Fixed Point Theory, 20(2019), No. 2, 507-510 DOI: 10.24193/fpt-ro.2019.2.32 http://www.math.ubbcluj.ro/~nodeacj/sfptcj.html

ON FIXED POINTS OF SOME FUNCTIONS

ZBIGNIEW GRANDE

Institute of Mathematics, Kazimierz Wielki University Plac Weyssenhoffa 11, 85-072 Bydgoszcz, Poland E-mail: grande@ukw.edu.pl

Abstract. Let $f : [0,1] \to [0,1]$ be a Darboux function of Baire class one. Then f has fixed point $x \in [0,1]$, i.e. there is a point $x \in [0,1]$ such that f(x) = x. So approximate continuity of f implies that f has a fixed point. In this article I investigate when f has a fixed point x satisfying some other conditions (for example f is bilaterally quasicontinuous at x or even continuous at x). Key Words and Phrases: Darboux property, Baire class 1, density topologies, quasi-continuity. **2010** Mathematics Subject Classification: 26A05, 26A15, 28A05.

1. INTRODUCTION

It is well known ([2] or [1]) that all Baire 1 Darboux functions $f : [0,1] \to [0,1]$ have fixed points $x \in [0,1]$, (i.e. f(x) = x). Really, if f(0) = 0 or f(1) = 1 then fhas fixed points. In the other case let g(x) = f(x) - x for $x \in [0,1]$ and observe that g(0) = f(0) > 0 and g(1) = f(1) - 1 < 0. Since g has the Darboux property (as the difference of Baire 1 Darboux function f and a continuous function x) ([2]), there is a point $x \in (0,1)$ with g(x) = 0. Evidently, 0 = g(x) = f(x) - x and f(x) = x.

On the other side some examples of Darboux functions $f : [0, 1] \rightarrow [0, 1]$ without the fixed point property are well known. For example in my article ([3]) is shown a construction of Darboux function $f : [0, 1] \rightarrow [0, 1]$, which has not fixed point and which is bilaterally quasicontinuous and satisfies some special condition (s_1) based on the density topology and implying the continuity almost everywhere of f.

2. Main results

I. Quasicontinuities

For the formulation of the main results of this note recall that a function g: $[0,1] \to \mathbb{R}$ is bilaterally quasicontinuous at a point $x \in (0,1)$ if for each real $\eta > 0$ there are open intervals $I_1 \subset (x - \eta, x) \cap [0,1]$ and $I_2 \subset (x, x + \eta) \cap [0,1]$ such that $g(I_1 \cup I_2) \subset (g(x) - \eta, g(x) + \eta)$ (see [5, 6])).

Analogously we define the quasicontinuity from the right at 0 and the quasicontinuity from the left at 1. A function $g: [0,1] \rightarrow [0,1]$ is bilaterally quasicontinuous

if it is bilaterally quasicontinuous at each point $x \in (0, 1)$, quasicontinuous from the right at 0 and quasicontinuous from the left at 1.

Since every bilaterally quasicontinuous function of Baire one class has the Darboux property ([2]) we obtain the following

Remark 2.1. Every bilaterally quasicontinuous Darboux of Baire one class function $f : [0, 1] \rightarrow [0, 1]$ has fixed point.

II. Density topologies

Let \mathbb{R} be the set of all reals. Denote by μ the Lebesgue measure in \mathbb{R} and by μ_e the outer Lebesgue measure in \mathbb{R} . For a set $A \subset \mathbb{R}$ and a point x we define the upper (lower) outer density $D_u(A, x)$ $(D_l(A, x))$ of the set A at the point x as

$$\limsup_{h \to 0^+} \frac{\mu_e(A \cap [x - h, x + h])}{2h}$$
$$(\liminf_{h \to 0^+} \frac{\mu_e(A \cap [x - h, x + h])}{2h}, \text{ respectively}).$$

A point x is said to be an outer density point (a density point) of a set A if $D_l(A, x) = 1$ (if there is a Lebesgue measurable set $B \subset A$ such that $D_l(B, x) = 1$).

Taking the extremal limits for the expressions $\frac{A \cap [x-h,x]}{h}$ and $\frac{A \cap [x,x+h]}{h}$ we obtain respectively the left or the right upper (lower) densities of A at x. The family T_d of all sets A for which the implication $x \in A$ implies x is a density point of A is true is a topology called the density topology ([2] or [8]). The sets $A \in T_d$ are Lebesgue measurable ([2]). Let T_n be the natural euclidean topology in \mathbb{R} .

