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1. Introduction

In 1994, Matthews [13] introduced the concept of partial metric spaces as a gener-
alization of metric spaces, motivated by the notion of non-zero self-distance from his
experience in computer science. He also studied Banach contraction mapping theorem
in the setting of partial metric spaces. Since then, many authors have studied fixed
point theory in the realm of these spaces using various contractive type mappings.
The study was later continued by several authors like Oltra and Valero [15], Altun et
al. [3], [2], [1], Gangopadhyay [5]. As of now, many researchers are pursuing a variety
of results in fixed point theory in partial metric spaces [11], [12], [14], [4].

First we recall some basic definitions on a partial metric space.
A partial metric on X is a function p : X ×X → R+ such that for all x, y, z ∈ X,

(i) x = y if and only if p(x, x) = p(y, y) = p(x, y),
(ii) p(x, x) ≤ p(x, y),
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(iii) p(x, y) = p(y, x),
(iv) p(x, z) ≤ p(x, y) + p(y, z)− p(y, y).

A partial metric space is a pair (X, p) such that X is a non-empty set and p is a
partial metric on X. In a partial metric space (X, p) each point does not necessarily
possess zero distance from itself. Of course a metric space is a partial metric space
while the converse is false. An example of a partial metric space is the pair (R+, p)
where p(x, y) = max{x, y}, for all x, y ∈ R+. It is not a metric space.

If x ∈ X and ε > 0, then the set p-Bε(x) = {y ∈ X : p(x, y) < p(x, x) + ε} is called
a p-open ball in (X, p). By routine check up one finds {Bε(x)}, x ∈ X and ε > 0, is
a base to generate a topology τp called the partial metric topology on X, and this
topology τp is T0 in nature.

We have the following definitions in a partial metric space (X, p).

Definition 1.1. A sequence {xn} in a partial metric space (X, p) is said to be p-
Cauchy sequence if lim

n,m→∞
p(xn, xm) exists (and is finite).

Definition 1.2. A sequence {xn} in a partial metric space (X, p) is said to be p-
convergent at x0 ∈ X if lim

n→∞
p(xn, x0) = p(x0, x0).

Definition 1.3. A partial metric space (X, p) is said to be complete if every p-Cauchy
sequence in (X, p) p-converges to a point of X, i.e., if {xn} is p-Cauchy in (X, p), there
is a point x0 ∈ X such that

lim
n,m→∞

p(xn, xm) = lim
n→∞

p(xn, x0) = p(x0, x0).

Definition 1.4. A function h : (X, p) → R is said to be p-lower semi-continuous
(p-l.s.c.) at u ∈ X if given ε > 0, there is a δ > 0 such that

h(x) > h(u)− ε for x ∈ p-Bδ(u),

or equivalently, if {xn} is a sequence in (X, p) p-converging to u, then

limn→∞f(xn) ≥ f(u).

Also h is said to be a p-l.s.c. function on X if it is so at every point of X.

Similarly, we define a p-upper semi-continuous function on a partial metric space
(X, p).

2. Main results

Here we introduce a notion of p-boundedness and p-diameter of a set in a partial
metric space (X, p) and establish a Cantor’s Intersection like theorem in a complete
partial metric space. Then employing Cantor’s Intersection like theorem, we have
proved a fixed point theorem for a mixed type mapping instead of applying Picard’s
iteration scheme.

Definition 2.1. (a) Let (X, p) be a partial metric space and G ⊂ X. If

0 ≤ sup{p(x, y)− p(x, x)− p(y, y) : p(x, y)− p(x, x)− p(y, y) ≥ 0, x, y ∈ G} <∞,
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then G is called p-bounded and the diameter of a p-bounded set G, denoted by
p-Diam(G) is defined by

p-Diam(G) = sup{z : z = p(x, y)− p(x, x)− p(y, y) ≥ 0;x, y ∈ G}.

(b) A subset in (X, p) is called p-closed if it contains all its limit points with respect
to p.

Lemma 2.2. Let G be a p-bounded set in a partial metric space (X, p). Then its
closure Ḡ is p-bounded and p-Diam(Ḡ) = p-Diam(G).

