) is contained in R(S) and R(S) is complete in

X , then T and S have a unique point of coincidence in X .
Moreover, if T and S are weakly compatible, then T and S have a unique common
fixed point in X .
Proof. Similar to Theorem 3.6, choose {xn}∞n=1 in X and set Sxn = Txn−1. Then
from 3.5

db(Sxn+1, Sxn) = db(Txn, Txn−1)

≤ adb(Txn, Sxn−1) + adb(Sxn, Txn−1)

= adb(Sxn+1, Sxn−1) + adb(Sxn, Sxn)

≤ abdb(Sxn+1, Sxn) + abdb(Sxn, Sxn−1).

Thus,

(1− ab)db(Sxn+1, Sxn) ≤ abdb(Sxn, Sxn−1).

So

db(Sxn+1, Sxn) ≤ (1− ab)−1abdb(Sxn, Sxn−1),

and consequently

db(Sxn+1, Sxn) ≤ tdb(Sxn, Sxn−1),

where t = (1− ab)−1ab ∈ A′+ with ||t|| < 1.
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Following an argument similar to that given in Theorem 3.7, we obtain T and S
have a point of coincidence Tq in X . In the following we will show the uniqueness of
points of coincidence. To do this, suppose that there is p ∈ X such that Tp = Sp.
Using 3.5, we have

db(Sp, Sq) = db(Tp, Tq) ≤ adb(Tp, Sq) + adb(Sp, Tq) = adb(Sp, Sq) + adb(Sp, Sq),

i.e.,

db(Sp, Sq) ≤ (I − a)−1adb(Sp, Sq).

Since ||(I − a)−1a|| < 1, implies that ||db(Sp, Sq)|| = 0, and then Sp = Sq. Hence by
Lemma 2.10, T and S have a unique common fixed point in X .

In Theorem 3.8, by choosing S = idX , we have R(S) = X , and T is weakly
compatible with S. Furthermore, we have the following consequence. For more details
see [23, Theorem 2.2].
Corollary 3.9. Let (X ,A, db) be a complete C*-algebra-valued b-metric space and
let the mapping T : X → X satisfy

db(Tx, Ty) ≤ adb(Tx, y) + adb(Ty, x) for any x, y ∈ X ,
where a ∈ A′+ with ||ba|| < 1

2 , then T have a unique fixed point in X .

4. Application

Fixed point theorems for operators in b-metric spaces are widely used and have
found various applications in differential and integral equations. As an application,
let us consider the following system of integral equations

x(t) =

∫
E

K1(t, s, x(s))ds+ g(t) t ∈ E, (4.1)

x(t) =

∫
E

K2(t, s, x(s))ds+ g(t) t ∈ E,

where E is a Lebesgue measurable set and m(E) <∞.
Theorem 4.1. Suppose that the following conditions hold

(1) K1 : E × E × R→ R, K2 : E × E × R→ R are integrable, and g ∈ L∞(E);
(2) there exist k ∈ (0, 1) and a continious function ϕ : E × E → R+ such that

|K1(t, s, u)−K2(t, s, v)| ≤ k|ϕ(t, s)||u− v|,
for t, s ∈ E and u, v ∈ R.

(3) sup
t∈E

∫
E

|ϕ(t, s)|ds ≤ 1.

Then the integral equations 4.1 have a unique common solution in L∞(E).
Proof. Let X = L∞(E) be the set of essentially bounded measurable functions on
E and B(L2(E)) be the set of bounded linear operators on a Hilbert space L2(E).
Suppose d : X × X → B(L2(E)) defined by d(f, g) = π|f−g|p where πh : L2(E) →
L2(E) is the multiplication operator defined by

πh(ψ) = h.ψ ; ψ ∈ L2(E).

Hence (X , B(L2(E)), d) is a complete C*-algebra-valued b-metric space, Example 2.7.
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Define T, S : L∞(E)→ L∞(E) by

T (x(t)) =

∫
E

K1(t, s, x(s))ds+ g(t) t ∈ E and

S(x(t)) =

∫
E

K2(t, s, x(s))ds+ g(t) t ∈ E.

