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Abstract. In this paper, we introduce a regularized nonconvex mixed equilibrium problem and

suggest iterative algorithms for solving such a problem by using the auxiliary principle technique.
The convergence analysis of the proposed iterative algorithms is discussed either under pseudomono-

tonicity or partially mixed relaxed and strong monotonicity of type (I) property of the bifunctions

involved in the formulation. We also point out some fatal errors in [M.A. Noor et al.: On non-
convex bifunction variational inequalities. Optim. Lett. 6, 1477-1488 (2012)] and [M.A. Noor et

al.: Some iterative methods for solving nonconvex bifunction equilibrium variational inequalities. J.

Appl. Math. Volume 2012, Article ID 280451]. Finally, we present the correct version of the results
presented in these references.
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1. Introduction

The equilibrium problem (in short, EP) provides an unified framework to study a
large variety of problems such as optimization problems, variational inequality prob-
lems, saddle point problems, complementarity problems, Nash equilibria problems,
fixed point problems, etc, see, for example, [2, 10, 11, 17, 20] and the references
therein. The mixed equilibrium problem is one of the most useful generalizations of
EP which contains hemivariational inequality problems [22], nonsmooth variational
inequality problems [5] and several other problems studied in [24, 25] and the refer-
ences therein. In the recent years much attention has been devoted to the study of
different classes of variational inequalities in the setting of uniformly prox-regular sets
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[13, 14], such sets are nonconvex but include the convex sets as special cases, see, for
example, [1, 3, 4, 7, 8, 16, 19, 26, 28].

Recently, Noor et al. [24] considered so-called nonconvex bifunction variational
inequalities. They suggested and analyzed some iterative methods for solving them
by using the auxiliary principle technique [18]. They also studied the convergence
analysis of the proposed iterative algorithms under certain conditions.

Very recently, Noor et al. [25] introduced and studied so-called nonconvex bifunc-
tion equilibrium variational inequalities. By using the auxiliary principle technique
[18], they suggested some iterative methods for solving such class of problems. They
claimed that the convergence of the sequences generated by suggested algorithms
requires only monotonicity property of the bifunctions involved in the considered
problem.

The main aim of this work is to introduce of a class of regularized nonconvex mixed
equilibrium problems and to propose and analyze some iterative schemes for finding
the approximate solutions of this class of problems. We also point out some errors in
the results given in [24, 25] and present the correct version of these results.

The outline of this paper is as follows. Next section presents some known defini-
tions, notations and results. In Section 3, we give the formulation of a regularized
nonconvex mixed equilibrium problem (in short, RNMEP). By using the auxiliary
principle technique, some iterative algorithms for solving RNMEP are suggested and
analyzed. The convergence analysis of the proposed iterative algorithms is studied
either under pseudomonotonicity or partially mixed relaxed and strong monotonicity
of type (I) property of the bifunctions involved in RNMEP. The results presented
in this section represent an improvement and generalization of the results in [23, 24]
and the references therein. The final section is devoted to investigate and analyze
the results given in [24, 25]. Some errors in the main results of [24, 25] are detected.
We have pointed out that contrary to the claim in [25], the monotonicity property
of the bifunctions involved in the considered problem is not enough for proving the
convergence of the sequences generated by the proposed algorithms. By using the
results presented in Section 3, we derive the correct version of the main results in
[24, 25].

2. Preliminaries and basic facts

Throughout the paper, unless otherwise specified, let H be a real Hilbert space
whose inner product and norm are denoted by 〈., .〉 and ‖.‖, respectively. Let K be
a nonempty closed subset of H. We denote by dK(.) or d(.,K) the usual distance
function from a point to the set K, that is, dK(u) = inf

v∈K
‖u− v‖.

Definition 2.1. Let u ∈ H. A point v ∈ K is called the projection of u onto K if
dK(u) = ‖u− v‖. The set of all such points is denoted by PK(u), that is,

PK(u) := {v ∈ K : dK(u) = ‖u− v‖} .

Definition 2.2. The proximal normal cone of K at a point u ∈ K is given by

NP
K(u) := {ξ ∈ H : ∃α > 0 such that u ∈ PK(u+ αξ)}.
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Clarke et al. [15] introduced a nonconvex set, called proximally smooth set. Sub-
sequently, it has been investigated by Poliquin et al. [27] but under the name of
uniformly prox-regular set. Such kind of sets are used in many nonconvex applica-
tions in optimization, economic models, dynamical systems, differential inclusions,
etc.

Definition 2.3. [15] For a given r ∈ (0,+∞], a subsetKr ofH is said to be normalized
uniformly prox-regular (or uniformly r-prox-regular) if every nonzero proximal normal
to Kr can be realized by an r-ball.

