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Abstract. In this paper, the notion of c-support points of a set in a semitopological cone is intro-

duced. It is shown that any nonempty convex Scott closed bounded set has a c-support point in a
cancellative bd-cone under certain condition. We also introduce the notion of wd-cone and then we

prove a Bishop-Phelps type theorem for wd-cones, especially for normed cones, under appropriate

conditions. Finally, using of the Bishop-Phelps technique, we obtain a result about the fixed points
of a mapping on s-cones.
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1. Introduction

Domain theory which is based on logic and computer science, started as an out-
growth of theories of order. Progress in this domain rapidly required a lot of material
on (non-Hausdorff) topologies. After about 40 years of domain theory, one is forced
to recognize that topology and domain theory have been beneficial to each other [5, 7].

One of Klaus Keimel’s many mathematical interests is the interaction between
order theory and functional analysis. In recent years this has led to the beginnings of
a domain-theoretic functional analysis, which may be considered to be a topic within
positive analysis in the sense of Jimmie Lawson [11]. In the latter, notions of positivity
and order play a key role, as do lower semicontinuity and so T0 spaces. Some basic
functional analytic tools were developed by Roth and Tix and later by Plotkin and
Keimel for these structures. Roth has written several papers in this area including his
papers [13, 14] on Hahn-Banach type theorems for locally convex cones. Tix in her
1999 Ph.D. thesis gave a domain-theoretic version of these theorems in the framework
of d-cones (see [17, 18]). Plotkin subsequently gave another separation theorem,
which was incorporated, together with other improvements, into a revised version
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of Tix’s thesis [19, 12]. Finally, Keimel [9] improved the Hahn-Banach theorems to
semitopological cones.

The theory of locally convex cones, with applications to Korovkin type approxi-
mation theory for positive operators and to vector-measure theory, was developed in
the books by Keimel and Roth [10] and Roth [15], respectively.

The Bishop-Phelps theorem [3] is a fundamental theorem in functional analysis
which has many applications in the geometry of Banach spaces, fixed point theory
and optimization (for instance see [8, 4]). The classical Bishop-Phelps theorem states
that “the set of support functionals for a closed bounded convex subset B of a real
Banach space X is norm dense in X∗ and the set of support points of B is dense in
the boundary of B” [3]. The present paper contributes a domain-theoretic analogue
of the classical Bishop-Phelps theorem for semitopological cone.

The work on Hahn-Banach-type theorems has found application in theoretical com-
puter science, viz. the study of powerdomains. It was a pleasant surprise that the
separation theorems found application in this development and we anticipate that so
too will the domain-theoretic Bishop-Phelps theorem given here. As an application of
the Bishop-Phelps theorem, we show that a mapping on a wd-cone has a fixed point
under some conditions.

2. Preliminaries

For convenience of the reader we give a survey of the relevant materials from [1],
[2], [7] and [9], without proofs, thus making our exposition self-contained.

Let B be a nonempty subset of a real Banach space X and f be a nonzero contin-
uous linear functional on X. If f attains either its maximum or its minimum over B
at the point x ∈ B, we say that f supports B at x and that x is a support point of B.

For subsets A of a partially ordered set P we use the following notations:
↓ A =: {x ∈ P |x ≤ a for some a ∈ A},
↑ A =: {x ∈ P |x ≥ a for some a ∈ A}.

It is called that A is a lower or upper set, if ↓ A = A or ↑ A = A, respectively.
We denote by R+ the subset of all nonnegative reals. Further, R = R ∪ {+∞}and

R+ = R+∪{+∞}. Addition, multiplication and the order are extended to +∞ in the
usual way. In particular, +∞ becomes the greatest element and we put 0 · (+∞) = 0.

According to [9], a cone is a set C, together with two operations + : C × C → C
and · : R+×C → C and a neutral element 0 ∈ C, satisfying the following laws for all
v, w, u ∈ C and λ, µ ∈ R+:

0 + v = v, 1v = v,

v + (w + u) = (v + w) + u, (λµ)v = λ(µv),

v + w = w + v, (λ+ µ)v = λv + µv,

λ(v + w) = λv + λw.

