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1. Introduction

This paper is concerned with the stability of the following fractional integro-
differential equation with the given boundary condition

cDαy(t) = F

(
t, y(t),

∫ t

0

k(t, s, y(s))ds

)
(1.1)

ay(0) + by(T ) = c (1.2)

where cDα is Caputo derivative of order α, F : I := [0, T ]×X ×X → X, where X is
a Banach space and a, b, c are real constants with a+ b 6= 0. Define

(Sy)(t) =

∫ t

0

k(t, s, y(s))ds,

where S is a nonlinear operator.
”Under what conditions does there exists an additive mapping near an approxi-

mately additive mapping?”, this is the problem proposed by Ulam [15] in 1940. In
the next year, the first positive answer was given by Hyers [7] for additive functions
defined on Banach spaces. The generalization of Hyers result was given by Rassias
[14] in the year 1978. By this pioneering result, the stability concept had been rapidly
devoloped and become one of the central subjects in mathematical analysis.

Motivated by this result, S.M. Jung [8] initiated the application of these concepts
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in differential equation and integral equation via fixed point method by using some
ideas of Cadariu and Radu [2]. Following this, many authors proved the stability
of differential equations, integral equations and integro-differential equations (see [1],
[3], [5], [6] etc..) using fixed point approach in Banach spaces.

On the otherhand, fractional differential equations arise as a major field of re-
search in recent years, mainly finding the existence and uniqueness results of linear,
nonlinear and integro-differential equations of fractional order. As well as there are
few works devoted to the stability concepts of fractional order differential equations
(see [11], [16], [12] etc..). Here we note that, the study of stability of fractional order
integro-differential equations is new in the research area.

In this paper, we prove the Hyers-Ulam stability of a class of fractional order
integro-differential equation (1.1) with the given boundary condition (1.2) by apply-
ing the fixed point method.

This paper is organized as follows: In Section 2, the Hyers-Ulam stability of frac-
tional integro-differential equation (1.1) with boundary condition (1.2) is proved. In
Section 3, the generalized Hyers-Ulam stability of fractional integro-differential equa-
tion (1.1) with boundary condition (1.2) is proved.
Definition 2.1. [16] For a nonempty set X, a function d : X ×X → [0,∞] is called
generalized metric on X if and only if d satisfies

(i) d(x, y) = 0 if and only if x = y;
(ii) d(x, y) = d(y, x) for all x, y ∈ X;
(iii) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

This concept differs from the usual concept of a complete metric space by the fact
that not every two points in X have necessarily a finite distance. One might call such
space a generalized complete metric space.
Theorem 2.2. [4] Let (X,d) be a generalized complete metric space. Assume that
Λ : X → X is a strictly contractive operator with the Lipschitz constant L < 1, If
there exists a nonnegative integer k such that d(Λk+1x,Λkx) < ∞ for some x ∈ X,
then the following are true:

(a) The sequence {Λnx} converges to a fixed end point x∗ of Λ
(b) x∗ is the unique fixed point of Λ in X∗ =

{
y ∈ X|d(Λkx, y) <∞

}
;

(c) If y ∈ X∗, then d(y, x∗) ≤ 1
1−Ld(Λy, y).

Theorem 2.3. [10] Let 0 < α < 1 and let f : [0, T ] → R be continuous. A function
y ∈ C (J,R) is a solution of the fractional integral equation

y(t) =
1

Γ (α)

∫ t

0

(t− s)α−1
f(s, y(s), (Sy)(s))ds

− 1

a+ b

[
1

Γ (α)

∫ T

0

(T − s)α−1f(s, y(s), (Sy)(s))ds− c

]

if and only if y is a solution of the fractional integro-differential equation

cDαy(t) = f (t, y(t), (Sy)(s)) , t ∈ [0, T ]

ay(0) + by(T ) = c.
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2. Hyers-Ulam stability

In this section, authors investigate the Hyers-Ulam stability of fractional integro-
differential equation (1.1) with the boundary condition (1.2).

