Fixed Point Theory, 20(2019), No. 2, 581-590 DOI: 10.24193/fpt-ro.2019.2.38 http://www.math.ubbcluj.ro/~nodeacj/sfptcj.html

GENERALIZED Φ-EPI MAPS AND TOPOLOGICAL COINCIDENCE PRINCIPLES

DONAL O'REGAN

School of Mathematics, Statistics and Applied Mathematics National University of Ireland, Galway, Ireland E-mail: donal.oregan@nuigalway.ie

Abstract. In this paper we present the notion of a Φ -epi map for a general class of maps and we present coincidence and homotopy properties for these maps. Key Words and Phrases: Epi maps, coincidence, homotopy, normalization. 2010 Mathematics Subject Classification: 47H10, 54H25.

1. INTRODUCTION

The notion of a 0-epi map was introduced by Furi, Martelli and Vignoli [4] and extended in a variety of settings in the literature by other authors, see for example [5, 7, 9, 11]. In this paper we present a generalization of Φ -epi maps motivated in part, for example, from continuation theorems of set valued maps which have continuous selections [1, 2]. In particular we present coincidence, homotopy and normalization properties of these Φ -epi maps.

2. Φ -EPI MAPS

Let E be a normal topological vector space and U an open subset of E.

We will consider the classes **A**, **B** and **D** of maps.

Definition 2.1. We say $F \in D(\overline{U}, E)$ (respectively $F \in A(\overline{U}, E)$) if $F : \overline{U} \to 2^E$ and $F \in \mathbf{D}(\overline{U}, E)$ (respectively $F \in \mathbf{A}(\overline{U}, E)$); here \overline{U} denotes the closure of U in E and 2^E denotes the family of nonempty subsets of E.

Definition 2.2. We say $F \in B(\overline{U}, E)$ if $F : \overline{U} \to 2^E$ and $F \in \mathbf{B}(\overline{U}, E)$ and there exists a selection $\Psi \in D(\overline{U}, E)$ of F.

Remark 2.3. Note Ψ is a selection of F (in Definition 2.2) if $\Psi(x) \subseteq F(x)$ for $x \in \overline{U}$.

Remark 2.4. We say $F \in D(E, E)$ (respectively $F \in A(E, E)$) if $F : E \to 2^E$ and $F \in \mathbf{D}(E, E)$ (respectively $F \in \mathbf{A}(E, E)$). We say $F \in B(E, E)$ if $F : E \to 2^E$ and $F \in \mathbf{B}(E, E)$ and there exists a selection $\Psi \in D(E, E)$ of F.

In this section we fix a $\Phi \in B(\overline{U}, E)$.

Definition 2.5. We say $F \in A_{\partial U}(\overline{U}, E)$ if $F \in A(\overline{U}, E)$ with $F(x) \cap \Phi(x) = \emptyset$ for $x \in \partial U$; here ∂U denotes the boundary of U in E.

Definition 2.6. We say $F \in B_{\Phi}(\overline{U}, E)$ if $F \in B(\overline{U}, E)$ and $F(x) \subseteq \Phi(x)$ for $x \in \partial U$.

Definition 2.7. Let $F \in A_{\partial U}(\overline{U}, E)$. We say F is Φ -epi if for any map $G \in B_{\Phi}(\overline{U}, E)$ and any selection $\Psi \in D(\overline{U}, E)$ of G there exists $x \in U$ with $F(x) \cap \Psi(x) \neq \emptyset$.

Remark 2.8. In Definition 2.7 note $\emptyset \neq F(x) \cap \Psi(x) \subseteq F(x) \cap G(x)$. We could take $G = \Phi$ in Definition 2.7 (note $\Phi \in B_{\Phi}(\overline{U}, E)$). Then if $F \in A_{\partial U}(\overline{U}, E)$ is Φ -epi then for any selection $\phi \in D(\overline{U}, E)$ of Φ there exists $x \in U$ with $F(x) \cap \phi(x) \neq \emptyset$ so $\emptyset \neq F(x) \cap \phi(x) \subseteq F(x) \cap \Phi(x)$.

Remark 2.9. In Definition 2.7 note $\Psi(x) \subseteq G(x) \subseteq \Phi(x)$ for $x \in \partial U$ i.e. $\Psi \in D_{\Phi}(\overline{U}, E)$ (we say $H \in D_{\Phi}(\overline{U}, E)$ if $H \in D(\overline{U}, E)$ and $H(x) \subseteq \Phi(x)$ for $x \in \partial U$).

Remark 2.10. In Definition 2.7 if $G \in B_{\Phi}(\overline{U}, E)$ and if $G \in D(\overline{U}, E)$ then an example of a selection Ψ of G is G itself. In applications we see by appropriately choosing U, E, D and B then automatically there exists a selection Ψ of F in Definition 2.2 (see for example Remark 2.20).