An ordered cone C is a cone endowed with a partial order ≤ such that the addi-
tion and multiplication by fixed scalars r ∈ R+ are order preserving, that is, for all
x, y, z ∈ C and all r ∈ R+:

x ≤ y ⇒ x+ z ≤ y + z and rx ≤ ry.
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Let us recall that a linear function from a cone (C,+, ·) to a cone (C ′,+, ·) is a
function f : C → C ′ such that f(v + w) = f(v) + f(w) and f(λv) = λf(v), for all
v, w ∈ C and λ ∈ R+.

A subset D of a cone C is said to be convex if for all u, v ∈ D and λ ∈ [0, 1], λu+
(1 − λ)v ∈ D. The convex hull of a set D is defined to be the smallest convex set
containing D.

For example, (R+)n is a cone, with respect to the coordinate-wise operations.
On R+, the cone order is just the usual order ≤ of the reals. On (R+)n, it is the
coordinate-wise order.

Recall that a partially ordered set (A,≤) is called directed if for every a, b ∈ A
there exists c ∈ A with a, b ≤ c. A partially ordered set (D,≤) is called a directed
complete partial order (dcpo) if every directed subset A of D, has a least upper bound
in D. The least upper bound of a directed subset A is denoted by t↑A, and it is also
called the directed supremum.

In any partially ordered set P , the way-below relation x� y is defined by: x� y
iff, for any directed subset D ⊂ P for which supremum of D exists, the relation
y ≤ t↑D implies the existence of a d ∈ D with x ≤ d. An element y ∈ P is called
finite if, y � y.

The partially ordered set P is called continuous if, for every element y in P , the
set � y =: {x ∈ P ;x � y} is directed and y = t↑ � y. Note that x � y implies
x ≤ y [7, Prop. 5.1.4].

Any T0-space X comes with an intrinsic order, the specialization order which is
defined by x ≤ y if the element x is contained in the closure of the singleton {y} or,
equivalently, if every open set containing x also contains y.

Given any ordering ≤, there are at least two topologies with ≤ as specialization
ordering, the coarsest possible one (the upper topology) and the finest possible one
(the Alexandroff topology) (see [7, Sec. 4.2.2] for more details). Additionally, there
are some other interesting topologies in between. An important example of a topology
that sits in between is the Scott topology.

Let D be a partially ordered set. A subset A is called Scott closed if it is a lower
set and is closed under supremum of directed subsets, as far as these suprema exist.
Complements of Scott closed sets are called Scott open. The collection of all Scott
open sets is a topology, called the Scott topology on D [7, Prop. 4.2.18]. We write Dσ

for the set D with the Scott topology.
The basic notion is that of a Scott continuous function: A function f from a

partially ordered set P to a partially ordered set Q is called Scott continuous if it
is order preserving and if, for every directed subset D of P which has a least upper
bound in P , the image f(D) has a least upper bound in Q and f(t↑D) = t↑f(D).

Let P,Q be two partially ordered sets. A map f : Pσ → Qσ is continuous iff
f : P → Q is Scott continuous [7, Prop. 4.3.5].

In a continuous partially ordered set C, the set � x is Scott open for all x. More
generally, for every subset E of C, the subset � E is open in σC [7, Prop. 5.1.16], so

� E ⊂ int(↑ E). If the subset E ⊂ C is finite, then � E = int(↑ E) [7, Prop. 5.1.35].
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On the extended reals R and on its subsets R+ and R+ we use the upper topology,
the only open sets for which are the open intervals {s : s > r}. This upper topology
is T0, but far from being Hausdorff.

2.1. Semitopological Cones. According to [9], a semitopological cone is a cone
with a T0-topology such that the addition and scalar multiplication are separately
continuous, that is:

a 7→ ra : C → C is continuous for every fixed r > 0,

r 7→ ra : R+ → C is continuous for every fixed a ∈ C,
b 7→ a+ b : C → C is continuous for every fixed a ∈ C.