Theorem 2.4. Set M := (L1 + L1L2)
(

1 + b
a+b

)
< 1. Let L1 and L2 be positive

constants with 0 < MTα

Γ(α+1) < 1. Suppose that F : I × R→ R is a continuous function

which satisfies a Lipschitz condition

|F (t, x, x̄)− F (t, y, ȳ)| ≤ L1 [|x− y|+ |x̄− ȳ|] ∀t ∈ I, x, y, x̄, ȳ ∈ R (2.1)

and k : I × I × R→ R is a continous function which satisfies a Lipschitz condition

|k(t, s, f)− k(t, s, g)| ≤ L2 [|f − g|] ∀t, s ∈ I, ∀f, g ∈ R (2.2)

If for ε ≥ 0, in a continuously differential function y : I → R satisfies

|cDαy(t)− F (t, y(t), (Sy)t)| ≤ ε (2.3)

for all t ∈ I, then there exists a unique continuous function y0 : I → R such that

y0(t) =
1

Γ(α)

∫ t

0

(t− s)α−1F (s, y0(s), (Sy0)(s))ds

− b

(a+ b)Γ(α)

∫ T

0

(T − s)α−1F (s, y0(s), (Sy0)(s))ds+
c

a+ b
(2.4)

and

|y(t)− y0(t)| ≤ Tαε

Γ(α+ 1)−MTα
(2.5)

Proof. Let X denote the set of all real valued continuous functions on I. We define a
generalized complete metric (see [8]) on X as follows

d(f, g) = inf {C ∈ [0,∞]| |f(t)− g(t)| ≤ C ∀t ∈ I} (2.6)

Now, define an operator Λ : X → X by

(Λf) (t) =
1

Γ(α)

∫ t

0

(t− s)α−1F (s, f(s), (Sf)(s))ds

− b

(a+ b)Γ(α)

∫ T

0

(T − s)α−1F (s, f(s), (Sf)(s))ds+
c

a+ b
(2.7)

for all f ∈ X.
Next we check that Λ is strictly contractive on X.
Let f, g ∈ X and let Cfg ∈ [0,∞] be an arbitrary constant such that d(f, g) ≤ Cfg.
Then, by (2.6) we get,

|f(t)− g(t)| ≤ Cfg (2.8)

for any t ∈ I.
Using (2.1), (2.2), (2.7), and (2.8), we have

|(Λf)t− (Λg)t| ≤ 1

Γ(α)

∫ t

0

(t− s)α−1 |F (s, f(s), (Sf)(s))− F (s, g(s), (Sg)(S))| ds
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+
b

(a+ b)Γ(α)

∫ T

0

(T − s)α−1 |F (s, f(s), (Sf)(s))− F (s, g(s), (Sg)(S))| ds

≤ L1

Γ(α)

∫ t

0

(t− s)α−1 [|f(s)− g(s)|+ |(Sf)(s)− (Sg)(s)|] ds

+
bL1

(a+ b)Γ(α)

∫ T

0

(T − s)α−1 [|f(s)− g(s)|+ |(Sf)(s)− (Sg)(s)|] ds

≤ (L1 + L1L2)

Γ(α)
Cfg

∫ t

0

(t− s)α−1ds+
b(L1 + L1L2)

(a+ b)Γ(α)
Cfg

∫ T

0

(T − s)α−1ds

≤ (L1 + L1L2)Cfg
Γ(α+ 1)

[
tα +

bTα

a+ b

]
≤ TαM

Γ(α+ 1)
Cfg

for all t ∈ I. That is

d (Λf,Λg) ≤ TαM

Γ(α+ 1)
Cfg.