This means that for all x̄ ∈ Kr and all 0 6= ξ ∈ NP
Kr

(x̄),〈
ξ

‖ξ‖
, x− x̄

〉
≤ 1

2r
‖x− x̄‖2, for all x ∈ Kr.

The class of normalized uniformly prox-regular sets includes the class of convex
sets, p-convex sets [12], C1,1 submanifolds (possibly with boundary) of H, the images
under a C1,1 diffeomorphism of convex sets and many other nonconvex sets [15].

Lemma 2.4. [15] A closed set K ⊆ H is convex if and only if it is uniformly r-prox-
regular for every r > 0.

If r = +∞, then in view of Definition 2.3 and Lemma 2.4, the uniform r-prox-
regularity of Kr is equivalent to the convexity of Kr. That is, for r = +∞, we set
Kr = K.

The union of two disjoint intervals [a, b] and [c, d] is uniformly r-prox-regular with
r = c−b

2 [14, 27].

3. Main results

From now onward, unless otherwise specified, we assume that Kr is a closed and
uniformly r-prox-regular set in H and ϕ : H → R ∪ {+∞} is an univariate proper
extended real-valued continuous function. Suppose further that F,B : H × H → R
are bifunctions such that F is continuous in the first argument, and B is continuous
in both the arguments. We consider the problem of finding u ∈ Kr such that

F (u, v) +B(u, v − u) + ϕ(v)− ϕ(u) + γ‖v − u‖2 ≥ 0, ∀v ∈ Kr, (3.1)

where γ = 1
2r . It is called regularized nonconvex mixed equilibrium problem (RNMEP).

By considering different choices of F , B and ϕ, we can easily obtain the mixed equi-
librium problem, the nonsmooth variational inequality problem, the hemivariational
inequality problem, etc., studied in [6, 7, 10, 11, 17, 21, 22, 24, 25] and the references
therein. We denote by RNMEP(F,B, ϕ,Kr) the set of solutions of problem (3.1).

For a given u ∈ Kr, consider the auxiliary regularized nonconvex mixed equilibrium
problem of finding w ∈ Kr such that

ρF (w, v) + ρB(w, v − w) + 〈w − u, v − w〉+ ρϕ(v)− ρϕ(w)

+ ργ‖v − w‖2 ≥ 0, ∀v ∈ Kr, (3.2)

where ρ > 0 is a constant. If w = u, then obviously w is a solution of RNMEP (3.1).
This fact enables us to suggest the following predictor-corrector method for solving
RNMEP (3.1).
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Algorithm 3.1. For a given u0 ∈ Kr, compute {un} ∈ Kr by the following iterative
scheme:

ρF (un+1, v) + ρB(un+1, v − un+1) + 〈un+1 − un, v − un+1〉
+ ρϕ(v)− ρϕ(un+1) + ργ‖v − un+1‖2 ≥ 0, ∀v ∈ Kr, (3.3)

where ρ > 0 is a constant and n = 0, 1, 2 . . . .

In order to prove the convergence of the iterative sequence generated by Algorithm
3.1, we need the following definition.

Definition 3.2. Let γ > 0. The bifunctions F,B : H×H → R are said to be jointly
pseudomonotone with respect to the function ϕ with constant γ if

F (u1, u2) +B(u1, u2 − u1) + ϕ(u2)− ϕ(u1) + γ‖u2 − u1‖2 ≥ 0

implies that

F (u2, u1) +B(u2, u1 − u2) + ϕ(u1)− ϕ(u2) + γ‖u2 − u1‖2 ≤ 0,∀u1, u2 ∈ Kr.

The following proposition plays a key role in the study of convergence analysis of
the iterative sequence generated by Algorithm 3.1.

Proposition 3.3. Let {un} be a sequence generated by Algorithm 3.1 and u ∈ Kr be
a solution of RNMEP (3.1). If F and B are jointly pseudomonotone with respect to
the function ϕ with constant γ, then

‖u− un+1‖2 ≤ ‖u− un‖2 − ‖un − un+1‖2, ∀n ≥ 0. (3.4)

Proof. Since u ∈ Kr is a solution of RNMEP (3.1), we have

ρF (u, v) + ρB(u, v − u) + ρϕ(v)− ρϕ(u) + ργ‖v − u‖2 ≥ 0, ∀v ∈ Kr,

where ρ > 0 is an arbitrary real constant as in Algorithm 3.1. Taking v = un+1 in
the above inequality, we obtain

ρF (u, un+1) + ρB(u, un+1 − u) + ρϕ(un+1)− ρϕ(u) + ργ‖un+1 − u‖2 ≥ 0.