An s-cone is a cone with a partial order such that addition and scalar multiplication:

(a, b) 7→ a+ b : C × C → C, (r, a) 7→ ra : R+ × C → C

are Scott continuous. A s-cone is called a [b]d-cone if its order is [bounded] directed
complete, i.e., if each [upper bounded] directed subset has a least upper bound.

Note that every s-cone is a semitopological cone with respect to its Scott topology
[9, Prop. 6.3].

A cone C with a topology is called locally convex, if each point has a neighborhood
basis of open convex neighborhoods.

Let C be a semitopological cone. The cone C∗ of all linear continuous functionals
f : C → R+ are called dual of C.

We shall use the following separation theorem [9, Theorem 9.1]: in a semitopological
cone C consider a nonempty convex subset A and an open convex subset U . If A and
U are disjoint, then there exists a continuous linear functional f : C → R+ such that
f(a) ≤ 1 < f(u) for all a ∈ A and all u ∈ U .

Finally, we shall use the following strict separation theorem [9, Theorem 10.5]: let
C be a locally convex semitopological cone. Suppose that K is a compact convex
set and that A is a nonempty closed convex set disjoint from K. Then there is a
continuous linear functional f and an r such that f(b) ≥ r > 1 ≥ f(a) for all b in K
and all a in A.

2.2. Normed Cones. A cancellative cone (more precisely cancellative asymmetric
cone) is a cone C, satisfying the following laws for all v, w, u ∈ C:

v + u = w + u⇒ v = w, (cancellation)

v + w = 0⇒ v = w = 0. (strictness)

Let C be a cancellative cone, we define a partial order on C by x 4 y ⇔ y ∈ x + C,
called the cone order on C.
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According to [16], a norm on a cancellative cone C is a function ‖ · ‖: C → R+

satisfying the following conditions for all v, w ∈ C and λ ∈ R+ :

‖ v + w ‖≤‖ v ‖ + ‖ w ‖,
‖ λv ‖= λ ‖ v ‖,
‖ v ‖= 0⇒ v = 0,

v 4 w ⇒‖ v ‖≤‖ w ‖ .

A normed cone C = 〈C, ‖ · ‖〉 is a cancellative cone equipped with a norm. The
unit ideal of a normed cone C is the set

UC = {u ∈ C; ‖ u ‖≤ 1}.

A normed cone C is called complete if its unit ideal is a dcpo. For example the
normed cones R+,Rn+, l+∞ (the set of all bounded sequences in R+) together with the

supremum norm ‖(xi)i‖ = supi xi and l+1 (the set of all sequences in R+ of bounded
sum) together with the sum norm ‖(xi)i‖ =

∑
i xi are all complete and continuous

[16, Exam. 2.7]. We will say simply continuous normed cone for continuous complete
normed cone.

3. Main results

The purpose of this section is to establish the Bishop-Phelps type theorem for
semitopological cones. Indeed we want to study the Bishop-Phelps theorem in non-
Hausdorff setting.

Remark 3.1. (a1) Let B be a nonempty Scott closed set in a semitopological cone
C. Since 0 ∈ B, so for any linear functionals f : C → R+ we have f(0) = inf f(B).

(a2) If B is a nonempty compact set in a semitopological cone C and f : C → R+

is a continuous map, then there is an element z ∈ B such that f(z) = inf f(B) [6,
Lemma 3.8]. Since in a semitopological cone, a compact set is not necessarily closed,
so the proof of this statement is different from the method of the classical analysis
and the result is not true for supremum (for details see [6]).

Note that a subset B in a partially ordered set C, is called bounded if there exists
an element d ∈ C such that for any b ∈ B, b ≤ d.

Let C be an s-cone. We will say that C has the additive property, if the following
axioms are satisfied:

(i) x′ � x and y′ � y implies x′ + y′ � x+ y.
(ii) x� λx for any scalar λ > 1 and x > 0.

Example 3.2. (b1) Rn+ is a cancellative continuous bd-cone with the ordering:

(x1, ..., xn) ≤ (y1, ..., yn)⇐⇒ ∀n xn ≤ yn.