Our first result is a coincidence property for Φ -epi maps.

Theorem 2.11. Let E be a normal topological vector space, U an open subset of E, $G \in B(\overline{U}, E)$, $F \in A_{\partial U}(\overline{U}, E)$ is Φ -epi and suppose

$$\begin{cases} \mu(.) G(.) + (1 - \mu(.)) \Phi(.) \in B(\overline{U}, E) \text{ for any} \\ \text{continuous map } \mu: \overline{U} \to [0, 1] \text{ with } \mu(\partial U) = 0. \end{cases}$$
(2.1)

For any selection $\Lambda \in D(\overline{U}, E)$ of G and any selection $\phi \in D(\overline{U}, E)$ of Φ assume

$$\begin{cases} K = \{x \in \overline{U} : F(x) \cap [t \Lambda(x) + (1-t) \phi(x)] \neq \emptyset \text{ for some } t \in [0,1] \}\\ \text{ is closed and } K \text{ does not intersect } \partial U \end{cases}$$
(2.2)

and

$$\begin{cases} \mu(.)\Lambda(.) + (1 - \mu(.))\phi(.) \in D(\overline{U}, E) \text{ for any continuous} \\ map \ \mu: \overline{U} \to [0, 1] \text{ with } \mu(\partial U) = 0 \text{ and } \mu(K) = 1. \end{cases}$$
(2.3)

Then there exists $x \in U$ with $F(x) \cap \Lambda(x) \neq \emptyset$ (so $\emptyset \neq F(x) \cap \Lambda(x) \subseteq F(x) \cap G(x)$.

Proof. Let $\Lambda \in D(\overline{U}, E)$ be any selection of G and $\phi \in D(\overline{U}, E)$ be any selection of Φ and let

$$K = \left\{ x \in \overline{U} : F(x) \cap \left[t \Lambda(x) + (1-t) \phi(x) \right] \neq \emptyset \text{ for some } t \in [0,1] \right\}.$$

Note $K \neq \emptyset$ since $F(x) \cap \phi(x) \neq \emptyset$ for some $x \in U$ (note $F \in A_{\partial U}(\overline{U}, E)$ is Φ -epi and note Remark 2.8). From (2.2) we note K is closed and $K \cap \partial U = \emptyset$. Then Urysohn's lemma guarantees that there exists a continuous map $\mu : \overline{U} \to [0, 1]$ with $\mu(\partial U) = 0$

and $\mu(K) = 1$. Define the mappings J and Ψ by

$$J(x) = \mu(x) G(x) + (1 - \mu(x)) \Phi(x)$$
 and $\Psi(x) = \mu(x) \Lambda(x) + (1 - \mu(x)) \phi(x)$.

Now (2.1) guarantees that $J \in B(\overline{U}, E)$ and also note for $x \in \partial U$ we have $J(x) = \Phi(x)$, so $J \in B_{\Phi}(\overline{U}, E)$. Note (2.3) guarantees that $\Psi \in D(\overline{U}, E)$ and Ψ is a selection of J. Now since F is Φ -epi there exists $x \in U$ with $F(x) \cap \Psi(x) \neq \emptyset$. Thus $x \in K$ and as a result $\mu(x) = 1$. Consequently $F(x) \cap \Lambda(x) \neq \emptyset$.

Remark 2.12. We can remove the assumption that E is normal in the statement of Theorem 2.11 provided we put conditions on the maps so that K is compact (the existence of the map μ in the proof above is then guaranteed since topological vector spaces are completely regular). Note as well, for example, if the maps F, Λ and ϕ are upper semicontinuous with compact values then K in (2.2) is closed.

Remark 2.13. Let E be a complete metrizable locally convex topological vector space and U an open subset of E. Let $\mathbf{D} = D$ and $\mathbf{B} = B$. We say $Q \in D(\overline{U}, E)$ if $Q: \overline{U} \to E$ is a continuous "compact" map. We say $R \in B(\overline{U}, E)$ if $R: \overline{U} \to C(E)$ (here C(E) denotes the family of nonempty closed convex subsets of E) is a lower semicontinuous "compact" map (the existence of a continuous selection Ψ of R is guaranteed from Michael's selection theorem [3, 6, 8] and note Ψ is compact since Ψ is a selection of R and R is compact, so $\Psi \in D(\overline{U}, E)$). Note (2.1) and (2.3) are immediate (from the properties of sums and products of lower semicontinuous maps [3, 6]; we include the map being "compact" here because of the normalization property (see Remark 2.20)). Also (2.2) reduces to showing

$$K = \{ x \in \overline{U} : t \Lambda(x) + (1-t) \phi(x) \in F(x) \text{ for some } t \in [0,1] \}$$

is closed and does not intersect ∂U ; for example if the map F is upper semicontinuous with closed values then K would be closed.