Proof. Since G ⊂ Ḡ, we have

0 ≤ sup
x,y∈G

{p(x, y)− p(x, x)− p(y, y)}

≤ sup
x,y∈Ḡ

{p(x, y)− p(x, x)− p(y, y)},

so that

p-Diam(G) ≤ p-Diam(Ḡ). (2.1)

On the other hand, let u, v ∈ Ḡ such that p(u, v)− p(u, u)− p(v, v) ≥ 0. Then given
ε > 0, there exists x, y ∈ G to satisfy

p(u, x) <
ε

2
+ p(u, u)

and

p(v, y) <
ε

2
+ p(v, v).

Therefore

p(u, v) ≤ p(u, x) + p(x, y) + p(y, v)− p(x, x)− p(y, y)

< ε+ p(x, y)− p(x, x)− p(y, y) + p(u, u) + p(v, v)

which implies

p(u, v)− p(u, u)− p(v, v) < ε+ p(x, y)− p(x, x)− p(y, y)

≤ ε+ sup
x,y∈G

{p(x, y)− p(x, x)− p(y, y) ≥ 0}

≤ ε+ p-Diam(G).

Thus

p-Diam(Ḡ) ≤ p-Diam(G). (2.2)

Combining (2.1) and (2.2),

p-Diam(Ḡ) = p-Diam(G). �

Theorem 2.3. (Cantor’s Intersection like Theorem) Let (X, p) be a complete partial
metric space. If {Gn} is a monotonically decreasing sequence of non-empty p-closed

sets in (X, p) with p-Diam(Gn) → 0 as n→∞, then G =

∞⋂
n=1

Gn is a singleton.
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Proof. The sequence {Gn} is a monotonically decreasing sequence of p-closed sets,
i.e.,

G1 ⊃ G2 ⊃ . . . ⊃ Gn ⊃ Gn+1 ⊃ . . . .
Let xn ∈ Gn, n = 1, 2, . . .. Then if n < m, we have xn, xm ∈ Gn. So

0 ≤ sup
xm∈Gn,m>n

{p(xn, xm)− p(xn, xn)− p(xm, xm) ≥ 0}

≤ p-Diam(Gn)→ 0 as m,n→∞.

Therefore, without loss of generality, we have

0 ≤ p(xn, xm)− p(xn, xn)− p(xm, xm)

→ 0 as m,n→∞.

So we get

−p(xn, xn)− p(xm, xm) ≤ p(xn, xm)− p(xn, xn)− p(xm, xm)

→ 0 as m,n→∞,

and thus p(xn, xm)→ 0 as m,n→∞.
Since (X, p) is complete, there exists x ∈ X such that

lim
n,m→∞

p(xn, xm) = lim
n→∞

p(xn, x) = p(x, x) = 0.

As each set Gn is p-closed, x ∈ Gn, for all n which implies that x ∈
∞⋂
n=1

Gn so that

G =

∞⋂
n=1

Gn 6= φ.

Again, let x, y ∈ G, x 6= y, then x, y ∈ Gn, for all n. We have

0 ≤ p(x, y)− p(x, x)− p(y, y)

≤ p-Diam(Gn)→ 0 as n→∞.

Therefore p(x, y) = p(x, x) + p(y, y). Also x, x ∈ Gn, for all n which gives

p(x, x)− p(x, x)− p(x, x) = 0, or p(x, x) = 0.

Similarly, p(y, y) = 0.
Thus p(x, y) = 0 = p(x, x) = p(y, y) giving x = y. Hence G is a singleton. �

As an application of the above theorem, we find a result for which we begin with the
next lemma.

Lemma 2.4. Let (X, p) be a partial metric space and T be a self-mapping on X
satisfying the following condition

p(Tx, Ty) ≤ αp(x, Tx) + β p(y, Ty) + γ p(x, y)

where

α+ β + γ < 1 and α, β, γ ≥ 0, for all x, y ∈ X,
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and let {αn} be a sequence of reals with 0 < αn < 1, for all n and limαn = 0. For
each n ∈ N, if the set Gn = {x ∈ X : p(x, Tx) ≤ αn} is non-empty, then {Gn} is a
decreasing sequence of sets with p-Diam(Gn)→ 0.

Proof. Clearly {Gn} is monotone decreasing. Let x, y be elements in Gn so that
p(x, Tx) ≤ αn and p(y, Ty) ≤ αn. Now

p(x, y) ≤ p(x, Tx) + p(Tx, Ty) + p(Ty, y)− p(Tx, Tx)− p(Ty, Ty)

≤ p(x, Tx) + p(Tx, Ty) + p(Ty, y)

≤ 2αn + α p(x, Tx) + β p(y, Ty) + γ p(x, y).

