STABILITY OF A CLASS OF FRACTIONAL INTEGRO-DIFFERENTIAL EQUATION

MUNIYAPPAN PALANIAPPAN* AND RAJAN SUBBARAYAN**
*Department of Mathematics, Adhiyamaan College of Engineering
Hosur, Tamil Nadu, India
E-mail: munips@gmail.com
**Department of Mathematics, Erode Arts and Science College
Erode, Tamil Nadu, India
E-mail: srajan.eac@gmail.com

Abstract

The aim of the present paper is to investigate the Hyers-Ulam stability and generalized Hyers-Ulam stability of certain class of fractional integro-differential equation with boundary conditions using fixed point approach. Key Words and Phrases: Hyers-Ulam stability, fractional integro-differential equation, boundary condition. 2010 Mathematics Subject Classification: 45J05, 47H10, 34K10.

1. Introduction

This paper is concerned with the stability of the following fractional integrodifferential equation with the given boundary condition

$$
\begin{gather*}
{ }^{c} D^{\alpha} y(t)=F\left(t, y(t), \int_{0}^{t} k(t, s, y(s)) d s\right) \tag{1.1}\\
a y(0)+b y(T)=c \tag{1.2}
\end{gather*}
$$

where ${ }^{c} D^{\alpha}$ is Caputo derivative of order $\alpha, F: I:=[0, T] \times X \times X \rightarrow X$, where X is a Banach space and a, b, c are real constants with $a+b \neq 0$. Define

$$
(S y)(t)=\int_{0}^{t} k(t, s, y(s)) d s
$$

where S is a nonlinear operator.
"Under what conditions does there exists an additive mapping near an approximately additive mapping?", this is the problem proposed by Ulam [15] in 1940. In the next year, the first positive answer was given by Hyers [7] for additive functions defined on Banach spaces. The generalization of Hyers result was given by Rassias [14] in the year 1978. By this pioneering result, the stability concept had been rapidly devoloped and become one of the central subjects in mathematical analysis.

Motivated by this result, S.M. Jung [8] initiated the application of these concepts
in differential equation and integral equation via fixed point method by using some ideas of Cadariu and Radu [2]. Following this, many authors proved the stability of differential equations, integral equations and integro-differential equations (see [1], [3], [5], [6] etc..) using fixed point approach in Banach spaces.

On the otherhand, fractional differential equations arise as a major field of research in recent years, mainly finding the existence and uniqueness results of linear, nonlinear and integro-differential equations of fractional order. As well as there are few works devoted to the stability concepts of fractional order differential equations (see [11], [16], [12] etc..). Here we note that, the study of stability of fractional order integro-differential equations is new in the research area.

In this paper, we prove the Hyers-Ulam stability of a class of fractional order integro-differential equation (1.1) with the given boundary condition (1.2) by applying the fixed point method.

This paper is organized as follows: In Section 2, the Hyers-Ulam stability of fractional integro-differential equation (1.1) with boundary condition (1.2) is proved. In Section 3, the generalized Hyers-Ulam stability of fractional integro-differential equation (1.1) with boundary condition (1.2) is proved.
Definition 2.1. [16] For a nonempty set X , a function $d: X \times X \rightarrow[0, \infty]$ is called generalized metric on X if and only if d satisfies
(i) $d(x, y)=0$ if and only if $x=y$;
(ii) $d(x, y)=d(y, x)$ for all $x, y \in X$;
(iii) $d(x, z) \leq d(x, y)+d(y, z)$ for all $x, y, z \in X$.