We now rewrite Theorem 2.11 as a Leray-Schauder type alternative.

Theorem 2.14. Let E be a normal topological vector space, U an open subset of E, $G \in B(\overline{U}, E)$, $F \in A_{\partial U}(\overline{U}, E)$ is Φ -epi and suppose (2.1) holds. For any selection $\Lambda \in D(\overline{U}, E)$ of G and any selection $\phi \in D(\overline{U}, E)$ of Φ assume

$$K = \left\{ x \in \overline{U} : F(x) \cap [t \Lambda(x) + (1-t) \phi(x)] \neq \emptyset \text{ for some } t \in [0,1] \right\} \text{ is closed}$$
(2.4)

and (2.3) holds. Then either

(A1) there exists $x \in \overline{U}$ with $F(x) \cap \Lambda(x) \neq \emptyset$,

or

(A2) there exists
$$x \in \partial U$$
 and $\lambda \in (0,1)$ with $F(x) \cap [\lambda \Lambda(x) + (1-\lambda) \phi(x)] \neq \emptyset$,

holds.

Proof. Suppose (A2) does not hold and $F(x) \cap \Lambda(x) = \emptyset$ for $x \in \partial U$ (since otherwise (A1) holds). Also note $F(x) \cap \Phi(x) = \emptyset$ for $x \in \partial U$ since $F \in A_{\partial U}(\overline{U}, E)$, so $F(x) \cap \phi(x) = \emptyset$ for $x \in \partial U$ (note $F(x) \cap \phi(x) \subseteq F(x) \cap \Phi(x)$). Thus

there exists $x \in \partial U$ and $\lambda \in [0,1]$ with $F(x) \cap [\lambda \Lambda(x) + (1-\lambda) \phi(x)] \neq \emptyset$

DONAL O'REGAN

cannot occur, so (2.2) holds. Now Theorem 2.11 guarantees that there exists $x \in U$ with $F(x) \cap \Lambda(x) \neq \emptyset$.

Our next result is a homotopy type property for Φ -epi maps.

Theorem 2.15. Let E be a normal topological vector space, U an open subset of $E, F \in A_{\partial U}(\overline{U}, E)$ is Φ -epi, H is a map defined on $\overline{U} \times [0, 1]$ with values in E with $H(x, 0) = \{0\}$ for $x \in \partial U$ and $F(.) - H(., 1) \in A(\overline{U}, E)$. Suppose

 $\{x \in \overline{U}: F(x) \cap [\Phi(x) + H(x,t)] \neq \emptyset \text{ for some } t \in [0,1]\} \text{ does not intersect } \partial U.$ (2.5)

Assume there exists a selection h of H such that for any $G \in B_{\Phi}(\overline{U}, E)$ and any selection $\Psi \in D(\overline{U}, E)$ of G we have

$$G(.) + H(.,0) \in B(\overline{U},E) \quad and \quad \Psi(.) + h(.,0) \in D(\overline{U},E)$$

$$(2.6)$$

 $K = \{ x \in \overline{U} : F(x) \cap [\Psi(x) + h(x,t)] \neq \emptyset \text{ for some } t \in [0,1] \} \text{ is closed}$ (2.7) and

$$\begin{cases} G(.) + H(., \mu(.)) \in B(\overline{U}, E) \text{ and } \Psi(.) + h(., \mu(.)) \in D(\overline{U}, E) \\ \text{for any continuous map } \mu: \overline{U} \to [0, 1] \text{ with } \mu(\partial U) = 0 \text{ and } \mu(K) = 1. \end{cases}$$
(2.8)

Then F(.) - H(., 1) is Φ -epi.

Proof. Let $G \in B_{\Phi}(\overline{U}, E)$ and let $\Psi \in D(\overline{U}, E)$ be any selection of G. We must show that there exists $x \in U$ with $[F(x) - H(x, 1)] \cap \Psi(x) \neq \emptyset$. Let h, H be as in the statement of Theorem 2.15 and let

$$K = \left\{ x \in \overline{U} : F(x) \cap \left[\Psi(x) + h(x,t) \right] \neq \emptyset \text{ for some } t \in [0,1] \right\}.$$