Since F and B are jointly pseudomonotone with respect to the function ϕ with con-
stant γ, we have

ρF (un+1, u) +ρB(un+1, u−un+1) +ρϕ(u)−ρϕ(un+1) +ργ‖un+1−u‖2 ≤ 0. (3.5)

Taking v = u in (3.3), we get

ρF (un+1, u) + ρB(un+1, u− un+1) + 〈un+1 − un, u− un+1〉
+ ρϕ(u)− ρϕ(un+1) + ργ‖u− un+1‖2 ≥ 0. (3.6)

By combining (3.5) and (3.6), we obtain

〈un+1 − un, u− un+1〉 ≥ −ρF (un+1, u)− ρB(un+1, u− un+1)

+ ρϕ(un+1)− ρϕ(u)− ργ‖u− un+1‖2 ≥ 0. (3.7)

On the other hand, by utilizing well known property of the inner product, we have

2〈un+1 − un, u− un+1〉 = ‖u− un‖2 − ‖un+1 − un‖2 − ‖u− un+1‖2. (3.8)
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Applying (3.7) and (3.8), it follows that

‖u− un+1‖2 ≤ ‖u− un‖2 − ‖un − un+1‖2,

which is the required result (3.4). This completes the proof. �

We now establish the convergence of iterative sequence generated by Algorithm 3.1
to a solution of RNMEP (3.1).

Theorem 3.4. Let H be a finite dimensional real Hilbert space, RNMEP(F,B, ϕ,Kr)
be nonempty and all the conditions of Proposition 3.3 hold. Then, the iterative se-
quence {un} generated by Algorithm 3.1 converges to a solution û ∈ Kr of RNMEP
(3.1).

Proof. Let u ∈ Kr be a solution of RNMEP (3.1). It follows from (3.4) that the
sequence {‖un − u‖} is nonincreasing and so the sequence {un} is bounded. Further,
applying (3.4), we obtain

∞∑
n=0

‖un+1 − un‖2 ≤ ‖u0 − u‖2,

which implies that ‖un+1 − un‖ → 0 as n → ∞. Let û be a cluster point of the
sequence {un}. Since {un} is a bounded sequence, there exists a subsequence {uni}
of {un} such that uni → û as i→∞. By (3.3), for any subsequence {unik } of {uni},
we have

ρF (unik+1, v) + ρB(unik+1, v − unik+1) + 〈unik+1 − unik , v − unik+1〉
+ ρϕ(v)− ρϕ(unik+1) + ργ‖v − unik+1‖2 ≥ 0, ∀v ∈ Kr. (3.9)

Letting k →∞ in relation (3.9) and by using the continuity of F , B and ϕ, we get

F (û, v) +B(û, v − û) + ϕ(v)− ϕ(û) + γ‖v − û‖2 ≥ 0, ∀v ∈ Kr,

that is, û ∈ Kr is a solution of RNMEP (3.1). Accordingly, Proposition 3.3 implies
that

‖un+1 − û‖ ≤ ‖un − û‖, ∀n ≥ 0. (3.10)

By virtue of inequality (3.10), it follows that un → û as n→∞. Thus, the sequence
{un} has exactly one cluster point û. This completes the proof. �

It is well known that to implement the proximal point method, one has to calculate
the approximate solution implicitly, which is itself a difficult task. To overcome
with this drawback, we consider the following auxiliary nonconvex mixed equilibrium
problem and iterative algorithm for solving RNMEP (3.1).

For a given u ∈ Kr, consider the auxiliary regularized nonconvex mixed equilibrium
problem of finding w ∈ Kr such that

ρF (u, v) + ρB(u, v − u) + 〈w − u, v − w〉+ ρϕ(v)− ρϕ(w)

+ ργ‖v − w‖2 ≥ 0, ∀v ∈ Kr, (3.11)
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where ρ > 0 is a constant. Clearly, problems (3.2) and (3.11) are quite different. If
w = u, then w is a solution of RNMEP (3.1). We apply this fact to suggest the
following predictor-corrector algorithm for solving RNMEP (3.1).

Algorithm 3.5. For a given u0 ∈ Kr, define the iterative sequence {un} in Kr by
the following iterative scheme:

ρF (un, v) + ρB(un, v − un) + 〈un+1 − un, v − un+1〉
+ ρϕ(v)− ρϕ(un+1) + ργ‖v − un+1‖2 ≥ 0, ∀v ∈ Kr, (3.12)

where ρ > 0 is a constant and n = 0, 1, 2 . . . .

We need the following definitions to establish the convergence of iterative sequence
generated by Algorithm 3.5.