This concept differs from the usual concept of a complete metric space by the fact that not every two points in X have necessarily a finite distance. One might call such space a generalized complete metric space.
Theorem 2.2. [4] Let (X, d) be a generalized complete metric space. Assume that $\Lambda: X \rightarrow X$ is a strictly contractive operator with the Lipschitz constant $L<1$, If there exists a nonnegative integer k such that $d\left(\Lambda^{k+1} x, \Lambda^{k} x\right)<\infty$ for some $x \in X$, then the following are true:
(a) The sequence $\left\{\Lambda^{n} x\right\}$ converges to a fixed end point x^{*} of Λ
(b) x^{*} is the unique fixed point of Λ in $X^{*}=\left\{y \in X \mid d\left(\Lambda^{k} x, y\right)<\infty\right\}$;
(c) If $y \in X^{*}$, then $d\left(y, x^{*}\right) \leq \frac{1}{1-L} d(\Lambda y, y)$.

Theorem 2.3. [10] Let $0<\alpha<1$ and let $f:[0, T] \rightarrow \mathbb{R}$ be continuous. A function $y \in C(J, \mathbb{R})$ is a solution of the fractional integral equation

$$
\begin{aligned}
y(t) & =\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} f(s, y(s),(S y)(s)) d s \\
& -\frac{1}{a+b}\left[\frac{1}{\Gamma(\alpha)} \int_{0}^{T}(T-s)^{\alpha-1} f(s, y(s),(S y)(s)) d s-c\right]
\end{aligned}
$$

if and only if y is a solution of the fractional integro-differential equation

$$
\begin{array}{r}
{ }^{c} D^{\alpha} y(t)=f(t, y(t),(S y)(s)), t \in[0, T] \\
a y(0)+b y(T)=c .
\end{array}
$$

2. Hyers-Ulam stability

In this section, authors investigate the Hyers-Ulam stability of fractional integrodifferential equation (1.1) with the boundary condition (1.2).
Theorem 2.4. Set $M:=\left(L_{1}+L_{1} L_{2}\right)\left(1+\frac{b}{a+b}\right)<1$. Let L_{1} and L_{2} be positive constants with $0<\frac{M T^{\alpha}}{\Gamma(\alpha+1)}<1$. Suppose that $F: I \times \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function which satisfies a Lipschitz condition

$$
\begin{equation*}
|F(t, x, \bar{x})-F(t, y, \bar{y})| \leq L_{1}[|x-y|+|\bar{x}-\bar{y}|] \quad \forall t \in I, \quad x, y, \bar{x}, \bar{y} \in \mathbb{R} \tag{2.1}
\end{equation*}
$$

and $k: I \times I \times \mathbb{R} \rightarrow \mathbb{R}$ is a continous function which satisfies a Lipschitz condition

$$
\begin{equation*}
|k(t, s, f)-k(t, s, g)| \leq L_{2}[|f-g|] \quad \forall t, s \in I, \quad \forall f, g \in \mathbb{R} \tag{2.2}
\end{equation*}
$$

If for $\varepsilon \geq 0$, in a continuously differential function $y: I \rightarrow \mathbb{R}$ satisfies

$$
\begin{equation*}
\left|{ }^{c} D^{\alpha} y(t)-F(t, y(t),(S y) t)\right| \leq \varepsilon \tag{2.3}
\end{equation*}
$$

for all $t \in I$, then there exists a unique continuous function $y_{0}: I \rightarrow \mathbb{R}$ such that

$$
\begin{align*}
y_{0}(t) & =\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} F\left(s, y_{0}(s),\left(S y_{0}\right)(s)\right) d s \\
& -\frac{b}{(a+b) \Gamma(\alpha)} \int_{0}^{T}(T-s)^{\alpha-1} F\left(s, y_{0}(s),\left(S y_{0}\right)(s)\right) d s+\frac{c}{a+b} \tag{2.4}
\end{align*}
$$

and

$$
\begin{equation*}
\left|y(t)-y_{0}(t)\right| \leq \frac{T^{\alpha} \varepsilon}{\Gamma(\alpha+1)-M T^{\alpha}} \tag{2.5}
\end{equation*}
$$

