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1. Introduction

Fixed point theory plays an important role in the study of theory of equations in
nonlinear analysis. They can be applied widely to solve importantly the existence of
solutions of various equations. Further, it has various applications in many fields such
as optimization, control theory and economics. A fundamental and well-known result
is the Banach’s contraction principle [10] that has been extended and generalized in
many directions both single valued self-map version and multivalued self-map version,
for instance, see [17, 34, 31, 16, 23, 11, 29] and for other associated results, see
[28, 26, 27, 15, 32, 24, 20, 1, 2, 30].

Theorem 1.1. (Banach’s Contraction Principle) Let (X, d) be a complete met-
ric space and let T : X → X be a contraction mapping, i.e., there exists k ∈ [0, 1)
such that

d(Tx, Ty) ≤ kd(x, y) for all x, y ∈ X.
Then T has a unique fixed point in X.

623



624 JENWIT PUANGPEE AND SUTHEP SUANTAI

In 1968, Kannan [22] extended the notions of Banach’s contraction principle to a
new type of mappings which is different from that of contraction as the following:

Definition 1.2. Let (X, d) be a metric space. A mapping T : X → X is called a
Kannan mapping if there exists a ∈ [0, 12 ) such that

d(Tx, Ty) ≤ a[d(x, Tx) + d(y, Ty)] for all x, y ∈ X.

It is noted that a contraction mapping is continuous but a Kannan mapping is not.
On the other hand, Chatterjea [17] introduced a new concept of contraction map-

pings known as Chatterjea contraction mapping as follows:

d(Tx, Ty) ≤ a[d(x, Ty) + d(y, Tx)] for all x, y ∈ X,
where a ∈

[
0, 12
)
.

Zamfirescu [34] proved a fixed point theorem for a new type of contraction mappings
by combining the concept of Banach’s contraction mapping, Kannan mapping and
Chatterjea mapping. This mapping is known as Zamfirescu operator.

Theorem 1.3. ([34]) Let (X, d) be a complete metric space and T : X → X a map
for which there exist the real numbers a, b and c satisfying 0 ≤ a < 1, 0 ≤ b, c < 1

2
such that for each pair x, y ∈ X, at least one of the following is true:

(z1) d(Tx, Ty) ≤ ad(x, y);
(z2) d(Tx, Ty) ≤ b[d(x, Tx) + d(y, Ty)];
(z3) d(Tx, Ty) ≤ c[d(x, Ty) + d(y, Tx)].

Then T is a Picard operator, that is, T has a unique fixed point x0 ∈ X and for each
x ∈ X, Tnx→ x0.

In 2004, Berinde [11] introduced and studied the fixed point theorems for weak con-
traction mapping or almost contraction mapping on a complete metric space which is
more general than that of Kannan and Chatterjea mapping and Zamfirescu operator.

Definition 1.4. ([11]) Let (X, d) be a metric space. A map T : X → X is called
weak contraction or almost contraction if there exist a constant δ ∈ (0, 1) and L ≥ 0
such that

d(Tx, Ty) ≤ δd(x, y) + Ld(y, Tx) for all x, y ∈ X.

Moreover, the Banach’s contraction principle was extended to multivalued map-
pings in a complete metric space. The first well-known fixed point theorem for mul-
tivalued contraction mappings using the Pompeiu-Hausdorff metric was studied by
Nadler [25].

Let (X, d) be a metric space and CB(X) be the set of all nonempty closed bounded
subsets of X. Let A be a subset of X. The distance from x to A is defined by

D(x,A) := inf{d(x, y) : y ∈ A}.
For A,B ∈ CB(X), we define

H(A,B) := max

{
sup
a∈A

D(a,B), sup
b∈B

D(b, A)

}
.

It is called a Pompeiu-Hausdorff distance from A to B.
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Let T : X → 2X (collection of all nonempty subsets of X) be a multivalued
mapping. A point x ∈ X is said a fixed point of T if x ∈ Tx. We denote the set of all
fixed points of T by F (T ), that is, F (T ) := {x ∈ X : x ∈ Tx}.