Definition 3.6. A bifunction B : H×H → R is said to be

(a) monotone if

B(u1, u2 − u1) +B(u2, u1 − u2) ≤ 0, ∀u1, u2 ∈ Kr;

(b) partially (%, θ)-mixed relaxed and strongly monotone of type (I) if there exist
constants %, θ > 0 such that

B(u1, u2 − u1) +B(u2, z − u2) ≤ %‖z − u1‖2 − θ‖z − u2‖2, ∀u1, u2, z ∈ Kr.

Definition 3.7. The bifunction F : H×H → R is said to be

(a) monotone if

F (u1, u2) + F (u2, u1) ≤ 0, ∀u1, u2 ∈ Kr;

(b) partially ζ-relaxed monotone of type (I) if there exists a constant ζ > 0 such
that

F (u1, u2) + F (u2, z) ≤ ζ‖z − u1‖2, ∀u1, u2, z ∈ Kr.

The following proposition is the main tool to study the convergence analysis of the
iterative sequence generated by Algorithm 3.5.

Proposition 3.8. Let {un} be a sequence generated by Algorithm 3.5 and u ∈ Kr be
a solution of RNMEP (3.1). If F is partially β-relaxed monotone of type (I), and B
is partially (α, 2γ)-mixed relaxed and strongly monotone of type (I), then

‖u− un+1‖2 ≤ ‖u− un‖2 − (1− 2(α+ β)ρ)‖un+1 − un‖2, ∀n ≥ 0. (3.13)

Proof. Since u ∈ Kr is a solution of RNMEP (3.1), we have

ρF (u, v) + ρB(u, v − u) + ρϕ(v)− ρϕ(u) + ργ‖v − u‖2 ≥ 0, ∀v ∈ Kr,

where ρ > 0 is the same as in Algorithm 3.5. Taking v = un+1 in the above inequality,
we get

ρF (u, un+1) + ρB(u, un+1 − u) + ρϕ(un+1)− ρϕ(u) + ργ‖un+1 − u‖2 ≥ 0. (3.14)
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Letting v = u in (3.12), we obtain

ρF (un, u) + ρB(un, u− un) + 〈un+1 − un, u− un+1〉
+ ρϕ(u)− ρϕ(un+1) + ργ‖u− un+1‖2 ≥ 0. (3.15)

By combining (3.14) and (3.15) and considering the facts that F is partially β-relaxed
monotone of type (I), and B is partially (α, 2γ)-mixed relaxed and strongly monotone
of type (I), we obtain

〈un+1 − un, u− un+1〉
≥ −ρF (un, u)− ρB(un, u− un) + ρϕ(un+1)− ρϕ(u)− ργ‖u− un+1‖2

≥ −ρ
(
F (un, u) + F (u, un+1) +B(un, u− un) +B(u, un+1 − u)

)
− 2ργ‖u− un+1‖2

≥ −βρ‖un+1 − un‖2 − αρ‖un+1 − un‖2

= −(α+ β)ρ‖un+1 − un‖2. (3.16)

Making use of (3.8) and (3.16), we yield

‖u− un‖2 − ‖u− un+1‖2 − ‖un+1 − un‖2 ≥ −2(α+ β)ρ‖un+1 − un‖2,

which leads to

‖u− un+1‖2 ≤ ‖u− un‖2 − (1− 2(α+ β)ρ)‖un+1 − un‖2,

the required result (3.13). �

Now we discuss the convergence of iterative sequence generated by Algorithm 3.5
to a solution of RNMEP (3.1).

Theorem 3.9. Let H be a finite dimensional real Hilbert space, RNMEP(F,B, ϕ,Kr)

be nonempty and all the conditions of Proposition 3.8 hold. If ρ ∈
(

0, 1
2(α+β)

)
, then

the iterative sequence {un} generated by Algorithm 3.5 converges to a solution û ∈ Kr

of RNMEP (3.1).

Proof. Let u ∈ Kr be a solution of RNMEP (3.1). From (3.13), it follows that the
sequence {‖un−u‖} is nonincreasing and so the sequence {un} is bounded. Moreover,
inequality (3.13) implies that

∞∑
n=0

(1− 2(α+ β)ρ)‖un+1 − un‖2 ≤ ‖u− u0‖2,

whence we deduce that ‖un+1 − un‖ → 0 as n→∞. Let û be a cluster point of the
sequence {un}. As in the proof of Theorem 3.4, one can establish that û ∈ Kr is a
solution of RNMEP (3.1) and the sequence {un} has exactly one cluster point û. �
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4. Some extra remarks

The main focus of this section is to investigate and analyze the main results pre-
sented in [24, 25] and to point out some errors in these papers. We present the correct
version of the corresponding results given in [24, 25].