Proof. Let X denote the set of all real valued continuous functions on I. We define a generalized complete metric (see [8]) on X as follows

$$
\begin{equation*}
d(f, g)=\inf \{C \in[0, \infty]| | f(t)-g(t) \mid \leq C \quad \forall t \in I\} \tag{2.6}
\end{equation*}
$$

Now, define an operator $\Lambda: X \rightarrow X$ by

$$
\begin{align*}
(\Lambda f)(t) & =\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} F(s, f(s),(S f)(s)) d s \\
& -\frac{b}{(a+b) \Gamma(\alpha)} \int_{0}^{T}(T-s)^{\alpha-1} F(s, f(s),(S f)(s)) d s+\frac{c}{a+b} \tag{2.7}
\end{align*}
$$

for all $f \in X$.
Next we check that Λ is strictly contractive on X.
Let $f, g \in X$ and let $C_{f g} \in[0, \infty]$ be an arbitrary constant such that $d(f, g) \leq C_{f g}$. Then, by (2.6) we get,

$$
\begin{equation*}
|f(t)-g(t)| \leq C_{f g} \tag{2.8}
\end{equation*}
$$

for any $t \in I$.
Using (2.1), (2.2), (2.7), and (2.8), we have

$$
|(\Lambda f) t-(\Lambda g) t| \leq \frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1}|F(s, f(s),(S f)(s))-F(s, g(s),(S g)(S))| d s
$$

$$
\begin{aligned}
& +\frac{b}{(a+b) \Gamma(\alpha)} \int_{0}^{T}(T-s)^{\alpha-1}|F(s, f(s),(S f)(s))-F(s, g(s),(S g)(S))| d s \\
& \quad \leq \frac{L_{1}}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1}[|f(s)-g(s)|+|(S f)(s)-(S g)(s)|] d s \\
& +\frac{b L_{1}}{(a+b) \Gamma(\alpha)} \int_{0}^{T}(T-s)^{\alpha-1}[|f(s)-g(s)|+|(S f)(s)-(S g)(s)|] d s \\
& \leq \frac{\left(L_{1}+L_{1} L_{2}\right)}{\Gamma(\alpha)} C_{f g} \int_{0}^{t}(t-s)^{\alpha-1} d s+\frac{b\left(L_{1}+L_{1} L_{2}\right)}{(a+b) \Gamma(\alpha)} C_{f g} \int_{0}^{T}(T-s)^{\alpha-1} d s \\
& \quad \leq \frac{\left(L_{1}+L_{1} L_{2}\right) C_{f g}}{\Gamma(\alpha+1)}\left[t^{\alpha}+\frac{b T^{\alpha}}{a+b}\right] \leq \frac{T^{\alpha} M}{\Gamma(\alpha+1)} C_{f g}
\end{aligned}
$$

for all $t \in I$. That is

$$
d(\Lambda f, \Lambda g) \leq \frac{T^{\alpha} M}{\Gamma(\alpha+1)} C_{f g}
$$

Hence we can conclude that

$$
d(\Lambda f, \Lambda g) \leq \frac{T^{\alpha} M}{\Gamma(\alpha+1)} C_{f g} \leq \frac{T^{\alpha} M}{\Gamma(\alpha+1)} d(f, g)
$$

for all $f, g \in X$. Let g_{0}, be any arbitrary element in X. Then there exists a constant $0<C<\infty$ with

$$
\begin{aligned}
\left|\left(\Lambda g_{0}\right)(t)-g_{0}(t)\right| & =\left\lvert\, \frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} F(s, f(s),(S f)(s)) d s\right. \\
& \left.-\frac{b}{(a+b) \Gamma(\alpha)} \int_{0}^{T}(T-s)^{\alpha-1} F(s, f(s),(S f)(s)) d s+\frac{c}{a+b}-g_{0}(t) \right\rvert\, \\
& \leq C
\end{aligned}
$$

for all $t \in I$, since $F\left(t,\left(g_{0}\right)(t),\left(S g_{0}\right)(t)\right)$ and $\left(g_{0}\right)(t)$ are bounded on I. Thus, (2.6) implies that