So

p(x, y) ≤ 2 + α+ β

1− γ
αn → 0 as n→∞.

Since 0 ≤ p(x, y)− p(x, x)− p(y, y) ≤ p(x, y), we get

sup
x,y∈Gn

{p(x, y)− p(x, x)− p(y, y)} = 0.

Therefore p-Diam(Gn)→ 0 as n→∞. �

Lemma 2.5. Let (X, p) be a partial metric space. If the function f : X → R+ defined
by f(x) = p(x, Tx) is a p-l.s.c. function, then the sets Gn as constructed in Lemma
2.4 are p-closed.

Proof. It is a consequence of p-l.s.c. property of f . �

Lemma 2.6. Let (X, p) be a partial metric space and T be a self-mapping on X
satisfying the conditions of Lemma 2.4. Then T (Gn) ⊂ Gn, for all n, where the sets
Gn appear there.

Proof. Let x ∈ Gn. Then p(x, Tx) ≤ αn. Now

p(Tx, T 2x) = p(Tx, T (Tx))

≤ αp(x, Tx) + βp(Tx, T 2x) + γp(x, Tx)

or, (1− β)p(Tx, T 2x) ≤ (α+ γ)p(x, Tx)

or, p(Tx, T 2x) ≤ α+ γ

1− β
αn < αn since α+ β + γ < 1.

Therefore, Tx ∈ Gn, i.e., T (Gn) ⊂ Gn. �

Theorem 2.7. Let (X, p) be a complete partial metric space and T : X → X be a
self mapping on X which satisfies the following conditions:

(i) p(Tx, Ty) ≤ αp(x, Tx) + β p(y, Ty) + γ p(x, y) where

α+ β + γ < 1 and α, β, γ ≥ 0, for all x, y ∈ X,

and
(ii) p(x, Tx) is a p-l.s.c. function on X, for all x ∈ X.

Then T has a fixed point in X.
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Proof. Let x0 ∈ X. Also let xn+1 = Txn, for all n ≥ 1. So we get

p(x1, x2) = p(Txo, Tx1)

≤ αp(x0, x1) + βp(x1, Tx1) + γp(x0, x1)

= αp(x0, x1) + βp(x1, x2) + γp(x0, x1),

or, p(x1, x2) ≤ α+ γ

1− β
p(x0, x1).

Similarly

p(x2, x3) ≤
(
α+ γ

1− β

)2

p(x0, x1)

and so on. Proceeding in this way, we obtain

p(xn, xn+1) ≤
(
α+ γ

1− β

)n
p(x0, x1)→ 0 as n→∞,

since α+ β + γ < 1.
Let {αn} be a sequence of real numbers such that 0 < αn < 1, for all n and

limαn = 0. Let us construct the set

Gn = {x ∈ X : p(x, Tx) ≤ αn}.

Then Gn 6= φ and by Lemma 2.4, {Gn} is monotone decreasing with p-Diam(Gn)
→ 0. By condition (ii) and Lemma 2.5, it follows that the sets Gn are p-closed.

Now we apply Theorem 2.3 to obtain G =

∞⋂
n=1

Gn to be a singleton set {u}, say. Using

Lemma 2.6, we obtain Tu = u. Therefore, u is a fixed point of T . �

Remark 2.8. Theorem 2.7 has been proved under completeness assumption of partial
metric space (X, p). This version of Theorem 2.7 is partially included in Theorem
2.6 proved by Haghi et al in [6], in proof of which the authors (i) assumed (X, p) as
0-complete, and (ii) had changed partial metric p into a full metric; and the rest of
their proof of concerned theorem owes to Picard’s iteration scheme for deriving a fixed
point of mapping in question. Ours is an attempt to explore an alternative route by
employing Cantor’s Intersection like theorem in a complete partial metric space to
produce desired fixed point of the mapping.

When operator T : X → X in Theorem 2.7 is purely of contractive type, i.e., when
α = β = 0, the hypothesis of completeness of the partial metric space (X, p) is not
redundant as supported by Example 2.9 below.

Example 2.9. Consider the set N of natural numbers. We take p : N × N → R+

given by

p(m,n) =

{
1
n if m = n,
1
n + 1

m if m 6= n.

Then (N, p) is a partial metric space which is not complete. For, if we consider the
sequence {n}, then p(n,m) = 1

n + 1
m → 0 as n,m→∞ showing that {n} is a Cauchy
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sequence in (N, p). But for a fixed number n0,

p(n0, n0) =
1

n0
> 0,

lim
n→∞

p(n, n0) = lim
n→∞

(
1

n
+

1

n0

)
=

1

n0
,

but lim
n,m→∞

p(n,m) = 0.