Set B = kI, then B ∈ L(L2(E))+ and ||B|| = k < 1. For any h ∈ L2(E) we have

||d(Tx, Sy)|| = sup
||h||=1

(π|Tx−Sy|ph, h)

= sup
||h||=1

∫
E

(|
∫
E

K1(t, s, x(s))−K2(t, s, y(s))|p)h(t) ¯h(t)dt

≤ sup
||h||=1

∫
E

(|
∫
E

K1(t, s, x(s))−K2(t, s, y(s))|)ph(t) ¯h(t)dt

≤ sup
||h||=1

∫
E

(

∫
E

|kϕ(t, s)(x(s)− y(s))|ds)ph(t) ¯h(t)dt

≤ kp sup
||h||=1

∫
E

(

∫
E

|ϕ(t, s)|ds)p|h(t)|2dt||x− y||p∞

≤ k sup
||h||=1

∫
E

|ϕ(t, s)|ds. sup
||h||=1

∫
E

|h(t)|2dt.||x− y||p∞

≤ k||x− y||p∞
= ||B||||d(x, y)||.

Hence the mappings T and S satisfy all the conditions of Corollary 3.2, and then T
and S have a unique common fixed point, which is equivalent to that the integral
equation 4.1, have a unique common solution in L∞(E).
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compatible pairs on cone metric spaces, Fixed Point Theory Appl., (2009), Article ID 643840.
[22] W. Kirk, N. Shahzad, Fixed Point Theory in Distance Spaces, vol. XI, Springer, 2014, p. 173.

[23] Z.H. Ma, L.N. Jiang, C*-algebra-valued b-metric spaces and related fixed point theorems, Fixed

Point Theory Appl., (2015).
[24] Z.H. Ma, L.N. Jiang, Q.L. Xin, Fixed point theorems on operator-valued metric space, Trans.

Beijing Inst. Tech., 34(10)(2014), 1078-1080.
[25] Z.H. Ma, L.N. Jiang, H.K. Sun, C*-algebra-valued metric spaces and related fixed point theorems,

Fixed Point Theory Appl., 2014(2014), Art. ID 206.

[26] R. McConnell, R. Kwok, J. Curlander, W. Kober, S. Pang, Ψ−s Correlation and dynamic time
warping: two methods for tracking ice floes, IEEE Trans. Geosci. Remote Sens., 29(1991), no.

6, 1004-1012.

[27] G.J. Murphy, C*-Algebras and Operator Theory, Academic Press, London, 1990.
[28] W. Shatanawi, M. Postolache, Common fixed point theorems for dominating and weak annihi-

lator mappings in ordered metric spaces, Fixed Point Theory Appl., (2013), Art. ID 271.

[29] L. Shi, S. Xu, Common fixed point theorems for two weakly compatible self-mappings in cone
b-metric spaces, Fixed Point Theory Appl., (2013), Art. ID 120.

[30] E. Tarafdar, An approach to fixed-point theorems on uniform spaces, Trans. Amer. Math. Soc.,

191(1974), 209-225.
[31] Q. Xia, The geodesic problem in quasimetric spaces, J. Geom. Anal., 19(2009), no. 2, 452-479.

[32] Q.L. Xin, L.N. Jiang, Common fixed point theorems for generalized k-ordered contractions and
B-contractions on noncommutative Banach spaces, Fixed Point Theory Appl., (2015), Art. ID

77.

[33] Q.L. Xin, L.N. Jiang, Z.H. Ma, Common fixed point theorems in C*-algebra-valued metric
spaces, (in progress).

[34] Z.H. Yanga, H. Sadatib, S.H. Sedghib, N. Shobec, Common fixed point theorems for non-
compatible self-maps in b-metric spaces, J. Nonlinear Sci. Appl., 8(2015), 1022-1031.

Received: June 7, 2017; Accepted: March 9, 2018.



662 S.S. RAZAVI AND H.P. MASIHA