$$
d\left(\Lambda g_{0}, g_{0}\right)<\infty
$$

Therefore according to theorem (2.2), there exists a continuous function $y_{0}: I \rightarrow \mathbb{R}$ such that the sequence $\left\{\Lambda^{n} g_{0}\right\}$ converges to y_{0} and $\Lambda y_{0}=y_{0}$, that is, y_{0} is a solution of (1.1).
we will now verify that

$$
\left\{g \in X \mid d\left(g_{0}, g\right)<\infty\right\}=X
$$

Since g and g_{0} are bounded on I, for any $g \in X$, there exists a constant $0<C_{g}<\infty$ such that

$$
\left|g_{0}(t)-g(t)\right| \leq C_{g}
$$

Hence, we have $d\left(g_{0}, g\right)<\infty$ for all $g \in X$. That is $\left\{g \in X \mid d\left(g_{0}, g\right)<\infty\right\}=X$.
Therefore, in view of theorem (2.2), we conclude that y_{0} given by (2.4) is the unique continuous function.
From (2.3) we have

$$
-\varepsilon \leq^{c} D_{a+}^{\alpha} y(t)-F(t, y(t),(S y)(t)) \leq \varepsilon \text { for all } t \in I
$$

If we integrate each term in the above inequality from 0 to t and substitute the boundary conditions we obtain

$$
\begin{aligned}
& \left\lvert\, y(t)-\frac{1}{\Gamma(\alpha)} \int_{0}^{T}(T-s)^{\alpha-1} F(s, y(s),(S y)(s)) d s\right. \\
+ & \left.\frac{b}{\Gamma(\alpha)(a+b)} \int_{0}^{t}(t-s)^{\alpha-1} F(s, y(s),(S y)(s)) d s-\frac{c}{a+b} \right\rvert\, \leq \frac{T^{\alpha}}{\Gamma(\alpha+1)} \varepsilon
\end{aligned}
$$

for any $t \in I$.
That is, it holds that

$$
\begin{align*}
|y(t)-(\Lambda y)(t)| & \leq \frac{T^{\alpha}}{\Gamma(\alpha+1)} \varepsilon \\
i . e \quad d(y, \Lambda y) & \leq \frac{T^{\alpha}}{\Gamma(\alpha+1)} \varepsilon \tag{2.9}
\end{align*}
$$

for each $t \in I$. Finally theorem (2.2), together with (2.9) implies that

$$
d\left(y, y_{0}\right) \leq \frac{1}{1-\frac{M T^{\alpha}}{\Gamma(\alpha+1)}} d(y, \Lambda y) \leq \frac{T^{\alpha}}{\Gamma(\alpha+1)-M T^{\alpha}} \varepsilon
$$

that is, the inequality (2.5) be true for all $t \in I$.

3. Generalized Hyers-Ulam stability

In this section, authors established generalized Hyers-Ulam stability of the fractional integro-differential equation (1.1) with boundary condition (1.2).
Theorem 2.5. Set $M:=\left(L_{1}+L_{1} L_{2}\right)\left(1+\frac{b}{a+b}\right)<1$. Let K, L_{1} and L_{2} be positive constants with $0<K M<1$. Assume that $F: I \times \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function which satisfies the Lipschitz condition (2.1) and $k: I \times I \times \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function which satisfies a Lipschitz condition (2.2). If a continuously differential function $y: I \rightarrow \mathbb{R}$ satisfies

$$
\begin{equation*}
\left|{ }^{c} D^{\alpha} y(t)-F(t, y(t),(S y) t)\right| \leq \varphi(t) \tag{3.1}
\end{equation*}
$$

for all $t \in I$, where $\varphi: I \rightarrow(0, \infty)$ is a continuous function with

$$
\begin{equation*}
\left|\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} \varphi(s) d s\right| \leq K \varphi(t) \tag{3.2}
\end{equation*}
$$