For a given bifunction B(., .) : H×H → R, Noor et al. [24] considered the problem
of finding u ∈ Kr such that

B(u, v − u) + γ‖v − u‖2 ≥ 0, ∀v ∈ Kr, (4.1)

where γ = 1
2r . They called it nonconvex bifunction variational inequality problem.

If we consider the convex case, then problem (4.1) is called nonsmooth variational
inequality problem as it provides the necessary and sufficient condition for a solution
of a nonsmooth minimization problem. A comprehensive study on nonsmooth varia-
tional inequality problems can be found in [5]. Therefore, rest of the paper, problem
(4.1) shall be called regularized nonconvex nonsmooth variational inequality problem
(RNNVIP) as it is commonly used in the literature. We denote by RNNVIP(B,Kr)
the set of solutions of RNNVIP (4.1).

Noor et al. [24] considered the following auxiliary regularized nonconvex variational
inequality problem: For a given u ∈ Kr satisfying (4.1), find w ∈ Kr such that

ρB(w, v − w) + 〈w − u, v − w〉+ ργ‖v − w‖2 ≥ 0, ∀v ∈ Kr, (4.2)

where ρ > 0 is a constant.
It should be noted that the auxiliary problem (4.2) is considered for finding a

solution of problem (4.1). But at the same time, it is assumed that “u ∈ Kr satisfying
(4.1)”. So once we know the solution of problem (4.1) then there is no need to consider
auxiliary problem (4.2). It shows that there is a drawback in the formulation of
auxiliary problem (4.2). Also, the condition “u ∈ Kr satisfying (4.1)” cannot be
assumed and it should be omitted.

Noor et al. [24] proposed the following predictor-corrector method for solving
problem (4.1).

Algorithm 4.1. [24, Algorithm 3.1] For a given u0 ∈ Kr, compute the approximate
solution un+1 in Kr by the following iterative scheme:

ρB(un+1, v − un+1) + 〈un+1 − un, v − un+1〉+ ργ‖v − un+1‖2 ≥ 0, ∀v ∈ Kr,

where ρ > 0 is a constant and n = 0, 1, 2 . . . .

Definition 4.2. Let γ > 0. A bifunction B : H×H → R is said to be pseudomonotone
with constant γ if for all u1, u2 ∈ Kr

B(u1, u2 − u1) + γ‖u2 − u1‖2 ≥ 0 implies B(u2, u1 − u2) + γ‖u2 − u1‖2 ≤ 0.

By taking F ≡ ϕ ≡ 0 in Proposition 3.3 and F ≡ ϕ ≡ 0 in Theorem 3.4, we achieve
the following main results given in [24].

Corollary 4.3. [24, Theorem 3.1] Let B(., .) : H × H → R be pseudomonotone. If
{un+1} is a sequence generated by Algorithm 4.1 and u ∈ Kr is a solution of (4.1),
then

‖u− un+1‖2 ≤ ‖u− un‖2 − ‖un − un+1‖2, ∀n ≥ 0.
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Corollary 4.4. [24, Theorem 3.2] Let H be a finite dimensional real Hilbert space
and {un+1} be a sequence generated by Algorithm 4.1. Let B : H × H → R be
pseudomonotone and continuous in both the arguments. If u ∈ Kr is a solution of
(4.1), then lim

n→∞
un = u.

Remark 4.5. It should be pointed out that there is a small error in Theorem 3.1 in
[24]. In fact, B(., .) : K ×K → H must be replaced by B(., .) : H × H → R. Also,
in Theorem 3.2 in [24] the bifunction B : H×H → R must be pseudomonotone and
continuous in both the arguments.

Noor et al. [24] considered the following auxiliary regularized nonconvex variational
inequality problem: For a given u ∈ Kr satisfying (4.1), find w ∈ Kr such that

ρB(u, v − w) + 〈w − u, v − w〉+ γ‖v − w‖2 ≥ 0, ∀v ∈ Kr, (4.3)

where ρ > 0 is a constant.
They claimed that if w = u, then clearly w is a solution of RNNVIP (4.1). Based on

this fact, they suggested the following predictor-corrector method for solving RNNVIP
(4.1).

Algorithm 4.6. [24, Algorithm 3.3] For a given u0 ∈ Kr, compute un+1 in Kr by
the following iterative scheme:

ρB(un, v − un+1) + 〈un+1 − un, v − un+1〉+ γ‖v − un+1‖2 ≥ 0, ∀v ∈ Kr.