Hence we can conclude that

d (Λf,Λg) ≤ TαM

Γ(α+ 1)
Cfg ≤

TαM

Γ(α+ 1)
d(f, g)

for all f, g ∈ X. Let g0, be any arbitrary element in X. Then there exists a constant
0 < C <∞ with

|(Λg0)(t)− g0(t)| =
∣∣∣∣ 1

Γ(α)

∫ t

0

(t− s)α−1F (s, f(s), (Sf)(s))ds

− b

(a+ b)Γ(α)

∫ T

0

(T − s)α−1F (s, f(s), (Sf)(s))ds+
c

a+ b
− g0(t)

∣∣∣∣∣
≤ C

for all t ∈ I, since F (t, (g0)(t), (Sg0)(t)) and (g0)(t) are bounded on I. Thus, (2.6)
implies that

d(Λg0, g0) <∞
Therefore according to theorem (2.2), there exists a continuous function y0 : I → R
such that the sequence {Λng0} converges to y0 and Λy0 = y0, that is, y0 is a solution
of (1.1).
we will now verify that

{g ∈ X|d(g0, g) <∞} = X

Since g and g0 are bounded on I, for any g ∈ X, there exists a constant 0 < Cg <∞
such that

|g0(t)− g(t)| ≤ Cg
Hence, we have d(g0, g) <∞ for all g ∈ X. That is {g ∈ X|d(g0, g) <∞} = X.
Therefore, in view of theorem (2.2), we conclude that y0 given by (2.4) is the unique
continuous function.
From (2.3) we have

−ε ≤c Dα
a+y(t)− F (t, y(t), (Sy)(t)) ≤ ε for all t ∈ I.
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If we integrate each term in the above inequality from 0 to t and substitute the
boundary conditions we obtain∣∣∣∣∣y(t)− 1

Γ(α)

∫ T

0

(T − s)α−1F (s, y(s), (Sy)(s))ds

+
b

Γ(α)(a+ b)

∫ t

0

(t− s)α−1F (s, y(s), (Sy)(s))ds− c

a+ b

∣∣∣∣ ≤ Tα

Γ(α+ 1)
ε

for any t ∈ I.
That is, it holds that

|y(t)− (Λy)(t)| ≤ Tα

Γ(α+ 1)
ε

i.e d(y,Λy) ≤ Tα

Γ(α+ 1)
ε (2.9)

for each t ∈ I. Finally theorem (2.2), together with (2.9) implies that

d(y, y0) ≤ 1

1− MTα

Γ(α+1)

d(y,Λy) ≤ Tα

Γ(α+ 1)−MTα
ε

that is, the inequality (2.5) be true for all t ∈ I.

3. Generalized Hyers-Ulam stability

In this section, authors established generalized Hyers-Ulam stability of the frac-
tional integro-differential equation (1.1) with boundary condition (1.2).

Theorem 2.5. Set M := (L1 + L1L2)
(

1 + b
a+b

)
< 1. Let K,L1 and L2 be positive

constants with 0 < KM < 1. Assume that F : I × R → R is a continuous function
which satisfies the Lipschitz condition (2.1) and k : I × I × R → R is a continuous
function which satisfies a Lipschitz condition (2.2). If a continuously differential
function y : I → R satisfies

|cDαy(t)− F (t, y(t), (Sy)t)| ≤ ϕ(t) (3.1)

for all t ∈ I, where ϕ : I → (0,∞) is a continuous function with∣∣∣∣ 1

Γ(α)

∫ t

0

(t− s)α−1ϕ(s)ds

∣∣∣∣ ≤ Kϕ(t) (3.2)

for all t ∈ I, then there exists a unique continuous function y0 : I → R such that

y0(t) =
1

Γ(α)

∫ t

0

(t− s)α−1F (s, y0(s), (Sy0)(s))ds

− b

(a+ b)Γ(α)

∫ T

0

(T − s)α−1F (s, y0(s), (Sy0)(s))ds+
c

a+ b
(3.3)

and

|y(t)− y0(t)| ≤ K

1−KM
ϕ(t) ∀t ∈ I (3.4)
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Proof. Let X denote the set of all real valued continuous functions on I. We set a
generalised complete metric (see [8]) on X as follows

d(f, g) = inf {C ∈ [0,∞]| |f(t)− g(t)| ≤ Cϕ(t) ∀t ∈ I} (3.5)

Define an operator Λ : X → X by

(Λf) (t) =
1

Γ(α)

∫ t

0

(t− s)α−1F (s, f(s), (Sf)(s))ds

− b

(a+ b)Γ(α)