for all $t \in I$, then there exists a unique continuous function $y_{0}: I \rightarrow \mathbb{R}$ such that

$$
\begin{align*}
y_{0}(t) & =\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} F\left(s, y_{0}(s),\left(S y_{0}\right)(s)\right) d s \\
& -\frac{b}{(a+b) \Gamma(\alpha)} \int_{0}^{T}(T-s)^{\alpha-1} F\left(s, y_{0}(s),\left(S y_{0}\right)(s)\right) d s+\frac{c}{a+b} \tag{3.3}
\end{align*}
$$

and

$$
\begin{equation*}
\left|y(t)-y_{0}(t)\right| \leq \frac{K}{1-K M} \varphi(t) \quad \forall t \in I \tag{3.4}
\end{equation*}
$$

Proof. Let X denote the set of all real valued continuous functions on I. We set a generalised complete metric (see [8]) on X as follows

$$
\begin{equation*}
d(f, g)=\inf \{C \in[0, \infty]| | f(t)-g(t) \mid \leq C \varphi(t) \quad \forall t \in I\} \tag{3.5}
\end{equation*}
$$

Define an operator $\Lambda: X \rightarrow X$ by

$$
\begin{align*}
(\Lambda f)(t) & =\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} F(s, f(s),(S f)(s)) d s \\
& -\frac{b}{(a+b) \Gamma(\alpha)} \int_{0}^{T}(T-s)^{\alpha-1} F(s, f(s),(S f)(s)) d s+\frac{c}{a+b} \tag{3.6}
\end{align*}
$$

for all $t \in I$ and $f \in X$.
Now we check that Λ is strictly contractive on X.
For any $f, g \in X$, let $C_{f g} \in[0, \infty]$ be an arbitrary constant with $d(f, g) \leq C_{f g}$, that is, by (3.5) we have

$$
\begin{equation*}
|f(t)-g(t)| \leq C_{f g} \varphi(t) \tag{3.7}
\end{equation*}
$$

for any $t \in I$.
Then it follows from (2.1), (2.2), (3.2), (3.6) and (3.7) that

$$
\begin{gathered}
|(\Lambda f) t-(\Lambda g) t| \leq \frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1}|F(s, f(s),(S f)(s))-F(s, g(s),(S g)(s))| d s \\
+\frac{b}{(a+b) \Gamma(\alpha)} \int_{0}^{T}(T-s)^{\alpha-1}|F(s, f(s),(S f)(s))-F(s, g(s),(S g)(s))| d s \\
\leq \frac{L_{1}}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1}[|f(s)-g(s)|+|(S f)(s)-(S g)(s)|] d s \\
+\frac{b L_{1}}{(a+b) \Gamma(\alpha)} \int_{0}^{T}(T-s)^{\alpha-1}[|f(s)-g(s)|+|(S f)(s)-(S g)(s)|] d s \\
\leq \frac{L_{1}+L_{1} L_{2}}{\Gamma(\alpha)} C_{f g} \int_{0}^{t}(t-s)^{\alpha-1} \varphi(s) d s+\frac{b\left(L_{1}+L_{1} L_{2}\right)}{(a+b) \Gamma(\alpha)} C_{f g} \int_{0}^{T}(T-s)^{\alpha-1} \varphi(s) d s \\
\leq K M C_{f g} \varphi(t)
\end{gathered}
$$

for all $t \in I$. That is

$$
d(\Lambda f, \Lambda g) \leq K M C_{f g} \varphi(t)
$$

Hence we can conclude that

$$
d(\Lambda f, \Lambda g) \leq K M d(f, g)
$$

for any $f, g \in X$, where we note that $0<K M<1$.
It follows from (3.6) that for an arbitrary $g_{0} \in X$, there exists a constant $0<C<\infty$ with