Noor et al. [24] asserted that using essentially the technique of Theorems 3.1 and
3.2 in [24], one can study the convergence analysis of Algorithm 4.6. However, we
now show that for various reasons, this claim is not true in general. By an argument
analogous to the previous one, the condition “u ∈ Kr satisfying (4.1)” in auxiliary
problem (4.3) cannot be assumed. If we remove this condition, then w is not nec-
essarily a solution of RNNVIP (4.1) when w = u. In fact, if w = u, then auxiliary
problem (4.3) reduces to the following regularized nonconvex nonsmooth variational
inequality:

ρB(u, v − u) + γ‖v − u‖2 ≥ 0, ∀v ∈ Kr. (4.4)

However, the following example shows that, for an arbitrary real constant ρ ∈ (0, 1),
a solution of problem (4.4) need not be a solution of RNNVIP (4.1).

Example 4.7. LetH = R and Kr = [0, α]∪[β, δ] be the union of two disjoint intervals
[0, α] and [β, δ] where 0 < α < β < δ. Then, Kr is a uniformly r-prox-regular set

with r = β−α
2 , and so we have γ = 1

2r = 1
β−α . Let the bifunction B : H×H → R be

defined by

B(x, y) =

{
%(esx + xt)y, if x, y ∈ Kr,

µ
q
√
xly, otherwise,

where q ∈ N\{1} and l ∈ N are arbitrary but fixed natural numbers, s, t ∈ R,

µ < α−δ
(β−α) q

√
αl

and µ
q√
αl

esα+αt < % < α−δ
(β−α)(esα+αt) are arbitrary but fixed real num-

bers. Let us take u = α and let ρ > 0 be an arbitrary real constant belonging to
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− 1

µ
q√
αl
,− 1

%(esα+αt)

]
. Then for all v ∈ Kr, we have

ρB(u, v − u) + γ‖v − u‖2 = (v − α)
(
ρ%(esα + αt) +

1

β − α
(v − α)

)
.

If v ∈ [0, α], then % < 0 implies that

(v − α)
(
ρ%
(
esα + αt

)
+

1

β − α
(v − α)

)
≥ 0.

For the case when v ∈ [β, δ], considering the facts that 1
β−α (v−α) ≥ 1 for all v ∈ [β, δ],

and 0 < ρ ≤ − 1
%(esα+αt) , it follows that

(v − α)
(
ρ%
(
esα + αt

)
+

1

β − α
(v − α)

)
≥ 0.

Therefore, ρB(u, v − u) + γ‖v − u‖2 ≥ 0 for all v ∈ Kr. Whereas, for all v ∈ (α, β),
we obtain

ρB(u, v − u) + γ‖v − u‖2 = (v − α)
(
ρµ

q
√
αl +

1

β − α
(v − α)

)
.

Since 1
β−α (v − α) ∈ (0, 1) for all v ∈ (α, β), the facts that µ < 0 and ρ > − 1

µ
q√
αl

imply that

(v − α)
(
ρµ

q
√
αl +

1

β − α
(v − α)

)
< 0, ∀v ∈ (α, β),

that is,

ρB(u, v − u) + γ‖v − u‖2 < 0, ∀v ∈ (α, β).

Hence, ρB(u, v − u) + γ‖v − u‖2 ≥ 0 cannot hold for all v ∈ H, but it holds only for
all v ∈ Kr.

On the other hand, for all v ∈ Kr, we have

B(u, v − u) + γ‖v − u‖2 = (v − α)
(
%
(
esα + αt

)
+

1

β − α
(v − α)

)
.

Thanks to the facts that % < α−δ
(β−α)(esα+αt) and 1

β−α (v−α) ∈
[
1, δ−αβ−α

]
for all v ∈ [β, δ],

we deduce

(v − α)
(
%
(
esα + αt

)
+

1

β − α
(v − α)

)
< 0, ∀v ∈ [β, δ].

Therefore, B(u, v − u) + γ‖v − u‖2 ≥ 0 cannot hold for all v ∈ Kr. Thus a solution
of problem (4.4) need not be a solution of RNNVIP (4.1).

Algorithm 4.6 is constructed based on the fact that in auxiliary problem (4.3), if
w = u for some u ∈ Kr satisfying (4.1), then w is a solution of RNNVIP (4.1), but
it is not true. Thus, Algorithm 4.6 cannot be used to solve RNNVIP (4.1). In order
to overcome with these difficulties, we need to present the correct version of auxiliary
problem (4.3) and Algorithm 4.6.
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Let B and γ be the same as in RNNVIP (4.1). For a given u ∈ Kr, we consider
the auxiliary regularized nonconvex variational inequality problem of finding w ∈ Kr

such that

ρB(u, v − u) + 〈w − u, v − w〉+ ργ‖v − w‖2 ≥ 0, ∀v ∈ Kr, (4.5)

where ρ > 0 is a constant. Note that problems (4.2) and (4.5) are quite different. In
special case, if w = u then clearly w is a solution of RNNVIP (4.1). This fact enables
us to construct the following iterative algorithm for solving RNNVIP (4.1).