Therefore lim
n,m→∞

p(n,m) 6= lim
n→∞

p(n, n0) = p(n0, n0), which shows that {n} does not

p-converge to any point of N. So (N, p) is not p-complete. Now let us consider a
self-mapping T on N defined by Tn = 2n, for all n ∈ N.

For any m,n ∈ N,m 6= n, we have

p(Tm, Tn) =
1

2m
+

1

2n

=
1

2
p(m,n) <

3

4
p(m,n)

so that T satisfies the condition (i) of Theorem 2.7 with α = 0 = β, γ = 3
4 . Also

condition (ii) of Theorem 2.7 is satisfied. But T does not have a fixed point in (N, p).

When operator T : X → X is purely Kannan type (see [7], [8], [9], [10]), i.e.,
when γ = 0 with α = β and 2β < 1, then assumption (ii) of Theorem 2.7 cannot be
dispensed with. The next Example 2.10 shall bear it out.

Example 2.10. We consider the set N∗ = N ∪ {0} and define p : N∗ × N∗ → R+ by

p(m,n) =

{
1
n if m 6= 0, n 6= 0,m = n,
1
n + 1

m if m 6= 0, n 6= 0,m 6= n;

p(0, 0) = 0, and p(0, n) = p(n, 0) =
1

n
.

It can be verified that (N∗, p) is a complete partial metric space. We define a self-
mapping T : N∗ → N∗ by

Tn = 2n, for all n ∈ N
and

T (0) = 1.

We now show that

p(Tx, Ty) ≤ 2β{p(x, Tx) + p(y, Ty)}, for all x, y ∈ N∗, where 2β < 1.

We consider the following cases:
Case (i). Let x = 0, y = n, for some n ∈ N. Then

p(Tx, Ty) = p(T0, Tn) = p(1, 2n) = 1 +
1

2n

and

p(x, Tx) + p(y, Ty) = p(0, 1) + p(n, 2n) = 1 +
1

n
+

1

2n
.
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So,
p(Tx, Ty) ≤ 2β[p(x, Tx) + p(y, Ty)],

if

2β ≥
1 + 1

2n

1 + 1
n + 1

2n

>
1

2n

1 + 1
n + 1

2n

=
1

2n+ 3
, n ≥ 1.

Case (ii). Let x = n, y = m for some n,m ∈ N, n 6= m. Then

p(Tx, Ty) = p(Tn, Tm) = p(2n, 2m) =
1

2n
+

1

2m
and

p(x, Tx) + p(y, Ty) = p(n, 2n) + p(m, 2m) =
3

2

(
1

n
+

1

m

)
.

Therefore,
p(Tx, Ty) ≤ 2β[p(x, Tx) + p(y, Ty)]

if

2β ≥
1
2 ( 1
n + 1

m )
3
2 ( 1
n + 1

m )
=

1

3
.

Case (iii). Let x = y = n, n ∈ N. Then

p(Tx, Ty) = p(Tn, Tn) = p(2n, 2n) =
1

2n
and

p(x, Tx) + p(y, Ty) = p(n, Tn) + p(n, Tn) = 2

(
3

2n

)
=

3

n
.

Therefore,
p(Tx, Ty) ≤ 2β[p(x, Tx) + p(y, Ty)]

if

2β ≥
1

2n
3
n

=
1

6
.

Thus when 1
6 ≤ 2β < 1 we have

p(Tx, Ty) ≤ 2β[p(x, Tx) + p(y, Ty)]

for all x, y ∈ N∗, and so condition (i) of Theorem 2.7 is satisfied.
Next we check that the function f : X → R∗ given by f(x) = p(x, Tx) is not p-l.s.c.
at 0.
Let us suppose that f is p-l.s.c. at 0. Then given ε > 0, there exists δ > 0 such that

p-Bδ(0) ⊂ {n ∈ N∗ : p(n, Tn) > p(0, T0)− ε}.
Let ε = 1

2 and δ may be any positive number. If n ∈ p-Bδ(0), then

p(0, n) < p(0, 0) + δ, or,
1

n
< δ.