In 1969, Nadler [25] extended the Banach’s contraction principle for a multivalued
mapping and proved the Banach’s contraction principle in a complete metric space
for multivalued version. He proved the following fixed point theorem.

Theorem 1.5. (Nadler’s fixed point theorem) Let (X, d) be a complete metric
space and let T be a map from X into CB(X). Suppose that T is a multivalued
contraction mapping, i.e., there exists k ∈ [0, 1) such that

H(Tx, Ty) ≤ kd(x, y) for all x, y ∈ X.
Then there exists z ∈ X such that z ∈ Tz.

Nadler’s fixed point theorem was extended and generalized in many directions.
One of the well-known extensions is a fixed point theorem of multivalued almost
contractions introduced by M. Berinde and V. Berinde [12]. They extended Nadler’s
fixed point theorem to a new class of multivalued self mappings, called multivalued
almost contractions, defined as follows:

Let (X, d) be a metric space and let T : X → CB(X) be a multivalued mapping.
Then T is said to be a multivalued almost contraction or multivalued (θ, L)-almost
contraction if there exist two constants θ ∈ (0, 1) and L ≥ 0 such that

H(Tx, Ty) ≤ θd(x, y) + L ·D(y, Tx) for all x, y ∈ X.
They proved that in a complete metric space, every multivalued almost contraction

T : X → CB(X) has a fixed point.
In many real applicable existence problems, fixed point theorems of self-mappings

may not be applied, but those of nonself mappings will be very useful and applicable.
Now, we will focus on the existence of fixed points for nonself multivalued con-

traction mappings which extended many important results, see [8, 21, 33, 4, 5, 6, 7,
18, 19, 3, 14], for example. In 1972, Assad and Kirk [8] obtained a new fixed point
theorem for nonself multivalued mappings.

Theorem 1.6. (Assad and Kirk’s fixed point theorem) Let (X, d) be a complete
and metrically convex metric space, K a nonempty closed subset of X, and let T :
K → CB(X) a multivalued contraction mapping. If T satisfies Rothe’s type condition,
that is, x ∈ ∂K implies Tx ⊂ K, then T has a fixed point in K.

Recently, in 2013, Alghamdi, Berinde and Shahzad [3] considered multivalued non-
self almost contractions on a convex metric space and proved the existence theorem
of this mapping.

Theorem 1.7. ([3]) Let (X, d) be a complete convex metric space and K a nonempty
closed subset of X. Suppose that T : K → CB(X) is a multivalued almost contraction,
that is,

H(Tx, Ty) ≤ δd(x, y) + L ·D(y, Tx) for all x, y ∈ K,
with δ ∈ (0, 1) and some L ≥ 0 such that δ(1 + L) < 1. If T satisfies Rothe’s type
condition, then there exists z ∈ K such that z ∈ Tz.
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Motivated and inspired by all of these works mentioned above, we aim to study
and prove the existence theorems for a new class of multivalued nonself contractions,
which is more general than that of Berinde [12], in a complete metric space. We also
give some examples to illustrate our main results.

2. Preliminaries

In this section, we recall some notations, definitions and known results that are
useful for our main results.

Let (X, d) be a metric space and CB(X) the set of all nonempty closed bounded
subsets of X. Let A be a subset of X and any x ∈ X. The distance from x to A is
defined by D(x,A) := inf{d(x, y) : y ∈ A}. For A,B ∈ CB(X), we define

H(A,B) := max

{
sup
a∈A

D(a,B), sup
b∈B

D(b, A)

}
.

The mapping H is called a Pompeiu-Hausdorff metric on CB(X) induced by d on
X. It is known that (CB(X), H) is a complete metric space whenever (X, d) is a
complete metric space.