In Rn+, we have (x1, ..., xn) � (y1, ..., yn) iff for all i, xi = 0 or xi < yi. It is easy to
see that Rn+ has the additive property.

(b2) The cones `+1 and `+∞ are cancellative continuous bd-cones under usual point-
wise ordering which also have the additive property.
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It is known that the interior of a convex set in a topological linear space is a convex
set, but this is not true in semitopological cones in general [9].

Remark 3.3. (c1) In a continuous s-cone C, which has the additive property, the
interior of every convex upper set is convex [9, Lemmas 4.10 & 6.14].

(c2) In a continuous normed cone C, for any convex set B, the open set � B, is
convex [16, Lemma 2.16].

(c3) In a continuous s-cone C, which has the additive property, the interior of every
upper set is nonempty. To see this, let A be an upper set. For x ∈ A consider � x,
which is a nonempty open set in A, so int(A) is nonempty.

Proposition 3.4. Let C be a continuous s-cone which has the additive property, and
B ⊂ C be an upper convex set. If x ∈ B such that λx 6∈ B, whenever λ < 1, then
there exists a continuous linear functional f : C → R+ such that f(x) = inf f(B).

Proof. Let x ∈ B. By the assumption, λx 6∈ B for every 0 < λ < 1, so x 6∈ int(B).
The interior of B is a nonempty convex open set, therefore by the separation theorem,
there exists a continuous linear functional f : C → R+ such that f(x) ≤ f(b) for all
b ∈ int(B). By continuity of C, for each y ∈ B, � y =: {a : y � a} is an open set
in B and so it is included in int(B), so f(x) ≤ f(a) for all a ∈ � y. By the additive
property f(x) ≤ f(y) for each y ∈ B, hence f(x) = inf f(B). �

In the sequel, we consider suprema instead of infima. Let B be a convex closed
set in a semitopological cone C. A point x ∈ B is called a c-support point for B, if
there exists a linear continuous functional f : C → R+ such that f(x) = sup f(B)
and f(x) <∞; such a functional f is said a c-support functional.

Remark 3.5. Let B be a convex closed set in a semitopological cone C. Then we
have the following facts:

(d1) If the setB has a maximum, then any linear continuous functional f : C → R+

is a c-support functional for B.
(d2) If the set B has nonempty interior, then B is an unbounded set, so any linear

continuous functional f : C → R+ on B is unbounded.
(d3) If C is a d-cone and B is a directed Scott closed set, then t↑B ∈ B, and so

every linear Scott continuous functional is a c-support functional for B.

Now we restrict our attention to the case that B is a nonempty convex closed
set with empty interior. To establish the Bishop-Phelps theorem for semitopological
cones, we need a discussion of certain cones:

Let C be a cancellative semitopological cone and f : C → R+ be a continuous
linear functional. For 0 < δ < 1 and d ∈ C, we define

K(f, δ, d) = {x ∈ C : f(x) <∞ and δx ≤ f(x)d}.

Note that K(f, δ, d) is a convex subcone of C. Since C is a cancellative cone, the
order x v y ⇔ y ∈ x + K, defines a partial order on C, which is called the subcone
order on C. If x v y, then we sometimes write x − y for the unique element z such
that x+ z = y.
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Lemma 3.6. Let C be a cancellative semitopological cone. Then for every x, y ∈ C
we have

x v y (y ∈ x+K)⇒ x ≤ y (with the specialization order).

Proof. Let x v y. For some z ∈ K, y = x + z. By the definition of semitopological
cone, we know that the function S : b 7→ x + b : C → C is continuous. So S({z}) ⊂
S(z) and then x ∈ {y} and so x ≤ y. �

Now we investigate the first part of the Bishop-Phelps type theorem for bd-cones.
Let X be a partially ordered set, with ordering ≤. The specialization ordering of

the Scott topology is the original ordering ≤ [7, Prop. 4.2.18].