Algorithm 4.8. For a given u0 ∈ Kr, compute un ∈ Kr by the following iterative
scheme:

ρB(un, v − un) + 〈un+1 − un, v − un+1〉+ ργ‖v − un+1‖2 ≥ 0, ∀v ∈ Kr,

where ρ > 0 is a constant and n = 0, 1, 2, . . . .

The next proposition is obtained by taking F ≡ ϕ ≡ 0 in Proposition 3.8 which
plays a crucial role in the study of convergence analysis of the iterative sequence
generated by Algorithm 4.8.

Proposition 4.9. Let {un} be a sequence generated by Algorithm 4.8 and u ∈ Kr

be a solution of RNNVIP (4.1). If B is partially (α, 2γ)-mixed relaxed and strongly
monotone of type (I), then

‖u− un+1‖2 ≤ ‖u− un‖2 − (1− 2αρ)‖un − un+1‖2, ∀n ≥ 0.

By taking F ≡ ϕ ≡ 0 in Theorem 3.9, we have the convergence of iterative sequence
generated by Algorithm 4.8.

Theorem 4.10. Let H be a finite dimensional real Hilbert space. Assume that B :
H × H → R is continuous in both the arguments, RNNVIP(B,Kr) 6= ∅ and all the
conditions of Proposition 4.9 hold. If ρ ∈

(
0, 1

2α

)
, then the sequence {un} generated

by Algorithm 4.8 converges to a solution û ∈ Kr of RNNVIP (4.1).

We now investigate and analyze the algorithm and results given in [25].

For given bifunctions F,B : H ×H → R, Noor et al. [25] considered the problem
of finding u ∈ Kr such that

F (u, v) +B(u, v − u) + γ‖v − u‖2 ≥ 0, ∀v ∈ Kr, (4.6)

where γ = 1
2r . They called it nonconvex bifunction equilibrium variational inequality

problem. Rest of the paper, we shall call it regularized nonconvex mixed equilib-
rium problem (RNMEP) as it is commonly used in the literature. We denote by
RNMEP(F,B,Kr) the set of solutions of RNMEP (4.6).

Noor et al. [25] considered the following auxiliary regularized nonconvex mixed
equilibrium problem: For a given u ∈ Kr satisfying (4.6), find w ∈ Kr such that

ρF (w, v) + ρB(w, v − w) + 〈w − u− α(u− u), v − w〉
+ ργ‖v − w‖2 ≥ 0, ∀v ∈ Kr, (4.7)

where ρ > 0 and α ≥ 0 are constants. Obviously, if w = u, then w is a solution of
RNMEP (4.6). Using this observation, they proposed the following inertial proximal
point method for solving RNMEP (4.6).
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Algorithm 4.11. [25, Algorithm 3.1] For a given u0 ∈ Kr, compute un+1 ∈ Kr by
the following iterative scheme:

ρF (un+1, v) + ρB(un+1, v − un+1) + 〈un+1 − un − α(un − un−1), v − un+1〉
+ ργ‖v − un+1‖2 ≥ 0, ∀v ∈ Kr. (4.8)

By taking α = 0 in Algorithm 4.11, they also suggested the following proximal
point algorithm for solving RNMEP (4.6).

Algorithm 4.12. [25, Algorithm 3.3] For a given u0 ∈ Kr, compute un+1 ∈ Kr by
the following iterative scheme:

ρF (un+1, v) + ρB(un+1, v − un+1) + 〈un+1 − un, v − un+1〉
+ ργ‖v − un+1‖2 ≥ 0, ∀v ∈ Kr. (4.9)

They have repeated the similar mistake as in [24] by considering “u ∈ Kr satisfying
(4.6)”. Once we know the solution of problem (4.6), then there is no need to consider
auxiliary problem (4.7). Therefore, the condition “u ∈ Kr satisfying (4.6)” should be
removed from auxiliary problem (4.7).

As a special case when α = 0, problem (4.7) reduces to the auxiliary nonconvex
mixed equilibrium problem of finding w ∈ Kr such that

ρF (w, v) + ρB(w, v − w) + 〈w − u, v − w〉+ ργ‖v − w‖2 ≥ 0, ∀v ∈ Kr, (4.10)

where ρ > 0 is a constant. Again, if w = u, then w is a solution of problem (4.6).
With the help of this fact, one can also suggest Algorithm 4.12 for solving RNMEP
(4.6).

The next theorem played a crucial role in the study of convergence analysis of the
iterative sequence generated by Algorithm 4.12.