If we choose δ sufficiently close to 0, then the condition

p(n, Tn) > p(0, T (0))− ε = 1− ε
is violated.
Therefore f is not p-l.s.c. at 0 and T does not have a fixed point in N∗.
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Now we deal with simultaneous fixed points, continuity of fixed points of mappings
in a partial metric space where mappings display some kind of contractive nature.

Definition 2.11. Let (X, p) be a partial metric space. A sequence {Tn} of self-
mappings on X is said to be strongly uniformly convergent to a self-mapping T0 on
X if given ε > 0, there exists a natural number N such that for every x ∈ X,

p(Tnx, T0x) < ε, for n ≥ N.

Theorem 2.12. Let (X, p) be a complete partial metric space and {Tn} be a sequence
of self-mappings on X which is strongly uniformly convergent to T0 : (X, p)→ (X, p)
satisfying the following condition:

p(T0x, T0y) ≤ α[p(x, T0x) + p(y, T0y)] + βp(x, y), for all x, y ∈ X,

where α > 0 and β > 0 with α + β < 1. If un is a fixed point of Tn in X and u0

is a fixed point of T0 in X, then p- lim
n→∞

un = u0.

Proof. Let ε > 0 be given. Then one can find N such that

p(Tnx, T0x) <
1− β
1 + α

ε, for n > N, for all x ∈ X.

Now

p(u0, un) = p(T0u0, Tnun)

≤ p(T0u0, T0un) + p(T0un, Tnun)− p(T0un, T0un)

and

p(T0u0, T0un) ≤ α[p(u0, T0u0) + p(un, T0un)] + βp(u0, un).

Therefore

p(u0, un) ≤ α[p(u0, u0) + p(Tnun, T0un)] + βp(u0, un) + p(T0un, Tnun),

or, p(u0, un) ≤ α

1− β
p(u0, u0) +

1 + α

1− β
p(Tnun, T0un)

=
α

1− β
p(u0, u0) + ε, n ≥ N.

Therefore p-lim
n
un < u0. �

The condition of strong uniform convergence of the sequence of self-mappings on
the partial metric space (X, p) cannot be dispensed with in the above theorem as can
be found from the following example.

Example 2.13. We take X = {0, 1
n}n=1,2,··· with usual metric d of reals. We define

Tn(0) = Tn(1) = 1

and for m ≥ 2,

Tn

(
1

m

)
=

{
1
m , if n = m,

1, if n 6= m,
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where {Tn} converges to T0 pointwise in X, with T0(x) = 1 for x ∈ X. Also T0

satisfies
d(T0x, T0y) ≤ α[d(x, T0x) + d(y, T0y)] + βd(x, y), x, y ∈ X

and α > 0, β > 0, α+ β < 1.

Here fixed point of Tn is 1
n , n = 1, 2, ... and 1

n → 0 which is not a fixed point of T0.
Further routine verification shows that {Tn} does not strongly uniformly converge to
T0 over X.

Theorem 2.14. Let (X, p) be a complete partial metric space and T1, T2 be two self-
mappings on X satisfying

p(T1x, T2y) ≤ α p(x, y), for all x, y ∈ X, 0 ≤ α < 1.

Then T1 and T2 have a common fixed point in X.

Proof. Let x0 ∈ X. We take x2n+1 = T1(x2n), x2n+2 = T2(x2n+1), n = 0, 1, 2, · · · .
Now

p(x2, x1) = p(T2(x1), T1(x0))

≤ α p(x0, x1),

p(x3, x2) = p(T1(x2), T2(x1))

≤ α p(x2, x1) ≤ α2p(x0, x1).

In general

p(xn+1, xn) ≤ αnp(x0, x1).

So

p(xn+m, xn) ≤ p(xn+m, xn+m−1) + p(xn+m−1, xn+m−2) + · · ·+ p(xn+1, xn)

≤ (αn + αn+1 + · · ·+ αn+m−1)p(x0, x1)

<
αn

1− α
p(x0, x1)→ 0 as n→∞.

This implies that {xn} is Cauchy in X and since X is complete, we can find u ∈ X
such that

lim
n,m→∞

p(xn, xm) = 0 = lim
n→∞

p(xn, u) = p(u, u).

Now
p(T1u, T2(x2n−1)) ≤ αp(u, x2n−1)→ 0 as n→∞ or,

p(T1u, x2n)→ 0 as n→∞.
Therefore

p(u, T1u) ≤ p(u, x2n) + p(x2n, T1u)− p(x2n, x2n)

≤ p(u, x2n) + p(x2n, T1u)→ 0 as n→∞.
So

p(u, T1u) = 0 = p(u, u) = p(T1u, T1u),

which gives u = T1(u). Again

p(T2u, T1x2n) ≤ α p(x2n, u)→ 0 as n→∞,
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or,

p(T2u, x2n+1)→ 0 as n→∞.