$$
\begin{aligned}
\left|\left(\Lambda g_{0}\right)(t)-g_{0}(t)\right| & =\left\lvert\, \frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} F\left(s, g_{0}(s),\left(S g_{0}\right)(s)\right) d s\right. \\
& \left.-\frac{b}{(a+b) \Gamma(\alpha)} \int_{0}^{T}(T-s)^{\alpha-1} F\left(s, g_{0}(s),\left(S g_{0}\right)(s)\right) d s+\frac{c}{a+b}-g_{0}(t) \right\rvert\, \\
& \leq C \varphi(t)
\end{aligned}
$$

for all $t \in I$, since $F\left(t, g_{0}(t),\left(S g_{0}\right)(t)\right)$ and $g_{0}(t)$ are bounded on I and $\min _{t \in I} \varphi(t)>0$. Thus (3.5) implies that

$$
d\left(\Lambda g_{0}, g_{0}\right)<\infty
$$

Therefore, according to theorem (2.2), there exists a continuous function $y_{0}: I \rightarrow \mathbb{R}$ such that the sequence $\left\{\Lambda^{n} g_{0}\right\}$ converges to y_{0} in (X, d) and $\Lambda y_{0}=y_{0}$, that is, y_{0} is a solution of (1.1) for every $t \in I$.
We will now verify that

$$
\left\{g \in X \mid d\left(g_{0}, g\right)<\infty\right\}=X
$$

Since g and g_{0} are bounded on I, for any $g \in X$, and $\min _{t \in I} \varphi(t)>0$, there exists a constant $0<C_{g}<\infty$ such that

$$
\left|g_{0}(t)-g(t)\right| \leq C_{g}
$$

Hence, we have $d\left(g_{0}, g\right)<\infty$ for all $g \in X$. That is $\left\{g \in X \mid d\left(g_{0}, g\right)<\infty\right\}=X$.
Therefore from theorem (2.2), we conclude that y_{0} is the unique continuous function with the property (2.4).
From (3.1) we have

$$
\begin{equation*}
-\varphi(t) \leq^{c} D_{a+}^{\alpha} y(t)-F(t, y(t),(S y)(t)) \leq \varphi(t) \tag{3.8}
\end{equation*}
$$

for all $t \in I$.
If we integrate each term in the above inequality and substitute the boundary conditions we obtain

$$
\begin{aligned}
& \left\lvert\, y(t)-\frac{1}{\Gamma(\alpha)} \int_{0}^{T}(T-s)^{\alpha-1} F(s, y(s),(S y)(s)) d s\right. \\
+ & \left.\frac{b}{\Gamma(\alpha)(a+b)} \int_{0}^{t}(t-s)^{\alpha-1} F(s, y(s),(S y)(s)) d s-\frac{c}{a+b} \right\rvert\, \\
\leq & \frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} \varphi(s) d s
\end{aligned}
$$

for any $t \in I$.
Thus, by (3.2) and (3.6), we get

$$
|y(t)-(\Lambda y)(t)| \leq K \varphi(t)
$$

for each $t \in I$, which implies that

$$
\begin{equation*}
d(y, \Lambda y) \leq K \varphi(t) \tag{3.9}
\end{equation*}
$$

Finally using theorem (2.2), together with (3.9), we concludde that

$$
\begin{equation*}
d\left(y, y_{0}\right) \leq \frac{1}{1-K M} d(y, \Lambda y) \leq \frac{K}{1-K M} \varphi(t) \tag{3.10}
\end{equation*}
$$

Consequently, this yields the inequality (3.4) for all $t \in I$.
Remark 2.6. In theorem (2.5), we have examined the generalized Hyers-Ulam stability of the fractional integro-differential equation (1.1) defined on a bounded and closed interval. We will now show that theorem (2.5) is also valid for the case of unbounded intervals.