Consider t = 0. Note $G(.) + H(., 0) \in B_{\Phi}(\overline{U}, E)$ (note (2.6) and also for $x \in \partial U$ we have $G(x) + H(x, 0) = G(x) \subseteq \Phi(x)$ since $G \in B_{\Phi}(\overline{U}, E)$), $\Psi(.) + h(., 0) \in D(\overline{U}, E)$ is a selection of G(.) + H(., 0), and since F is Φ -epi we see that there exists $x \in U$ with $F(x) \cap [\Psi(x) + h(x, 0)] \neq \emptyset$, so $K \neq \emptyset$. In addition K is closed (see (2.7)). Also note $K \cap \partial U = \emptyset$ (note if $x \in \partial U$ then $F(x) \cap [\Psi(x) + h(x, t)] \subseteq F(x) \cap [G(x) + H(x, t)] \subseteq F(x) \cap [\Phi(x) + H(x, t)]$ and note (2.5)). Now Urysohn's lemma guarantees that there exists a continuous map $\mu : \overline{U} \to [0, 1]$ with $\mu(\partial U) = 0$ and $\mu(K) = 1$. Define maps J and Λ by

$$J(x) = G(x) + H(x, \mu(x))$$
 and $\Lambda(x) = \Psi(x) + h(x, \mu(x)).$

Note from (2.8) that $J \in B_{\Phi}(\overline{U}, E)$ (note if $x \in \partial U$ then $J(x) = G(x) + H(x, \mu(x)) = G(x) \subseteq \Phi(x)$ since $G \in B_{\Phi}(\overline{U}, E)$), and $\Lambda \in D(\overline{U}, E)$ is a selection of J. Now since F is Φ -epi then there exists $x \in U$ with $F(x) \cap \Lambda(x) \neq \emptyset$ i.e. $F(x) \cap [\Psi(x) + h(x, \mu(x))] \neq \emptyset$. Thus $x \in K$ and as a result $\mu(x) = 1$. Consequently $F(x) \cap [\Psi(x) + h(x, 1)] \neq \emptyset$, so $F(x) \cap [\Psi(x) + H(x, 1)] \neq \emptyset$ i.e. $[F(x) - H(x, 1)] \cap \Psi(x) \neq \emptyset$. \Box

Remark 2.16. We can remove the assumption that E is normal in the statement of Theorem 2.15 provided we put conditions on the maps so that K is compact.

Remark 2.17. Note in Theorem 2.15 we could replace (2.5) with either (here h and Ψ are as described in the statement of Theorem 2.15)

 $\{x \in \overline{U}: F(x) \cap [\Psi(x) + h(x,t)] \neq \emptyset \text{ for some } t \in [0,1]\}$ does not intersect ∂U

or

$$\{x \in \overline{U}: F(x) \cap [G(x) + H(x,t)] \neq \emptyset \text{ for some } t \in [0,1]\}$$
 does not intersect ∂U_{x}

Next we present three normalization type results.

Theorem 2.18. Let E be a normal topological vector space, U an open subset of E and $0 \in U$. Suppose

$$i \in A(U, E)$$
 where *i* is the identity map (2.9)

$$x \notin \lambda \Phi(x)$$
 for $x \in \partial U$ and $\lambda \in (0, 1]$ (2.10)

and

 \overline{U} is a retract of E i.e. there exists a retraction $r: E \to \overline{U}$. (2.11)

For any $H \in B_{\Phi}(\overline{U}, E)$ and any selection $\Psi \in D(\overline{U}, E)$ of H assume

$$K = \left\{ x \in \overline{U} : x \in \lambda \Psi(x) \text{ for some } \lambda \in [0,1] \right\} \text{ is closed}$$
(2.12)

$$\begin{cases} \text{for any continuous map } \eta: E \to [0,1] \text{ with } \eta(E \setminus U) = 0 \text{ and} \\ \eta(K) = 1 \text{ the map } J \in D(E,E) \text{ where } J(x) = \eta(x) \Psi(r(x)) \end{cases}$$
(2.13)

and

any map
$$\Lambda \in D(E, E)$$
 has a fixed point (2.14)

hold. Then i is Φ -epi.

Proof. Let $H \in B_{\Phi}(\overline{U}, E)$ and let $\Psi \in D(\overline{U}, E)$ be a selection of H. We must show there exists $x \in U$ with $x \in \Psi(x)$ (i.e. $i(x) \cap \Psi(x) \neq \emptyset$). Let

 $K = \left\{ x \in \overline{U} : x \in \lambda \, \Psi(x) \text{ for some } \lambda \in [0,1] \right\}.$

Now $K \neq \emptyset$ (note $0 \in U$) and K is closed. Also note $K \subset U$ since if there exists $x \in \partial U$ and some $\lambda \in [0, 1]$ with $x \in \lambda \Psi(x)$ then $x \in \lambda \Phi(x)$ since $\Psi(x) \subseteq H(x) \subseteq \Phi(x)$, a contradiction (see (2.10)). Urysohn's Lemma guarantees that there exists a continuous map $\eta : E \to [0, 1]$ with $\eta(K) = 1$ and $\eta(E \setminus U) = 0$. Define a map J by $J(x) = \eta(x) \Psi(r(x))$ where r is given in (2.11). Now (2.13) and (2.14) guarantees that there exists $x \in E$ with $x \in \eta(x) \Psi(r(x))$. If $x \in E \setminus U$ then $\eta(x) = 0$, a contradiction since $0 \in U$. Thus $x \in U$ and so $x \in \eta(x) \Psi(x)$. As a result $x \in K$ so $\eta(x) = 1$. Thus $x \in \Psi(x)$.