The following family $T_{ae} = \{A \in T_d; \mu(A \setminus int(A)) = 0\}$, where int(A) denotes the natural Euclidean interior of A, was examined by O'Malley [7]. If T is a topology in \mathbb{R} then C(T) denotes the class of functions $f : \mathbb{R} \to \mathbb{R}$ continuous as applications from (\mathbb{R}, T) to (\mathbb{R}, T_n) . It is well known that

$$C(T_n) \subset C(T_{ae}) \subset C(T_d)$$

and $f \in C(T_{ae} \text{ if and only if } f \in C(T_d) \text{ and } f \text{ is almost everywhere continuous ([7])}.$

Moreover if $f \in C(T_d)$ then f is of the first Baire class and f has the Darboux property ([2]). So all functions $f : [0, 1] \to [0, 1]$ belonging to $C(T_d)$ have fixed points. All functions $f \in C(T_{ae})$ are bilaterally quasicontinuous, but there are functions

 $g \in C(T_d)$ which are not quasicontinuous ([2]).

III. Existence of fixed points satisfying some special conditions

Theorem 2.2. There is a function $f : [0,1] \rightarrow [0,1]$ belonging to $C(T_d)$ and such that if x is a fixed point of f then f is not bilaterally quasicontinuous at x.

Proof. Let Q be the set of all rationals and let $A \supset Q$ be a G_{δ} -set of Lebesgue measure 0 containing Q. Moreover let $B = A \setminus \{0\}$. Then B is a G_{δ} -set of measure 0 and by Theorem 6.5 of [2] there is an upper semicontinuous function $f \in C(T_d)$ such that $0 < f() \leq 1$ for all $x \in \mathbb{R} \setminus B$ and f(x) = 0 for all $x \in B$.

Since f(0) > 0, the point 0 is not any fixed point of f. Since f(1) = 0, the point 1 is not any fixed point of f. Let $u \in (0, 1)$ be a fixed point of f. Then u = f(u) > 0. If f is bilaterally quasicontinuous at u then there is an open interval $I \subset (0, 1)$ with $f(I) \subset (\frac{f(u)}{2}, \infty)$. But Q is dense, so there is a point $t \in I \cap (Q \setminus \{0\})$. Since f(t) = 0, we obtain a contradiction, which finishes the proof.

As evident conclusions we obtain

Corollary 2.3. There is a function $f \in C(T_d)$ such that if x is a fixed point of f then f is not bilaterally quasicontinuous at x.

and

Corollary 2.4. There is a function $f \in C(T_d)$ such that if x is a fixed point of f then f is not T_{ae} -continuous at x.

3. FINAL PROBLEMS

Problem 3.1. Let $f : [0,1] \rightarrow [0,1]$ be a Darboux function of Baire class one. Does it exist a fixed point x of f at which f is T_d -continuous?

Problem 3.2. Let $f \in T_{ae}$ be a function from [0,1] to [0,1]. Does it exist a fixed point x of f at which f is T_n -continuous?

References

- J.B. Brown, Almost continuous Darboux functions and Reed's pointwise convergence criteria, Fund Math., 86(1974), 1–17.
- [2] A.M. Bruckner, Differentiation of real functions, Lecture Notes in Math. 659, Springer-Verlag, Berlin, 1978.
- [3] Z. Grande, An example of a Darboux function having no fixed points, Real Anal. Exch., 28(2002–2003), No. 2, 375–379.
- [4] Z. Grande, On some special notions of approximate quasicontinuity, Real Anal. Exch., 24 (1998–1999), No. 1, 171–184.
- [5] S. Kempisty, Sur les fonctions quasicontinues, Fund. Math., 19(1932), 184–197.
- [6] T. Neubrunn, Quasi-continuity, Real Anal. Exch., 14(1988/89), No. 2, 259–306.
- [7] R.J. O'Malley, Approximately differentiable functions. The r topology, Pacific J. Math., 72 (1977), 207–222.
- [8] F.D. Tall, The density topology, Pacific J. Math., 62(1976), 275–284.

Received: December 4, 2017; Accepted: January 15, 2018.

ZBIGNIEW GRANDE

510