Now p(u, T2u) ≤ p(u, x2n+1) + p(x2n+1, T2u)→ 0 as n→∞ giving u = T2(u). Hence
u is a common fixed point of T1 and T2. �

Theorem 2.15. Let (X, p) be a complete partial metric space and T : X → X be a
mapping satisfying

p(Tx, Ty) ≤ hmax{p(x, y), p(x, Tx), p(y, Ty), p(x, Ty), p(y, Tx)}, 0 < h <
1

2
.

Then T has a unique fixed point u in X.

Proof. We take any x0 ∈ X and consider the iterated sequence xn = Tn(x0),
n = 1, 2, · · · . Then

p(Txn−1, Txn)

= p(xn, xn+1)

≤ hmax{p(xn−1, xn), p(xn−1, xn), p(xn, xn+1), p(xn−1, xn+1), p(xn, xn)}
= hmax{p(xn−1, xn), p(xn, xn+1), p(xn−1, xn+1)}.

Now p(xn, xn+1) is not the maximum value of {p(xn−1, xn), p(xn, xn+1),
p(xn−1, xn+1)} because it leads to p(xn, xn+1) ≤ hp(xn, xn+1) which is impossible.
Now following two cases arise:
Case I. If the maximum value is p(xn−1, xn), then p(xn, xn+1) ≤ hp(xn−1, xn).
Case II. If the maximum value is p(xn−1, xn+1), then

p(xn, xn+1) ≤ hp(xn−1, xn+1)

≤ h[p(xn−1, xn) + p(xn, xn+1)− p(xn, xn)]

≤ h[p(xn−1, xn) + p(xn, xn+1)]

or, p(xn, xn+1) ≤ h

1− h
p(xn−1, xn).

From these two cases, we find that

p(xn, xn+1) ≤ max

(
h,

h

1− h

)
p(xn−1, xn)

=
h

1− h
p(xn−1, xn)

≤
(

h

1− h

)2

p(xn−2, xn−1)

· · ·

≤
(

h

1− h

)n
p(x0, x1)

= λnp(x0, x1), where λ =
h

1− h
< 1.
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Let m > n, then

p(xn, xm)

≤ p(xn, xn+1) + · · ·+ p(xm−1, xm)

−{p(xn+1, xn+1) + · · ·+ p(xm−1, xm−1)}
≤ λn

(
1 + λ+ · · ·+ λm−n−1

)
p(x0, x1)→ 0 as n→∞.

Therefore {xn} is Cauchy in (X, p). Hence we can find u ∈ X to satisfy

lim
m,n→∞

p(xm, xn) = 0 = lim
n→∞

p(xn, u) = p(u, u).

Now

p(xn+1, Tu) = p(Txn, Tu)

≤ hmax{p(xn, u), p(xn, xn+1), p(u, Tu), p(xn, Tu), p(u, Txn)}.

Therefore

lim
n→∞

p(xn+1, Tu) ≤ hmax{p(u, Tu), lim
n→∞

p(xn, Tu)}

= h p(u, Tu)

≤ h[p(u, xn+1) + p(xn+1, Tu)], for all n

→ h lim
n→∞

p(u, xn+1) + h lim
n→∞

p(xn+1, Tu)

giving

lim
n→∞

p(xn+1, Tu) = 0.

Thus

p(u, Tu) ≤ p(u, xn+1) + p(xn+1, Tu)− p(xn+1, xn+1)

≤ p(u, xn+1) + p(xn+1, Tu)→ 0 as n→∞.

Hence p(u, Tu) = 0 and so u = Tu.
Suppose u = Tu and v = Tv for some u, v ∈ X. Then

p(u, v) = p(Tu, Tv)

≤ hmax{p(u, v), p(u, Tu), p(v, Tv), p(u, Tv), p(v, Tu)}, 0 < h <
1

2
= h p(u, v).

Thus p(u, v) = 0 and this gives u = v. �

Theorem 2.16. Let (X, p) be a complete partial metric space and {Tn} be a sequence
of self-mappings on X satisfying

p(Tnx, Tny) ≤ hmax{p(x, y), p(x, Tnx), p(y, Tny), p(x, Tny), p(y, Tnx)}, 0 < h <
1

2
.