Remark 2.19. We can remove the assumption that E is normal in the statement of Theorem 2.18 provided we put conditions on the maps so that K is compact.

Remark 2.20. We first recall the PK maps from the literature. Let Z and W be subsets of topological vector spaces Y_1 and Y_2 and F a multifunction. We say $F \in PK(Z, W)$ if W is convex and there exists a map $S : Z \to W$ with

$$Z = \bigcup \{ int \, S^{-1}(w) : w \in W \}, \ co\left(S(x)\right) \subseteq F(x)$$

for $x \in Z$ and $S(x) \neq \emptyset$ for each $x \in Z$; here $S^{-1}(w) = \{z : w \in S(z)\}.$

Let E be a locally convex topological vector space, U an open convex subset of $E, 0 \in U$ and \overline{U} paracompact. Let $\mathbf{D} = D$ and $\mathbf{B} = B$. We say $Q \in D(\overline{U}, E)$ if $Q: \overline{U} \to E$ is a continuous compact map. We say $R \in B(\overline{U}, E)$ if $R \in PK(\overline{U}, E)$ and R is a compact map (the existence of a continuous selection Ψ of R is guaranteed from

[10, Theorem 1.3] and note Ψ is compact since Ψ is a selection of R and R is compact, so $\Psi \in D(\overline{U}, E)$). Note (2.11), (2.12), (2.13) and (2.14) (Schauder-Tychonoff fixed point theorem) hold. We note that a "compact" map above could be replaced by a more general "compactness type" map; see [1, 2].

Theorem 2.21. Let E be a locally convex topological vector space, U an open convex subset of E, $0 \in U$ and suppose (2.9) and (2.10) hold. Let $r : E \to \overline{U}$ be given by

$$r(x) = \frac{x}{\max\{1, \mu(x)\}} \quad for \ x \in E,$$

where μ is the Minkowski functional on \overline{U} (i.e. $\mu(x) = \inf\{\alpha > 0 : x \in \alpha \overline{U}\}$), and for any $H \in B_{\Phi}(\overline{U}, E)$ and any selection $\Psi \in D(\overline{U}, E)$ of H assume

$$r \Psi \in D(\overline{U}, \overline{U}) \tag{2.15}$$

and

any map
$$\Lambda \in D(\overline{U}, \overline{U})$$
 has a fixed point (2.16)

hold. Then i is Φ -epi.

Proof. Let $H \in B_{\Phi}(\overline{U}, E)$ and let $\Psi \in D(\overline{U}, E)$ be a selection of H. Let $\Lambda = r \Psi$. Now (2.15) and (2.16) guarantee that there exists $x \in \overline{U}$ with $x \in r \Psi(x)$. Then x = r(y) where $y \in \Psi(x)$; here $x \in \overline{U} = U \cup \partial U$. If we show

$$x \in U$$
 and $r(y) = y$ (2.17)

then x = y so $x \in \Psi(x)$ and we are finished. It remains to show (2.17). Let $x \in \partial U$. Then $\mu(x) = 1$ so

$$1 = \mu(x) = \mu(r(y)) = \frac{\mu(y)}{\max\{1, \mu(y)\}},$$

so $\mu(y) \ge 1$. Thus $x = r(y) = \frac{y}{\mu(y)}$ so with $\lambda = \frac{1}{\mu(y)}$ we have $x \in \lambda \Psi(x)$, so $x \in \lambda \Phi(x)$ since $x \in \partial U$ and $\Psi(x) \subseteq H(x) \subseteq \Phi(x)$, and this contradicts (2.10). Thus $x \in U$. Then $\mu(x) < 1$ so

$$1 > \mu(x) = \mu(r(y)) = \frac{\mu(y)}{\max\{1, \mu(y)\}},$$

1. Thus $r(y) = y$, so (2.17) holds.

and as a result $\mu(y) < 1$. Thus r(y) = y, so (2.17) holds.

Theorem 2.22. Let E be a topological space, U an open subset of E and suppose (2.9) and (2.14) hold. In addition assume

$$\Phi \in B(E, E)$$
 and there is no $z \in E \setminus U$ with $z \in \Phi(z)$. (2.18)

For any $H \in B_{\Phi}(\overline{U}, E)$ and any selection $\Psi \in D(\overline{U}, E)$ of H assume

$$J \in D(E, E) \quad where \quad J(x) = \begin{cases} \Psi(x), \ x \in U \\ \Phi(x), \ x \in E \setminus U. \end{cases}$$
(2.19)

Then i is Φ -epi.