A metric space (X, d) is called metrically convex or convex if for each x, y ∈ X
with x 6= y there exists z ∈ X,x 6= z 6= y, such that

d(x, y) = d(x, z) + d(z, y).

It is known that in a convex metric space each two points are the endpoint of at
least one metric segment (see [8]). The following proposition and lemmas are useful
for our main results.

Proposition 2.1. ([8]) Let (X, d) be a complete and convex metric space, K a
nonempty closed subset of X. If x ∈ K and y /∈ K, then there exists a point z
in the boundary of K, denote by ∂K, such that

d(x, y) = d(x, z) + d(z, y).

For convenience, we denote

P [x, y] = {z ∈ ∂K : d(x, y) = d(x, z) + d(z, y)}.

The following lemmas are direct consequences of the definition of Pompeiu-
Hausdroff metric.

Lemma 2.2. For A,B ∈ CB(X) and a ∈ A, then D(a,B) ≤ H(A,B).

Lemma 2.3. Let A,B ∈ CB(X) and k > 1. Then for a ∈ A, there exists b ∈ B such
that d(a, b) ≤ kH(A,B).

3. Main results

In this section, we introduce and study a new type of nonself multivalued contrac-
tion, called Kannan-Berinde contraction mapping, which is more general than that of
Berinde’s contraction and prove its fixed point theorem under some conditions.
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Definition 3.1. Let (X, d) be a metric space and K a nonempty subset of X. A
mapping T : K → CB(X) is said to be a multivalued Kannan-Berinde contraction if
there exist δ ∈ [0, 1), a ∈

[
0, 13
)

and L ≥ 0 such that

H(Tx, Ty) ≤ δd(x, y) + a[D(x, Tx) +D(y, Ty)] + L ·D(y, Tx)

for any x, y ∈ K.

Example 3.2. Let X = {0, 1, 2} and K = {0, 1}. Define a map T : K → CB(X) by

Tx =

{
{1, 2} if x = 0;

{0, 2} if x = 1.

Then we see that

H(T (0), T (1)) =
1

2
· (1) +

1

4
[1 + 1] + L · (0)

=
1

2
d[0, 1) +

1

4
[D(0, T (0)) +D(1, T (1))] + L ·D(1, T (0)),

and for any 0 ≤ δ < 1 and L ≥ 0,

H(T (0), T (1)) = 1 > δ · (1) + L · (0) = δd[0, 1) + L ·D(1, T (0)).

Hence T is a multivalued Kannan-Berinde contraction for δ = 1
2 , a = 1

4 and L ≥ 0
arbitrary but T is not a multivalued almost contraction.

We now prove our main result.

Theorem 3.3. Let (X, d) be a complete convex metric space and K a nonempty
closed subset of X. Suppose that a map T : K → CB(X) is a multivalued mapping
satisfying the following properties:

(i) T satisfies Rothe’s type condition, that is, x ∈ ∂K implies Tx ⊂ K;
(ii) T is a multivalued Kannan-Berinde contraction mapping with

δ(1 + a+ L) + a(3 + L) < 1.

Then T has a fixed point in K.

Proof. From the assumption (ii), δ(1 + a+L) + a(3 +L) < 1, there exists k > 1 such
that

δ(1 + a+ L) + a(3 + L) <
1

k2
< 1.

Then we get
k2[δ(1 + a+ L) + a(3 + L)] < 1.

We note that ka, kδ < 1 and

k2[δ(1 + a+ L) + a(3 + L)] = k2(δ + 3a+ δa+ δL+ aL)

≥ k2
(
δ + 3a

k
+ δa+ δL+ aL

)
= kδ + 3ka+ k2δa+ k2δL+ k2aL.

So we have
kδ + 3ka+ k2δa+ k2δL+ k2aL < 1.
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Hence

(1 + ka+ kL)(kδ + ka)

(1− ka)2
< 1.