Theorem 2.7. For given nonnegative real number T, let I denote either $(-\infty, T]$ or \mathbb{R} or $[0, \infty)$. Let K, M be positive constants with $0<K M<1$. Suppose that $F: I \times \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function which satisfies a Lipschitz condition (2.1) for all $t \in I$ and $x, y \in \mathbb{R}$. If a continuously differential function $y: I \rightarrow \mathbb{R}$ satisfies the differential inequality (3.1) for all $t \in I$, where $\varphi: I \rightarrow(0, \infty)$ is a continuous function satisfying (3.2) for each $t \in I$, then there exists a unique continuous function $y_{0}: I \rightarrow \mathbb{R}$ which satisfies (2.4) and (3.4) for all $t \in I$.
Proof. Let $I=\mathbb{R}$. We first show that y is a unique continuous function. For any $n \in \mathbb{N}$, we define $I_{n}=[-n, n]$. In accordence with theorem (2.5), there exists a unique continuous function $y_{n}: I_{n} \rightarrow \mathbb{R}$ such that

$$
\begin{align*}
y_{n}(t) & =\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} F(s, f(s),(S f)(s)) d s \\
& -\frac{b}{(a+b) \Gamma(\alpha)} \int_{0}^{T}(T-s)^{\alpha-1} F(s, f(s),(S f)(s)) d s+\frac{c}{a+b} \tag{3.11}
\end{align*}
$$

and

$$
\begin{equation*}
\left|y(t)-y_{n}(t)\right| \leq \frac{K}{1-K M} \varphi(t) \tag{3.12}
\end{equation*}
$$

for all $t \in I$.
The uniqueness of y_{n} implies that if $t \in I_{n}$, then

$$
\begin{equation*}
y_{n}(t)=y_{n+1}(t)=y_{n+2}(t)=\ldots \tag{3.13}
\end{equation*}
$$

For any $t \in \mathbb{R}$, we define $n(t) \in \mathbb{N}$ as

$$
\begin{equation*}
n(t)=\min \left\{n \in \mathbb{N} \quad \mid \quad t \in I_{n}\right\} \tag{3.14}
\end{equation*}
$$

Moreover, let us define a function $y_{0}: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
y_{0}(t)=y_{n(t)}(t) \tag{3.15}
\end{equation*}
$$

and we claim that y_{0} is continuous. We take the integer $n_{1}=n\left(t_{1}\right)$ for an arbitrary $t_{1} \in \mathbb{R}$. Then, t_{1} belongs to the interior of $I_{n_{1}+1}$ and there exists an $\varepsilon>0$ such that $y_{0}(t)=y_{n_{1}+1}(t)$ for all t with $t_{1}-\varepsilon<t<t_{1}+\varepsilon$. Since $y_{n_{1}+1}$ is continuous at t_{1}, y_{0} is continuous at t_{1} for any $t_{1} \in \mathbb{R}$. Now, we will prove that u_{0} satisfies (2.4) and (3.5) for all $t \in \mathbb{R}$. Let $n(t)$ be an integer for an arbitrary $t \in \mathbb{R}$. Then, from (3.11) and (3.15), we have $t \in I_{n(t)}$ and

$$
\begin{aligned}
y_{0}(t) & =y_{n}(t)=\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} F\left(s, y_{n(t)}(s),\left(S y_{n(t)}\right)(s)\right) d s \\
& -\frac{b}{(a+b) \Gamma(\alpha)} \int_{0}^{T}(T-s)^{\alpha-1} F\left(s, y_{n(t)}(s),\left(S y_{n(t)}\right)(s)\right) d s+\frac{c}{a+b}
\end{aligned}
$$