∫ T

0

(T − s)α−1F (s, f(s), (Sf)(s))ds+
c

a+ b
(3.6)

for all t ∈ I and f ∈ X.
Now we check that Λ is strictly contractive on X.
For any f, g ∈ X, let Cfg ∈ [0,∞] be an arbitrary constant with d(f, g) ≤ Cfg, that
is, by (3.5) we have

|f(t)− g(t)| ≤ Cfgϕ(t) (3.7)

for any t ∈ I.
Then it follows from (2.1), (2.2), (3.2), (3.6) and (3.7) that

|(Λf)t− (Λg)t| ≤ 1

Γ(α)

∫ t

0

(t− s)α−1 |F (s, f(s), (Sf)(s))− F (s, g(s), (Sg)(s))| ds

+
b

(a+ b)Γ(α)

∫ T

0

(T − s)α−1 |F (s, f(s), (Sf)(s))− F (s, g(s), (Sg)(s))| ds

≤ L1

Γ(α)

∫ t

0

(t− s)α−1 [|f(s)− g(s)|+ |(Sf)(s)− (Sg)(s)|] ds

+
bL1

(a+ b)Γ(α)

∫ T

0

(T − s)α−1 [|f(s)− g(s)|+ |(Sf)(s)− (Sg)(s)|] ds

≤ L1 + L1L2

Γ(α)
Cfg

∫ t

0

(t− s)α−1ϕ(s)ds+
b(L1 + L1L2)

(a+ b)Γ(α)
Cfg

∫ T

0

(T − s)α−1ϕ(s)ds

≤ KMCfgϕ(t)

for all t ∈ I. That is
d (Λf,Λg) ≤ KMCfgϕ(t).

Hence we can conclude that

d (Λf,Λg) ≤ KMd(f, g)

for any f, g ∈ X, where we note that 0 < KM < 1.
It follows from (3.6) that for an arbitrary g0 ∈ X, there exists a constant 0 < C <∞
with

|(Λg0)(t)− g0(t)| =
∣∣∣∣ 1

Γ(α)

∫ t

0

(t− s)α−1F (s, g0(s), (Sg0)(s))ds

− b

(a+ b)Γ(α)

∫ T

0

(T − s)α−1F (s, g0(s), (Sg0)(s))ds+
c

a+ b
− g0(t)

∣∣∣∣∣
≤ Cϕ(t)
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for all t ∈ I, since F (t, g0(t), (Sg0)(t)) and g0(t) are bounded on I and min
t∈I

ϕ(t) > 0.

Thus (3.5) implies that
d(Λg0, g0) <∞

Therefore, according to theorem (2.2), there exists a continuous function y0 : I → R
such that the sequence {Λng0} converges to y0 in (X, d) and Λy0 = y0, that is, y0 is
a solution of (1.1) for every t ∈ I.
We will now verify that

{g ∈ X|d(g0, g) <∞} = X

Since g and g0 are bounded on I, for any g ∈ X, and min
t∈I

ϕ(t) > 0, there exists a

constant 0 < Cg <∞ such that

|g0(t)− g(t)| ≤ Cg
Hence, we have d(g0, g) <∞ for all g ∈ X. That is {g ∈ X|d(g0, g) <∞} = X.
Therefore from theorem (2.2), we conclude that y0 is the unique continuous function
with the property (2.4).
From (3.1) we have

−ϕ(t) ≤c Dα
a+y(t)− F (t, y(t), (Sy)(t)) ≤ ϕ(t) (3.8)

for all t ∈ I.
If we integrate each term in the above inequality and substitute the boundary condi-
tions we obtain ∣∣∣∣∣y(t)− 1

Γ(α)

∫ T

0

(T − s)α−1F (s, y(s), (Sy)(s))ds

+
b

Γ(α)(a+ b)

∫ t

0

(t− s)α−1F (s, y(s), (Sy)(s))ds− c

a+ b

∣∣∣∣
≤ 1

Γ(α)

∫ t

0

(t− s)α−1ϕ(s)ds

for any t ∈ I.
Thus, by (3.2) and (3.6), we get

|y(t)− (Λy)(t)| ≤ Kϕ(t)

for each t ∈ I, which implies that

d(y,Λy) ≤ Kϕ(t). (3.9)

Finally using theorem (2.2), together with (3.9), we concludde that

d(y, y0) ≤ 1

1−KM
d(y,Λy) ≤ K

1−KM
ϕ(t) (3.10)

Consequently, this yields the inequality (3.4) for all t ∈ I.