Remark 3.7. Note that in a continuous cancellative semitopological cone C, we
have x 6∈ � x, in fact there is no finite element in C. Because, if x ∈ � x, since C
is a continuous cone, so B := � x is an open set. With considering the directed set
A := {λx : λ ∈ R+, λ < 1} which its supremum is in B. Since C is cancellative, it
follows that A ∩B = ∅, and this contrary to opening of � x.

Theorem 3.8. Let B ( 6= {0}) be a nonempty convex dcpo in a continuous cancellative
bd-cone C, where C has the additive property. Then there exists some m ∈ B such
that B ∩ (m+ C) = {m}. Such an m is also a c-support point for B.

Proof. It is easy to see that the partially ordered set (B,≤) has a maximal element,
in fact by Zorn’s lemma, it suffices to prove that every chain in (B,≤) has an upper
bound in B.

By Lemma 3.6 (B,4) (with the cone order) has a maximal element, say m. It
follows that B∩ ↑ m = {m} or B ∩ (m + C) = {m}. Since C is continuous and
has the additive property, so � m is a nonempty convex open set, hense m 6∈ � m
and B ∩ ( � m) = ∅. By the separation theorem there exists a Scott continuous
linear functional f : C → R+ satisfying f(b) ≤ f(y) for all b ∈ B and y ∈ � m. So
f(b) ≤ f(λm) for all b ∈ B and λ > 1. Therefore, m is a c-support point. �

3.1. wd-Cones. In this section we introduce and study the notion of wd-cones.

Definition 3.9. Let C be a semitopological cone. The net {xα} is Cauchy if there
exists 0 < d ∈ C, satisfying the condition that, for any ε > 0 there exists α0, such
that for α, β ≥ α0, xα ≤ xβ + εd and xβ ≤ xα + εd.

In the sequel, by an order on a semitopological cone we will always mean the
specialization order ≤, if not specified otherwise.

Definition 3.10. A s-cone C is called a wd-cone, if each increasing Cauchy net, has
a least upper bound.

Clearly every bd-cone is a wd-cone. The following example shows that the converse
does not hold in general.

Example 3.11. Let C+[0, 1] denote the cone of all continuous functions f : [0, 1]→
R+, which is also an ordered cone under the usual pointwise ordering. Note that
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C+[0, 1] is not a bd-cone. To see this, consider the sequence of piecewise linear function
in C+[0, 1] defined by

fn(x) =

 1 if 0 ≤ x ≤ 1
2 −

1
n ,

−n(x− 1
2 ) if 1

2 −
1
n < x < 1

2 ,
x if 1

2 ≤ x ≤ 1.

Thus 0 ≤ fn ≤ 1 in C+[0, 1] and is an increasing sequence, where 1 is the constant
function one, but {fn} does not have a supremum in C+[0, 1]. It is easy to see
that the functions (f, g) 7→ f + g : C+[0, 1]× C+[0, 1]→ C+[0, 1] and (r, f) 7→ rf :
R+×C+[0, 1]→ C+[0, 1] are Scott continuous. So C+[0, 1] is an s-cone. Furthermore,
C+[0, 1] is a continuous s-cone. Now we show that C+[0, 1] is a wd-cone. Indeed, if
{fα} is an increasing Cauchy net in C+[0, 1], then it is a norm Cauchy net. Since
C[0, 1] is a Banach space, the net {fα} is norm-convergent to some f . This means that
fα(x)→ f(x), Thus f(x) = supα fα(x) for each x ∈ [0, 1]. It follows that supα fα = f
and f ∈ C+[0, 1].

In the sequel, the mean of a wd-cone will always a cancellative continuous wd-cone,
if not specified otherwise.

3.2. A Bishop-Phelps type Theorem. In this section, we prove the Bishop-Phelps
type theorem for wd-cones.

Lemma 3.12. Let f be a continuous linear functional on a wd-cone C, 0 < δ < 1
and d ∈ C. If B is a nonempty convex bounded closed subset of C, then for each
b ∈ B there exists a maximal element m ∈ B satisfying B ∩ (m + K(f, δ, d)) = {m}
and b v m.