Now, we construct two sequences {xn} and {yn} as the following. Let x0 ∈ K and
y1 ∈ Tx0. If y1 ∈ K, we denote x1 = y1. Consider in case y1 /∈ K, by Proposition 2.1,
there exists x1 ∈ P [x0, y1] such that d(x0, y1) = d(x0, x1)+d(x1, y1). So we have x1 ∈
K, and, by Lemma 2.3, there exists y2 ∈ Tx1 such that d(y1, y2) ≤ kH(Tx0, Tx1).
If y2 ∈ K, we denote x2 = y2. Otherwise, y2 /∈ K, then there exists x2 ∈ P [x1, y2]
such that d(x1, y2) = d(x1, x2) + d(x2, y2). Thus x2 ∈ K, by Lemma 2.3, there exists
y3 ∈ Tx2 such that d(y2, y3) ≤ kH(Tx1, Tx2).

Continuing the argument, we can construct two sequences {xn} and {yn} such that

(1) yn+1 ∈ Txn;
(2) d(yn, yn+1) ≤ kH(Txn−1, Txn), where

(a) xn = yn if and only if yn ∈ K;
(b) xn ∈ P [xn−1, yn] if and only if yn /∈ K, i.e., xn 6= yn and

xn ∈ ∂K such that d(xn−1, yn) = d(xn−1, xn) + d(xn, yn).

Next, we show that the sequence {xn} is a Cauchy sequence.
Now, we put

P1 := {xi ∈ {xn} : xi = yi, i = 1, 2, ...};

P2 := {xi ∈ {xn} : xi 6= yi, i = 1, 2, ...}.

Note that {xn} ⊂ K. Moreover, if xi ∈ P2, then xi−1 and xi+1 belong to the set P1.
By virtue of (i), we cannot have two consecutive terms of {xn} in the set P2. For
n ≥ 2, we consider the three possibilities as the following.
Case 1. If xn, xn+1 ∈ P1, then xn = yn and xn+1 = yn+1.
Then we obtain

d(xn, xn+1) = d(yn, yn+1)

≤ kH(Txn−1, Txn)

≤ kδd(xn−1, xn) + ka[D(xn−1, Txn−1) +D(xn, Txn)]

+ kL ·D(xn, Txn−1).

≤ kδd(xn−1, xn) + kad(xn−1, xn) + kad(xn, xn+1),

which implies

d(xn, xn+1) ≤
(
kδ + ka

1− ka

)
d(xn−1, xn).

Case 2. If xn ∈ P1 and xn+1 ∈ P2, then xn = yn and xn+1 ∈ P [xn, yn+1], i.e.,

d(xn, yn+1) = d(xn, xn+1) + d(xn+1, yn+1).
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From (ii), we have

d(yn, yn+1) ≤ kH(Txn−1, Txn)

≤ kδd(xn−1, xn) + ka[D(xn−1, Txn−1) +D(xn, Txn)]

+ kL ·D(xn, Txn−1).

≤ kδd(xn−1, xn) + kad(xn−1, xn) + kad(yn, yn+1),

which follows that

d(yn, yn+1) ≤
(
kδ + ka

1− ka

)
d(xn−1, xn).

So, we obtain

d(xn, xn+1) = d(xn, yn+1)− d(xn+1, yn+1)

≤ d(xn, yn+1)

= d(yn, yn+1)

≤
(
kδ + ka

1− ka

)
d(xn−1, xn).

Case 3. If xn ∈ P2 and xn+1 ∈ P1, then xn−1 ∈ P1, that is, xn−1 = yn−1, xn+1 =
yn+1, and xn ∈ P [xn−1, yn], that is,

d(xn−1, yn) = d(xn−1, xn) + d(xn, yn).

Since yn ∈ Txn−1 for all n ∈ N and kδ < 1, by (ii), we have

d(yn, yn+1) ≤ kH(Txn−1, Txn)

≤ kδd(xn−1, xn) + ka[D(xn−1, Txn−1) +D(xn, Txn)]

+ kL ·D(xn, Txn−1).