Let T0 : X → X such that {Tn} converges to T0 pointwise. If p(x, y) is sectionally
continuous in each variable x and y, then T0 has a fixed point u0 ∈ X such that
u0 = lim

n→∞
un, where un is a fixed point of Tn(n = 1, 2, · · · ).
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Proof. Given

p(Tnx, Tny) ≤ hmax{p(x, y), p(x, Tnx), p(y, Tny), p(x, Tny), p(y, Tnx)},

p being sectionally continuous, passing on to limit as n→∞ gives

p(T0x, T0y) ≤ hmax{p(x, y), p(x, T0x), p(y, T0y), p(x, T0y), p(y, T0x)}.

By the previous theorem, T0 has a fixed point u0 ∈ X, i.e., T0(u0) = u0. Taking
un = Tn(un), n = 1, 2, · · · , we have

p(u0, un) = p(T0u0, Tnun)

≤ p(T0u0, Tnu0) + p(Tnu0, Tnun)− p(Tnu0, Tnu0).

Now,

p(Tnu0, Tnun) ≤ hmax{p(u0, un), p(u0, Tnu0), p(un, Tnun), p(u0, Tnun), p(un, Tnu0)}.

Therefore

p(u0, un)

≤ p(T0u0, Tnu0)

+hmax[p(u0, un), p(u0, Tnu0), p(un, Tnun), p(u0, un), p(un, Tnu0)]

≤ p(T0u0, Tnu0)

+hmax{p(u0, un), p(T0u0, Tnu0), p(un, un),

p(u0, un), p(un, u0) + p(u0, Tnu0)}
≤ p(T0u0, Tnu0) + h[p(un, u0) + p(T0u0, Tnu0)].

And so

p(u0, un) ≤ 1 + h

1− h
p(T0u0, Tnu0).

Hence

lim
n→∞

p(u0, un) ≤ 1 + h

1− h
lim
n→∞

p(T0u0, Tnu0) = 0.

Therefore

lim
n→∞

p(u0, un) = 0

and so u0 = limn→∞ un. �

Theorem 2.17. (Caccioppoli like theorem)Let (X, p) be a complete partial metric
space and Ti : (X, p)→ (X, p) satisfy

p(Tix, Tjy) ≤ cij max{p(x, y), p(x, Tix), p(y, Tjy),
1

2
[p(x, Tjy) + p(y, Tix)]},

x 6= y in X, where 0 ≤ cij ≤ α, 0 < α < 1 for all i, j, such that

∞∑
i=1

ci,i+1 is (C, 1)

summable. Then {Ti} has a unique common fixed point in X.
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Proof. We take x0 ∈ X and construct a sequence {xn} by xn = Tn(xn−1),
n = 1, 2, · · · . Now

p(xn, xn+1) = p(Tnxn−1, Tn+1xn)

≤ cn,n+1 max{p(xn−1, xn), p(xn−1, Tnxn−1), p(xn, Tn+1xn),

1

2
[p(xn−1, Tn+1xn) + p(xn, Tnxn−1)]}

= cn,n+1 max{p(xn−1, xn), p(xn−1, xn), p(xn, xn+1),

1

2
[p(xn−1, xn+1) + p(xn, xn)]}.

Now p(xn−1, xn+1) ≤ p(xn−1, xn) + p(xn, xn+1)− p(xn, xn).
Therefore the above inequality reads as

p(xn, xn+1) ≤ cn,n+1 max{p(xn−1, xn), p(xn, xn+1),

1

2
[p(xn−1, xn) + p(xn, xn+1)]}

≤ cn,n+1 max{p(xn−1, xn), p(xn, xn+1)}.

Now max value 6= p(xn, xn+1) because p(xn, xn+1) ≤ cn,n+1p(xn, xn+1) is untenable.
Therefore, we have

p(xn, xn+1) ≤ cn,n+1 p(xn−1, xn)

≤ cn,n+1 cn−1,n p(xn−2, xn−1)

≤ cn,n+1 cn−1,n · · · c1,2 p(x0, x1)

=

n∏
i=1

ci,i+1p(x0, x1).

Now, for m > n,

p(xn, xm) ≤ p(xn, xn+1) + · · ·+ p(xm−1, xm)

= p(xn, xn+1) + · · ·+ p(xn+(m−n−1), xn+(m−n))

≤
n+(m−n−1)∑

k=n

(
k∏
i=1

ci,i+1

)
p(x0, x1)

≤
n+(m−n−1)∑

k=n

(∑k
i=1 ci,i+1

k

)k
p(x0, x1).