Proof. It is sufficient to show that the set Bb = {y ∈ B : b v y} with the order v has
a maximal element.

By Zorn’s Lemma, it suffices to prove that every chain in (Bb,v) has an upper
bound in Bb. Let Z be a chain in Bb. If we let xα = α for each α ∈ Z, we can identify
Z with the increasing net {xα}.

Without loss of generality, let xα and xβ be two elements of the net. Without
lose of the generality, we can suppose that xα v xβ . So there exists k ∈ K such
that xβ = xα + k and δk ≤ f(k)d. Therefore, δxβ ≤ δxα + (f(xβ) − f(xα))d.
By the boundedness of B and continuity of f , it follows that f(xα) is a bounded
net, and so f(xα) is convergent and Cauchy. It is easy to see that the net {xα} is
a directed Cauchy and so has a supremum, say x (with specialization order), that
means sup≤ xα = x. Since B is a Scott closed set, so x ∈ B. Now fix β ∈ Z, so
we have xβ v xα for β v α. Thus δxα ≤ (f(xα) − f(xβ))d + δxβ , which follows
that δx ≤ (f(x) − f(xβ))d + δxβ . Hence xβ v x and x is an upper bound of the
net ({xα},v). It follows that x ∈ Bb, hence (Bb,v) has a maximal element; say m.
Therefore B ∩ (m+K) = {m} and b v m. �

Lemma 3.13. Let C be a cancellative continuous s-cone and let K be a subcone of
C. If B is a nonempty subset of C and 0 6= m ∈ B, such that B ∩ (m + K) = {m},
then B∩ ↑ (m+K\{0}) = ∅. In particular,

B ∩ int(↑ (m+K\{0})) = ∅, B∩ � (m+K\{0}) = ∅.
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Proof. Let x ∈ B∩ ↑ (m+K\{0}), then there exists a k ∈ K\{0} suth that x = m+k.
By the assumption, m+ k = m, so k = 0. This leads to a contradiction. �

Applying the separation theorem and Lemmas 3.12 and 3.13, we obtain the follow-
ing Bishop-Phelps type theorem for wd-cones, the main result of this paper.

Theorem 3.14. Let B be a nonempty convex bounded closed set in a locally convex
wd-cone C, such that C has the additive property. Then we have:

(e1) Fix ε > 0 and d ∈ C”. For each x0 ∈ B, such that λx0 6∈ B whenever λ > 1,
there exist a continuous linear functional f : C → R+ and an m ∈ B such that
f(m) = sup f(B) and x0 ≤ m ≤ x0 + εd.

(e2) For each continuous linear functional f : C → R+, there exists a c-support
functional h for B such that 0 ≤ h ≤ f on a subcone of C.

Proof. (e1) Let x0 ∈ B satisfies the conditions of the theorem, then (1 + ε)x0 6∈ B.
Now we take E =↑ (1 + ε)x0. E is a compact set, so by the strict separation
theorem, cited in Section 2, there exists a continuous linear functional g such that
g(b) < (1 + ε)g(x0) for all b ∈ B. Since B is bounded, so the function g can be chosen
such that g(B) ≤ 1.

Now, let 0 < δ < 1, by Lemma 3.12, there exists an m ∈ B satisfying B ∩
(m + K(g, δ, d)) = {m}, x0 v m and x0 ≤ m. Hence, δ(m − x0) ≤ g(m − x0)d.
Therefore, δ(m − x0) ≤ εg(x0).d and so δ(m − x0) ≤ εd. By Lemma 3.13, B ∩ int(↑
(m + K\{0})) = ∅. Applying the separation theorem, there exists a continuous
linear functional f : C → R+ such that f(b) ≤ 1 < f(w) for all b ∈ B and all
w ∈ int(↑ (m + K\{0})). By the continuity of wd-cone C, we have f(b) ≤ f(w) for
all b ∈ B and all w ∈ � (m+K\{0}). By additive property(ii), f(b) ≤ f(m+k) for all
b ∈ B and all k ∈ K\{0}, and so f(b) ≤ f(m) for all b ∈ B. Hence sup f(B) = f(m)
and f(m) <∞.