Proof. Let $H \in B_{\Phi}(\overline{U}, E)$ and let $\Psi \in D(\overline{U}, E)$ be a selection of H. Let

$$J(x) = \begin{cases} \Psi(x), \ x \in U\\ \Phi(x), \ x \in E \setminus U. \end{cases}$$

Now (2.14) and (2.19) guarantee that there exists $x \in E$ with $x \in J(x)$. If $x \in E \setminus U$ then $x \in \Phi(x)$, which contradicts (2.19). Thus $x \in U$ so $x \in \Psi(x)$.

We now show that the ideas in this section can be applied to other natural situations. Let E be a normal topological vector space, Y a topological vector space, and U an open subset of E. Also let $L : dom L \subseteq E \to Y$ be a linear (not necessarily continuous) single valued map; here dom L is a vector subspace of E. Finally $T: E \to Y$ will be a linear single valued map with $L + T : dom L \to Y$ a bijection; for convenience we say $T \in H_L(E, Y)$.

Definition 2.23. We say $F \in D(\overline{U}, Y; L, T)$ (respectively $F \in A(\overline{U}, Y; L, T)$) if $F: \overline{U} \to 2^Y$ with $(L+T)^{-1}(F+T) \in D(\overline{U}, E)$ (respectively $(L+T)^{-1}(F+T) \in A(\overline{U}, E)$).

Definition 2.24. We say $F \in B(\overline{U}, Y; L, T)$ if $F : \overline{U} \to 2^Y$ with $(L+T)^{-1}(F+T) \in B(\overline{U}, E)$ and there exists a selection $\Psi \in D(\overline{U}, Y; L, T)$ of F.

For the remainder of this section we fix a $\Phi \in B(\overline{U}, Y; L, T)$.

Definition 2.25. We say $F \in A_{\partial U}(\overline{U}, Y; L, T)$ if $F \in A(\overline{U}, Y; L, T)$ with

$$(L+T)^{-1} (F+T)(x) \cap (L+T)^{-1} (\Phi+T)(x) = \emptyset$$

for $x \in \partial U$.

Definition 2.26. We say $F \in B_{\Phi}(\overline{U}, Y; L, T)$ if $F \in B(\overline{U}, Y; L, T)$ and $(L+T)^{-1} (F+T)(x) \subseteq (L+T)^{-1} (\Phi+T)(x)$

for $x \in \partial U$.

Definition 2.27. Let $F \in A_{\partial U}(\overline{U}, Y; L, T)$. We say F is $(L, T) \Phi$ -epi if for any map $G \in B_{\Phi}(\overline{U}, Y; L, T)$ and any selection $\Psi \in D(\overline{U}, Y; L, T)$ of G there exists $x \in U$ with $(L+T)^{-1}(F+T)(x) \cap (L+T)^{-1}(\Psi+T)(x) \neq \emptyset$.

Remark 2.28. If $F \in A_{\partial U}(\overline{U}, Y; L, T)$ is $(L, T) \Phi$ -epi then for any selection $\phi \in D(\overline{U}, Y; L, T)$ of Φ (note $\Phi \in B(\overline{U}, Y; L, T)$) there exists $x \in U$ with

$$(L+T)^{-1}(F+T)(x) \cap (L+T)^{-1}(\phi+T)(x) \neq \emptyset.$$

Theorem 2.29. Let E be a normal topological vector space, Y a topological vector space, U an open subset of E, L: dom $L \subseteq E \to Y$ a linear single valued map and $T \in H_L(E,Y)$. Suppose $G \in B(\overline{U},Y;L,T)$, $F \in A_{\partial U}(\overline{U},Y;L,T)$ is $(L,T) \Phi$ -epi, and suppose

$$\begin{cases} \mu(.)G(.) + (1 - \mu(.))\Phi(.) \in B(\overline{U}, Y; L, T) \text{ for any} \\ \text{continuous map } \mu: \overline{U} \to [0, 1] \text{ with } \mu(\partial U) = 0. \end{cases}$$
(2.20)

For any selection $\Lambda \in D(\overline{U}, Y; L, T)$ of G and any selection $\phi \in D(\overline{U}, Y; L, T)$ of Φ assume

$$\begin{cases} K = \{x \in \overline{U} : (L+T)^{-1}(F+T)(x) \cap (L+T)^{-1}[t\Lambda(x) + (1-t)\phi(x) + T(x)] \neq \emptyset \\ \text{for some } t \in [0,1] \} \text{ is closed and } K \text{ does not intersect } \partial U \end{cases}$$

(2.21)

and

$$\begin{cases} \mu(.)\Lambda(.) + (1 - \mu(.))\phi(.) \in D(\overline{U}, Y; L, T) \text{ for any continuous} \\ map \ \mu: \overline{U} \to [0, 1] \text{ with } \mu(\partial U) = 0 \text{ and } \mu(K) = 1. \end{cases}$$
(2.22)

Then there exists $x \in U$ with $(L+T)^{-1} (F+T)(x) \cap (L+T)^{-1} (\Lambda+T)(x) \neq \emptyset$.