≤ kδd(xn−1, xn) + kad(xn−1, yn) + kad(xn, yn+1) + kLd(xn, yn)

= kδd(xn−1, xn) + kad(xn−1, yn) + kad(xn, xn+1) + kLd(xn, yn).

Then, we obtain

d(xn, xn+1) ≤ d(xn, yn) + d(yn, xn+1)

= d(xn, yn) + d(yn, yn+1)

≤ (1 + kL)d(xn, yn) + kδd(xn−1, xn) + kad(xn−1, yn) + kad(xn, xn+1)

≤ (1 + kL)d(xn, yn) + (1 + kL)d(xn−1, xn) + kad(xn−1, yn)

+ kad(xn, xn+1)

= (1 + kL)d(xn−1, yn) + kad(xn−1, yn) + kad(xn, xn+1),

which implies that

d(xn, xn+1) ≤
(

1 + ka+ kL

1− ka

)
d(xn−1, yn) =

(
1 + ka+ kL

1− ka

)
d(yn−1, yn).

Since xn−1 ∈ P1 and xn ∈ P2, it follows from Case 2 that

d(yn−1, yn) ≤
(
kδ + ka

1− ka

)
d(xn−2, xn−1).
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Thus

d(xn, xn+1) ≤ (1 + ka+ kL)(kδ + ka)

(1− ka)2
· d(xn−2, xn−1).

Since

h :=
(1 + ka+ kL)(kδ + ka)

(1− ka)2
< 1,

we obtain that

d(xn, xn+1) ≤ hd(xn−2, xn−1).

We note that

kδ + ka

1− ka
≤ (1 + ka+ kL)(kδ + ka)

(1− ka)
≤ (1 + ka+ kL)(kδ + ka)

(1− ka)2
= h.

From Case 1, Case 2 and Case 3, we can conclude that for n ≥ 2,

d(xn, xn+1) =

{
hd(xn−1, xn) if xn, xn+1 ∈ P1 or xn ∈ P1, xn+1 ∈ P2;

hd(xn−2, xn−1) if xn ∈ P2, xn+1 ∈ P1.

Following Assad and Kirk [8], by induction, we get that for n ≥ 2,

d(xn, xn+1) ≤ r · hn/2,

where r := h−1/2·max{d(x0, x1), d(x1, x2)}.
For m > n, we get

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + ...+ d(xm−1, xm)

≤ r · hn/2 + r · h(n+1)/2 + ...+ r · h(m−1)/2

= r · (hn/2 + h(n+1)/2 + ..+ h(m−1)/2).

Since h < 1, it follows that {xn} is a Cauchy sequence in K. Since X is complete and
K is closed, there exists x ∈ K such that

lim
n→∞

xn = x.

From the construction of {xn}, there is a subsequence {xnj
} such that {xnj

} ⊂ P1.
So, xnj = ynj ∈ Txnj−1. Finally, we show that x is a fixed point.
From 0 ≤ D(x, Txnj−1) ≤ d(x, xnj ) for each j ∈ N, it follows that D(x, Txnj−1)→ 0
as j →∞.
For each j ∈ N, we have

D(x, Tx) ≤ d(x, xnj ) +H(Txnj−1, Tx)

≤ d(x, xnj
) + δd(xnj−1, x) + a[D(xnj−1, Txnj−1) +D(x, Tx)]

+ L ·D(x, Txnj−1)

≤ d(x, xnj ) + δd(xnj−1, x) + ad(xnj−1, xnj ) + aD(x, Tx)

+ L ·D(x, Txnj−1).

So, we obtain

(1− a)D(x, Tx) ≤ d(x, xnj ) + δd(xnj−1, x) + ad(xnj−1, xnj ) + L ·D(x, Txnj−1).
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Letting j →∞, we get (1− a)D(x, Tx) = 0.
Since 0 ≤ a < 1

3 , we get that D(x, Tx) = 0, hence x ∈ Tx, that is, T has a fixed point
in K. This completes the proof. �

As a consequence of Theorem 3.3, when we put a = 0, we obtain Theorem 9 of [3]
as our special case as follows.