(e2) Let f be a continuous linear functional and let 0 < δ < 1. We consider the
subcone K = K(f, δ, d). By Lemmas 3.12 and 3.13, there exists an m ∈ B such
that B ∩ int(↑ (m + K(f, δ, d)\{0})) = ∅. So by the separation theorem there
exists a continuous linear functional h : C → R+ satisfying h(b) ≤ h(m + c) for all
b ∈ B and c ∈ K(f, δ, d). This implies that h attains its maximum. It follows that
h(δc) ≤ f(c)h(d). The number δ and the element d can be taken to have h(d) = δ.
Thus 0 ≤ h ≤ f on a subcone of C. �

It is well known that each norm on a linear space X induces a metric on X. Note
that, using the same method as in classical case, each norm on a cone C necessarily
does not induce a metric on C. For example, the usual norm ‖x‖ := x on R+, does
not induce a metric on R+. The cone order of each normed cone produce a topology
(named the Scott topology) on a normed cone. To know more about the relationship
between this topology and concept of norm refer to [16].

Corollary 3.15. Let B be a nonempty convex bounded Scott closed set in a continuous
normed cone such that for any scalar λ > 1 and x > 0, x � λx. Then the results of
Theorem 3.14 are still true.
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Proof. In a continuous normed cone, addition and scalar multiplication are Scott
continuous [16, Lemma 2.12], so any continuous normed cone is a cancellative s-cone
with the Scott topology. It is easy to see that every continuous normed cone is a bd-
cone. Appealing to [16, Lemma 2.16], C has the additive property, thus assumptions
of Theorem 3.14 hold and so we can conclude the desired statement. �

Let us illustrate the above theorem with some examples:

Example 3.16. (f1) Let C = R2

+ and B = {(x, y) ∈ R2

+;x + y ≤ 1}. Then B is a
convex Scott closed set which has no any maximum. It can be easily checked that

the c-support points of B is the set {(x, y) ∈ R2

+;x+ y = 1}.
(f2) For d = (d1, d2, ...) ∈ `+1 , the set

Bd := {x = (x1, x2, ...) ∈ `+1 : x ≤ d}

is a bounded Scott closed set in `+1 that has a maximum, so any linear Scott continuous

functional f : `+1 → R+ takes its supremum on Bd at the point d. Observe that the
set of c-support points of Bd is

{x ∈ `+1 : ∃f ∈ (`+1 )∗ s.t. f(x) = f(d)}.

One can check that `+∞ ⊂ (`+1 )∗. Let z belong to the following set,

D := {x = (x1, x2, ...) ∈ Bd : for some i, xi = di}.

If we take a = (a1, a2, ...) ∈ `+∞, such that ai = 0 whenever zi 6= di, then a is a c-
support functional and z is a c-support point for Bd. Hence, D is the set of c-support
points of Bd.

3.3. A fixed point result in s-cones. What follows is an application of the Bishop-
Phelps technique in some fixed point results. Let X be any space and f a map of X,
or of a subset of X, into X. A point x ∈ X is called a fixed point for f if x = f(x).
The set of all fixed points of f is denoted by Fix(f).

Let C be a d-cone. In [1, Theorem 2.1.19.] the authors proved that every continuous
function f on C has a least fixed point. The property that ”in d-cones, every directed
subset has a supremum” is applied in the proof of the theorem. Since in wd-cones this
property does not remain true in general, we establish a fixed point result in wd-cones
by using the Bishop-Phelps technique.

Theorem 3.17. Let C be a wd-cone and f : C → R+ be a continuous linear func-
tional and 0 < δ < 1 and d ∈ C. Suppose that B is a bounded closed set in C and
T : C → C is a mapping such that f(B) ⊂ B. Then the following assertion holds.

If for each x ∈ C, x v Tx, then there exists m ∈ B such that T (m) = m.

Proof. By applying Lemma 3.12, B has a maximal element m. Now, using the as-
sumption, m v T (m). The maximality of m implies T (m) = m. �
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