Proof. Let $\Lambda \in D(\overline{U}, Y; L, T)$ be any selection of G and $\phi \in D(\overline{U}, Y; L, T)$ be any selection of Φ and let K be as in (2.21). Now $K \neq \emptyset$ (see Remark 2.28) is closed and $K \cap \partial U = \emptyset$ so there exists a continuous map $\mu : \overline{U} \to [0, 1]$ with $\mu(\partial U) = 0$ and $\mu(K) = 1$. Define the mappings J and Ψ by

$$J(x) = \mu(x) G(x) + (1 - \mu(x)) \Phi(x)$$
 and $\Psi(x) = \mu(x) \Lambda(x) + (1 - \mu(x)) \phi(x)$

Now $J \in B_{\Phi}(\overline{U}, Y; L, T)$ (note if $x \in \partial U$ then since $\mu(x) = 0$ we have $(L+T)^{-1}(J+T)(x) = (L+T)^{-1}(\Phi+T)(x)$) and $\Psi \in D(\overline{U}, Y; L, T)$ is a selection of J. Now since F is (L,T) Φ -epi there exists $x \in U$ with $(L+T)^{-1}(F+T)(x) \cap (L+T)^{-1}(\Psi+T)(x) \neq \emptyset$. Thus $x \in K$ so $\mu(x) = 1$, and as a result

$$(L+T)^{-1} (F+T)(x) \cap (L+T)^{-1} (\Lambda+T)(x) \neq \emptyset.$$

Theorem 2.30. Let E be a normal topological vector space, Y a topological vector space, U an open subset of E, L: dom $L \subseteq E \to Y$ a linear single valued map, $T \in H_L(E,Y), F \in A_{\partial U}(\overline{U},Y;L,T)$ is $(L,T) \Phi$ -epi, H is a map defined on $\overline{U} \times [0,1]$ with values in Y with $(L+T)^{-1}H(x,0) = \{0\}$ for $x \in \partial U, F(.) - H(.,1) \in A(\overline{U},Y;L,T)$ and assume

$$\begin{cases} \{x \in \overline{U}: (L+T)^{-1} (F+T)(x) \cap (L+T)^{-1} [\Phi(x) + H(x,t) + T(x)] \neq \emptyset \\ for some \ t \in [0,1] \} \ does \ not \ intersect \ \partial U. \end{cases}$$
(2.23)

Assume there exists a selection h of H such that for any $G \in B_{\Phi}(\overline{U}, Y; L, T)$ and any selection $\Psi \in D(\overline{U}, Y; L, T)$ of G we have

 $G(.) + H(.,0) \in B(\overline{U},Y;L,T) \quad and \quad \Psi(.) + h(.,0) \in D(\overline{U},Y;L,T)$ (2.24)

$$\begin{cases} K = \{x \in \overline{U} : (L+T)^{-1} (F+T)(x) \cap (L+T)^{-1} [\Psi(x) + h(x,t) + T(x)] \neq \emptyset \\ \text{for some } t \in [0,1] \} \text{ is closed} \end{cases}$$

$$(2.25)$$

and

$$\begin{cases} G(.) + H(., \mu(.)) \in B(\overline{U}, Y; L, T) \text{ and } \Psi(.) + h(., \mu(.)) \in D(\overline{U}, Y; L, T) \\ \text{for any continuous map } \mu: \overline{U} \to [0, 1] \text{ with } \mu(\partial U) = 0 \text{ and } \mu(K) = 1. \end{cases}$$

$$(2.26)$$

Then F(.) - H(., 1) is $(L, T) \Phi$ -epi.

Proof. Let $G \in B_{\Phi}(\overline{U}, Y; L, T)$ and let $\Psi \in D(\overline{U}, Y; L, T)$ be any selection of G. Let h, H be as in the statement of Theorem 2.30 and let K be as in (2.25). Consider t = 0. Now $G(.) + H(., 0) \in B_{\Phi}(\overline{U}, Y; L, T)$ (note for $x \in \partial U$ we have

$$(L+T)^{-1}[G(x) + H(x,0) + T(x)] = (L+T)^{-1}(G+T)(x) \subseteq (L+T)^{-1}(\Phi+T)(x)$$

since $G \in B_{\Phi}(\overline{U}, Y; L, T))$, $\Psi(.) + h(., 0) \in D(\overline{U}, Y; L, T)$ is a selection of G(.) + H(., 0), and since F is $(L, T) \Phi$ -epi we see there exists $x \in U$ with

$$(L+T)^{-1} (F+T)(x) \cap (L+T)^{-1} [\Psi(x) + h(x,0) + T(x)] \neq \emptyset,$$