Since $n(s) \leq n(t)$ for any $s \in I_{n(t)}$, the last equality is correct and we have

$$
y_{n(t)}(s)=y_{n(s)}(s)=y_{0}(s)
$$

by (3.13) and (3.15).
Since $t \in I_{n(t)}$ for all $t \in \mathbb{R}$, by (3.12) and (3.15), we have

$$
\left|y(t)-y_{0}(t)\right| \leq\left|y(t)-y_{n(t)}(t)\right| \leq \frac{K}{1-K M} \varphi(t)
$$

for all $t \in \mathbb{R}$. Finally we prove that y_{0} is unique. Assume that $x_{0}: \mathbb{R} \rightarrow \mathbb{R}$ is another continuous function which satisfies (2.4) and (3.5), with x_{0} in place of y_{0}, for all $t \in \mathbb{R}$. Let $t \in \mathbb{R}$ be a discretionary number. Since the resrictions $x_{0} \mid I_{n(t)}$ and $y_{0} \mid I_{n(t)}$ both satisfy (2.4) and (3.5) for all $t \in I_{n(t)}$, the uniqueness of $y_{n(t)}=\left.y_{0}\right|_{I_{n(t)}}$ suggests that,

$$
y_{0}(t)=\left.y_{0}\right|_{I_{n(t)}}(t)=\left.x_{0}\right|_{I_{n(t)}}(t)=x_{0}(t)
$$

Similarly the proof can be done for the classes $I=(-\infty, T]$ and $I=[0, \infty)$.

References

[1] M. Akkouchi, Hyers-Ulam-Rassias stability of nonlinear Volterra integral equations via a fixed point approach, Acta Univ. Apulensis Math. Inform., 26(2011), 257-266.
[2] L. Cădariu, V. Radu, Fixed points and the stability of Jensens functional equation, J. Ineq. Pure Appl. Math., 4(1)(2003).
[3] L.P. Castro, A. Ramos, Hyers-Ulam-Rassias stability for a class of nonlinear Volterra integral equations, Banach J. Math. Anal., 3(2009), 36-43.
[4] J.B. Diaz, B. Margolis, A fixed point theorem of the alternative, for contractions on a generalized complete metric space, Bull. Amer. Math. Soc., 74(1968), 305-309.
[5] M. Gachpazan, O. Baghani, Hyers-Ulam-Rassias stability of Volterra integral equations, J. Nonlinear Anal. Appl., 1(2010), 19-25.
[6] M. Gachpazan, O. Baghani, Hyers-Ulam-Rassias stability of nonlinear integral equations, Fixed Point Theory Appl., 2010 (2010), 6 pages.
[7] D.H. Hyers, on the stability of the linear functional equations, Proc. Nat. Acad. Sci., 27(1941), 222-224.
[8] S.M. Jung, A fixed point approach to the stability of differential equations $y^{\prime}(t)=F(x, y)$, Bull. Malays. Math. Sci. Soc., 33(2010), 47-56.
[9] S.M. Jung, S. Sevgin, H. Sevli, On the perturbation of Volterra integro-differential equations, Appl. Math. Lett., 26(2013), 665-669.
[10] K. Karthikeyan, J.J. Trujillo, Existence and uniqueness results for fractional integro-differential equations with boundary value conditions, Commun. Nonlinear Sci. Numer. Simulat., 17(2012), 4037-4043.
[11] C.P. Li, F.R. Zhang, A survey on the stability of fractional differential equations, Eur. Phys. J. Special Topics, 193(2011), 27-47.
[12] P. Muniyappan, S. Rajan, Hyers-Ulam-Rassias stability of fractional differential equations, Internat. J. Pure Appl. Math., 102(2015), 631-642.
[13] I. Podlubny, Fractional Differential Equations, Academic Press, London, 1999.
[14] Th.M. Rassias, On the stability of linear mappig in Banach spaces, Proc. Amer. Math. Soc., 72(1978), 297-300.
[15] S.M. Ulam, Problems in Modern Mathematics, Rend. Chap. VI, Wiley, New York, 1940.
[16] J. Wang, Linli Lv, Y. Zhou, New concepts and results in stability of fractional differential equations, Commun. Nonlinear Sci. Numer. Simulat., 17 (2012), 2530-2538.

Received: September 9, 2016; Accepted: August 30, 2017.