Corollary 3.4. (Theorem 9 of [3]) Let (X, d) be a complete convex metric space
and K a nonempty closed subset of X. Suppose that a map T : K → CB(X) is a
multivalued mapping satisfying the following properties:

(i) T has the Rothe’s boundary condition;
(ii) there exist δ ∈ [0, 1) and L ≥ 0 with δ(1 + L) < 1 such that

H(Tx, Ty) ≤ δd(x, y) + L ·D(y, Tx), for any x, y ∈ K.

Then T has a fixed point in K.

If we put a = 0 and L = 0 in Theorem 3.3, then we also obtain Theorem 1 of [8].

Corollary 3.5. (Theorem 1 of [8]) Let (X, d) be a complete convex metric space
and K a nonempty closed subset of X. Suppose that a map T : K → CB(X) is a
multivalued mapping satisfying the following properties:

(i) T has the Rothe’s boundary condition;
(ii) there exists δ ∈ [0, 1) such that

H(Tx, Ty) ≤ δd(x, y), for any x, y ∈ K.

Then T has a fixed point in K.

Remark 3.6. In Theorem 3.3, if we put a = 0 and T is a nonself single-valued
mapping, we obtain Theorem 3.3 of Berinde and Pacurar [13] without the property
(M). We also note that in Theorem 3.3, if we put δ = L = 0, a ∈

[
0, 13
)

and T is
a nonself single-valued Kannan mapping, then we obtain Theorem 2.1 of Balog and
Berinde [9] in the case of complete graph.

Next, we give an example to illustrate Theorem 3.3.

Example 3.7. Let X = R and K =
[
0, 12
]

endowed with usual metric, that is,
d(x, y) = |x− y| for all x, y ∈ X. Define a mapping T : K → CB(X) by

Tx =


[
0, x

10

]
if x ∈

[
0, 15
)
∪
(
1
5 ,

1
4

]
;

{− 1
8} if x = 1

5 ;

{ 12} if x ∈
(
1
4 ,

1
2

]
.

We see that

∂K =

{
0,

1

2

}
⇒ T (0) and T

(
1

2

)
are subset of K,

which implies T satisfies Rothe’s boundary condition. Now, we show that T is a
multivalued Kannan-Berinde contraction satisfying all conditions of Theorem 3.3.
We consider the following six cases:
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Case 1. If x = y = 1
5 or x, y ∈

(
1
4 ,

1
2

]
, then

H(Tx, Ty) = 0 ≤ δd(x, y) + a[D(x, Tx) +D(y, Ty)] + L ·D(y, Tx)

for any δ ∈ [0, 1), a ∈
[
0, 13
)

and L ≥ 0.

Case 2. If x ∈
[
0, 15
)
∪
(
1
5 ,

1
4

]
and y = 1

5 , we note that∣∣∣∣ x10
+

1

8

∣∣∣∣ ≤ 3

20
and

∣∣∣∣15 − x

10

∣∣∣∣ ≥ 7

40
.

Then, we have

H(Tx, Ty) = H

([
0,
x

10

]
,

{
−1

8

})
=

∣∣∣∣ x10
+

1

8

∣∣∣∣ ≤ 3

20

≤ δ
∣∣∣∣x− 1

5

∣∣∣∣+ a

[
9

10
x+

13

40

]
+ L ·

∣∣∣∣15 − x

10

∣∣∣∣
= δd(x, y) + a[D(x, Tx) +D(y, Ty)] + L ·D(y, Tx),

when L ≥ 6
7 , 0 ≤ δ < 1 and 0 ≤ a < 1

3 such that δ(1 + a+ L) + a(3 + L) < 1.