Remark 2.6. In theorem (2.5), we have examined the generalized Hyers-Ulam sta-
bility of the fractional integro-differential equation (1.1) defined on a bounded and
closed interval. We will now show that theorem (2.5) is also valid for the case of
unbounded intervals.
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Theorem 2.7. For given nonnegative real number T , let I denote either (−∞, T ]
or R or [0,∞). Let K,M be positive constants with 0 < KM < 1. Suppose that
F : I × R → R is a continuous function which satisfies a Lipschitz condition (2.1)
for all t ∈ I and x, y ∈ R. If a continuously differential function y : I → R satisfies
the differential inequality (3.1) for all t ∈ I, where ϕ : I → (0,∞) is a continuous
function satisfying (3.2) for each t ∈ I, then there exists a unique continuous function
y0 : I → R which satisfies (2.4) and (3.4) for all t ∈ I.
Proof. Let I = R. We first show that y is a unique continuous function. For any
n ∈ N, we define In = [−n, n]. In accordence with theorem (2.5), there exists a unique
continuous function yn : In → R such that

yn(t) =
1

Γ(α)

∫ t

0

(t− s)α−1F (s, f(s), (Sf)(s))ds

− b

(a+ b)Γ(α)

∫ T

0

(T − s)α−1F (s, f(s), (Sf)(s))ds+
c

a+ b
(3.11)

and

|y(t)− yn(t)| ≤ K

1−KM
ϕ(t) (3.12)

for all t ∈ I.
The uniqueness of yn implies that if t ∈ In, then

yn(t) = yn+1(t) = yn+2(t) = . . . (3.13)

For any t ∈ R, we define n(t) ∈ N as

n(t) = min{n ∈ N | t ∈ In}. (3.14)

Moreover, let us define a function y0 : R→ R by

y0(t) = yn(t)(t) (3.15)

and we claim that y0 is continuous. We take the integer n1 = n(t1) for an arbitrary
t1 ∈ R. Then, t1 belongs to the interior of In1+1 and there exists an ε > 0 such that
y0(t) = yn1+1(t) for all t with t1 − ε < t < t1 + ε. Since yn1+1 is continuous at t1, y0

is continuous at t1 for any t1 ∈ R. Now, we will prove that u0 satisfies (2.4) and (3.5)
for all t ∈ R. Let n(t) be an integer for an arbitrary t ∈ R. Then, from (3.11) and
(3.15), we have t ∈ In(t) and

y0(t) = yn(t) =
1

Γ(α)

∫ t

0

(t− s)α−1F (s, yn(t)(s), (Syn(t))(s))ds

− b

(a+ b)Γ(α)

∫ T

0

(T − s)α−1F (s, yn(t)(s), (Syn(t))(s))ds+
c

a+ b

Since n(s) ≤ n(t) for any s ∈ In(t), the last equality is correct and we have

yn(t)(s) = yn(s)(s) = y0(s)

by (3.13) and (3.15).
Since t ∈ In(t) for all t ∈ R, by (3.12) and (3.15), we have

|y(t)− y0(t)| ≤
∣∣y(t)− yn(t)(t)

∣∣ ≤ K

1−KM
ϕ(t)
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for all t ∈ R. Finally we prove that y0 is unique. Assume that x0 : R→ R is another
continuous function which satisfies (2.4) and (3.5), with x0 in place of y0, for all t ∈ R.
Let t ∈ R be a discretionary number. Since the resrictions x0|In(t) and y0|In(t) both
satisfy (2.4) and (3.5) for all t ∈ In(t), the uniqueness of yn(t) = y0|In(t)

suggests that,

y0(t) = y0|In(t)
(t) = x0|In(t)

(t) = x0(t)

Similarly the proof can be done for the classes I = (−∞, T ] and I = [0,∞).
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