Putting sk =

k∑
i=1

ci,i+1 and Sk =

∑k
ν=1 sν
k

, by (C, 1) summability of

∞∑
i=1

ci,i+1, we

have

∞∑
k=1

Sk < ∞. Therefore limk→∞ Sk = 0. As 0 < α < 1, then Sk < α for large

values of k, and thus

Sk
k
≤ Sk < α, for large values of k.
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Therefore

lim
k→∞

(
Sk
k

)k
≤ lim
k→∞

αk = 0.

Treating case of n > m in a similar way, one concludes that {xn} is a Cauchy sequence
in (X, p) which is complete. Let u ∈ X with

lim
n,m→∞

p(xn, xm) = lim
n→∞

p(xn, u) = p(u, u),

i.e.,

0 = lim
n,m→∞

p(xn, xm) = lim
n→∞

p(xn, u) = p(u, u).

Given m, we have

p(Tmu, u)

≤ p(Tmu, Tnxn−1) + p(Tnxn−1, u)

= p(Tmu, Tnxn−1) + p(xn, u)

≤ cm,n max{p(u, xn−1), p(u, Tmu), p(xn−1, Tnxn−1),

1

2
[p(u, Tnxn−1) + p(xn−1, Tmu)]}+ p(xn, u)

< αmax{p(u, xn−1), p(u, Tmu), p(xn−1, xn),
1

2
[p(u, xn) + p(xn−1, Tmu)]}

+p(xn, u).

Now passing on to limit as n→∞, we have

p(Tmu, u) ≤ αmax{p(u, u), p(u, Tmu), p(u, u),
1

2
[p(u, u) + p(u, Tmu)]}+ p(u, u)

or, p(Tmu, u) ≤ αmax{p(u, Tmu), p(u, u)}+ p(u, u).

As p(u, u) = 0, we have

p(Tmu, u) ≤ α p(u, Tmu).

That means p(Tmu, u) = 0 giving Tmu = u.
For uniqueness of u as a common fixed point of {Tn}, suppose Tnu = u and Tnv = v
for all n, and u, v ∈ X, we have

p(u, v) = p(Tnu, Tnv)

≤ cn,n max{p(u, v), p(u, Tnu), p(v, Tnv),
1

2
[p(u, Tnv) + p(v, Tnu)]}

= cn,n max{p(u, v), p(u, u), p(v, v),
1

2
[p(u, v) + p(v, u)]}

As p(u, u) ≤ p(u, v) and p(v, v) ≤ p(u, v), we get

p(u, v) ≤ cn,n p(u, v)

That means p(u, v) = 0 and hence u = v. �

Theorem 2.17 gives following fixed point theorem due to Ray in [16] as a Corollary.
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Theorem 2.18. (Ray’s Theorem) Let X be a complete metric space, 0 < cij < 1 and
∞∑
i=1

ci,i+1 is (C, 1) summable, and Ti : X → X satisfies

d(Tix, Tjy) ≤ cijd(x, y) for x, y ∈ X;x 6= y; i, j = 1, 2, · · · .
Then {Ti} has a unique common fixed point in X.

Remark 2.19. One may be inclined to infer from Ray’s Theorem above that at
a non-isolated point x ∈ X, all Ti’s agree, and in that case a single contraction
mapping acting on the closed subspace of all non-isolated points of X does the job.
This inclination is false as we see that a contraction mapping may send a non-isolated
point to an isolated point of a metric space.

Example 2.20. We take Sn = 1
2 + 1

22 + · · ·+ 1
2n , n = 1, 2, · · · and

X = {1, 2, Sn+1, 1 + Sn, n ∈ N} .
Then X is a complete metric space with usual metric d of reals. Now we define
T : X → X where

T (1) = T (Sn+1) = 1 + S1,

T (1 + Sn) = 1 + Sn+1

and T (2) = 2.

By routine check up we see that T is a contraction mapping satisfying

d(Tx, Ty) ≤ 1

2
d(x, y),

for all x, y ∈ X. Here T sends non-isolated point x = 1 to T (1) = 1 + 1
2 that is an

isolated point in X.

Acknowledgement. The authors are grateful to the referees for the constructive
comments to improve the presentation of this paper.
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