so $K \neq \emptyset$. In addition K is closed and note $K \cap \partial U = \emptyset$ (note if $x \in \partial U$ then $(L+T)^{-1}(F+T)(x) \cap (L+T)^{-1}[\Psi(x)+h(x,t)+T(x)] \subseteq (L+T)^{-1}(F+T)(x) \cap (L+T)^{-1}[G(x)+H(x,t)+T(x)] \subseteq (L+T)^{-1}(F+T)(x) \cap (L+T)^{-1}[\Phi(x)+H(x,t)+T(x)],$ and note (2.23)). Then there exists a continuous map $\mu : \overline{U} \to [0,1]$ with $\mu(\partial U) = 0$ and $\mu(K) = 1$. Define maps J and Λ by

$$J(x) = G(x) + H(x, \mu(x))$$
 and $\Lambda(x) = \Psi(x) + h(x, \mu(x))$.

Note from (2.26) that $J \in B_{\Phi}(\overline{U}, Y; L, T)$ (note if $x \in \partial U$ then

$$(L+T)^{-1} (J+T)(x) = (L+T)^{-1} [G(x) + H(x,0) + T(x)]$$

= $(L+T)^{-1} (G+T)(x) \subseteq (L+T)^{-1} (\Phi+T)(x)$

since $G \in B_{\Phi}(\overline{U}, Y; L, T)$ and $\Lambda \in D(\overline{U}, Y; L, T)$ is a selection of J. Now since F is $(L, T) \Phi$ -epi there exists $x \in U$ with $(L+T)^{-1} (F+T)(x) \cap (L+T)^{-1} (\Lambda+T)(x) \neq \emptyset$ i.e. $(L+T)^{-1} (F+T)(x) \cap (L+T)^{-1} (\Psi(x) + h(x, \mu(x)) + T(x)) \neq \emptyset$. Thus $x \in K$ so $\mu(x) = 1$ and as a result

$$(L+T)^{-1}(F+T)(x) \cap (L+T)^{-1}(\Psi(x)+h(x,1)+T(x)) \neq \emptyset.$$

Remark 2.31. We can remove the assumption that E is normal in the statement of Theorem 2.29 and Theorem 2.30 provided we put conditions on the maps so that K is compact.

Remark 2.32. Note in Theorem 2.30 we could replace (2.23) with either (here Ψ and h are as described in the statement of Theorem 2.30)

$$\begin{cases} \{x \in \overline{U} : (L+T)^{-1} (F+T)(x) \cap (L+T)^{-1} [\Psi(x) + h(x,t) + T(x)] \neq \emptyset \\ \text{for some } t \in [0,1] \} \text{ does not intersect } \partial U \end{cases}$$

or

(

$$\{x \in \overline{U}: (L+T)^{-1} (F+T)(x) \cap (L+T)^{-1} [G(x) + H(x,t) + T(x)] \neq \emptyset$$

for some $t \in [0,1]$ } does not intersect ∂U .

References

- R.P. Agarwal, D. O'Regan, Continuation methods for closed, weakly closed, DKT and WDKT maps, Computers Math. with Appl., 38(1999), 81-88.
- R.P. Agarwal, D. O'Regan, An essential map theory for U^k_c and PK maps, Topological Meth. Nonlinear Anal., 21(2003), 375-386.
- [3] C.D. Aliprantis, K.C. Border, Infinite Dimensional Analysis, Springer Verlag, Berlin, 1994.
- [4] M. Furi, M. Martelli, A. Vignoli, On the solvability of nonlinear operator equations in normed spaces, Ann. Math. Pura Appl., 124(1980), 321-343.
- [5] G. Gabor, L. Gorniewicz, M. Slosarski, Generalized topological essentiality and coincidence points of multivalued maps, Set-Valued Anal., 17(2009), 1-19.
- [6] L. Gorniewicz, *Topological Fixed Point Theory of Multivalued Mappings* (second edition), Springer, Dordrecht, 2006.
- [7] L. Gorniewicz, M. Slosarski, Topological essentiality and differential inclusions, Bull. Austral. Math. Soc., 45(1992), 177-193.

DONAL O'REGAN

- [8] E. Michael, A selection theorem, Proc. Amer. Math. Soc., $\mathbf{17}(1966),\,1404\text{-}1406.$
- D. O'Regan, Coincidence methods based on essential and 0-epi maps, Acta Applicandae Math., 54(1998), 319-330.
- [10] D. O'Regan, Fixed point theorems for the B^{κ} -admissible maps of Park, Applicable Anal., **79**(2001), 173-185.
- [11] D. O'Regan, Coincidence points for multivalued maps based on Φ-epi and Φ-essential maps, Dynamic Systems and Appl., 24(2015), 143-154.

Received: November 28, 2016; Accepted: Jaunuary 30, 2017.