Case 3. If x = 1
5 and y ∈

[
0, 15
)
∪
(
1
5 ,

1
4

]
, then∣∣∣∣ y10

+
1

8

∣∣∣∣ ≤ 3

20
and

∣∣∣∣y +
1

8

∣∣∣∣ ≥ 1

8
.

So, we have

H(Tx, Ty) =

∣∣∣∣ y10
+

1

8

∣∣∣∣ ≤ 3

20
≤ δ

∣∣∣∣15 − y
∣∣∣∣+ a

[
13

40
+

9

10
y

]
+ L ·

∣∣∣∣y +
1

8

∣∣∣∣ ,
when L ≥ 6

5 , 0 ≤ δ < 1 and 0 ≤ a < 1
3 such that δ(1 + a+ L) + a(3 + L) < 1.

Case 4. If x ∈
[
0, 15
)
∪
(
1
5 ,

1
4

]
and y ∈

(
1
4 ,

1
2

]
, then∣∣∣∣ x10

− 1

2

∣∣∣∣ ≤ 1

2
and

∣∣∣y − x

10

∣∣∣ > 9

40
.

So, we have

H(Tx, Ty) =

∣∣∣∣ x10
− 1

2

∣∣∣∣ ≤ 1

2
≤ δ|x− y|+ a

[
9

10
x+

1

2
− y
]

+ L ·
∣∣∣y − x

10

∣∣∣ .
when L ≥ 20

9 , 0 ≤ δ < 1 and 0 ≤ a < 1
3 such that δ(1 + a+ L) + a(3 + L) < 1.

Case 5. If x ∈
(
1
4 ,

1
2

]
and y ∈

[
0, 15
)
∪
(
1
5 ,

1
4

]
, then∣∣∣∣12 − y

10

∣∣∣∣ ≤ 1

2
and

∣∣∣∣y − 1

2

∣∣∣∣ ≥ 1

4
.

So, we have

H(Tx, Ty) =

∣∣∣∣12 − y

10

∣∣∣∣ ≤ 1

2
≤ δ |x− y|+ a

[
1

2
− x+

9

10
y

]
+ L ·

∣∣∣∣y − 1

2

∣∣∣∣ ,
when L ≥ 2, 0 ≤ δ < 1 and 0 ≤ a < 1

3 such that δ(1 + a+ L) + a(3 + L) < 1.
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Case 6. If x, y ∈
[
0, 15
)
∪
(
1
5 ,

1
4

]
, then we have

H(Tx, Ty) = H
([

0,
x

10

]
,
[
0,
y

10

])
=
∣∣∣ x
10
− y

10

∣∣∣
≤ 1

9

(
9

10
x+

9

10
y

)
=

1

9
[D(x, Tx) +D(y, Ty)]

≤ δd(x, y) + a[D(x, Tx) +D(y, Ty)] + L ·D(y, Tx).

We choose that a = 1
9 , 0 ≤ δ < 1 and L ≥ 0 such that δ(1 + a+ L) + a(3 + L) < 1.

Now, by summarizing all cases, we conclude that T is a multivalued Kannan-Berinde
contraction with a = 1

9 , L = 20
9 and

0 ≤ δ <
1− 1

9 (3 + 20
9 )

1 + 1
9 + 20

9

=
17

135
,

which the condition δ(1 + a + L) + a(3 + L) < 1 is also satisfied. Therefore, T is
a multivalued Kannan-Berinde contraction that satisfies all assumptions in Theorem

3.3, and there exist z ∈ K such that z ∈ Tz. Notice that F (T ) =

{
0,

1

2

}
. However,

we see that T is not multivalued contraction mapping. If we put x = 1
2 and y = 1

5 ,
then

H

(
T

(
1

2

)
, T

(
1

5

))
= H

({
1

2

}
,

{
−1

8

})
=

5

8
> k · 3

10
= kd

(
1

2
,

1

5

)
,

for all 0 ≤ k < 1.
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