Theorem 4.13. [25, Theorem 3.8] Let F (., .), B(., .) : Kr ×Kr → R be monotone. If
{un+1} is a sequence generated by Algorithm 4.12 and u ∈ Kr is a solution of (4.6),
then

(1− 4γρ)‖u− un+1‖2 ≤ ‖u− un‖2 − ‖un − un+1‖2, ∀n ≥ 0. (4.11)

By a careful reading of the proof of Theorem 4.13, we have the following observations.
By assuming that u ∈ Kr is a solution (4.6), Noor et al. [25] deduced the following
inequality by using the monotonicity of the bifunctions F and B:

−F (v, u)−B(v, u− v) + γ‖v − u‖2 ≥ 0, ∀v ∈ Kr. (4.12)

Taking v = un+1 in (4.12), they obtained (which is inequality (3.10) in [25])

−F (un+1, u)−B(un+1, u− un+1) + γ‖u− un+1‖2 ≥ 0. (4.13)

Then, setting v = u in (4.9) and by virtue of (4.13), they deduced

〈un+1 − un, u− un+1〉 ≥ −ρF (un+1, u)− ρB(un+1, u− un+1)

− ργ‖u− un+1‖2 ≥ 0. (4.14)

At the end of the proof, they claimed that the required inequality (4.11) follows from
(4.14).
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However, by taking v = u in (4.9) and with the help of inequality (4.13), we cannot
derive inequality (4.14). Indeed, setting v = u in (4.9), we have

ρF (un+1, u)+ρB(un+1, u−un+1)+〈un+1−un, u−un+1〉+ργ‖u−un+1‖2 ≥ 0, ∀n ≥ 0,

which implies that

〈un+1−un, u−un+1〉 ≥ −ρF (un+1, u)−ρB(un+1, u−un+1)−ργ‖u−un+1‖2, ∀n ≥ 0.

But, inequality (4.13) does not imply the following inequality:

F (un+1, u) +B(un+1, u− un+1) + γ‖u− un+1‖2 ≤ 0. (4.15)

This fact is illustrated in the following example.

Example 4.14. Let H and Kr be the same as in Example 4.7.
Define F,B : H×H → R by

F (x, y) =

{
η(ely + yq)(x− y), if x, y ∈ Kr,
ω(x2y − xy2), otherwise,

and

B(x, y) =

{
σxy, if x, y ∈ Kr,
ςxmy, otherwise,

where l, q,m ∈ R, 0 < ω < 1
α2 , ς < −1+ωα2

αm and − 1
δ < σ < 0 < η ≤ 1+σδ

elα+αq
are

arbitrary but fixed real numbers. Taking u = α, we have for all v ∈ Kr

−F (v, u)−B(v, u−v)+γ‖v−u‖2 = (v−α)
(
−η(elα+αq)+σv+

1

β − α
(v−α)

)
.

If v ∈ [0, α], then σ < 0 < η implies that

(v − α)
(
− η(elα + αq) + σv +

1

β − α
(v − α)

)
≥ 0.

Since 1
β−α (v − α) ≥ 1 for all v ∈ [β, δ], the fact that σ < 0 < η ≤ 1+σδ

elα+αq
implies that

(v − α)
(
− η(elα + αq) + σv +

1

β − α
(v − α)

)
≥ 0.

Consequently,

−F (v, u)−B(v, u− v) + γ‖v − u‖2 ≥ 0, ∀v ∈ Kr. (4.16)

On the other hand, for all v ∈ (α, β), we get

−F (v, u)−B(v, u− v) + γ‖v − u‖2 = (v − α)
(
− ωαv + ςvm +

1

β − α
(v − α)

)
.

Relying on the facts that 1
β−α (v−α) ∈ (0, 1) for all v ∈ (α, β), ω > 0 and ς < −1+ωα2

αm ,

it follows that

(v − α)
(
− ωαv + ςvm +

1

β − α
(v − α)

)
< 0, ∀v ∈ (α, β).

Hence, −F (v, u)−B(v, u− v) + γ‖v−u‖2 ≥ 0 cannot hold for all v ∈ H, but it holds
only for all v ∈ Kr.



444 QAMRUL HASAN ANSARI AND JAVAD BALOOEE

However, σ < 0 < η and the fact that 1
β−α (v − α) ∈ [1, δ−αβ−α ] for all v ∈ [β, δ],

imply that
F (v, u) +B(v, u− v) + γ‖v − u‖2

= (v − α)
(
η(elα + αq)− σv +

1

β − α
(v − α)

)
> 0, ∀v ∈ [β, δ],

that is,

F (v, u) +B(v, u− v) + γ‖v − u‖2 > 0, ∀v ∈ [β, δ]. (4.17)

Hence, F (v, u) + B(v, u − v) + γ‖v − u‖2 ≤ 0 cannot hold for all v ∈ Kr. Now,
taking v = un+1 in (4.16) and (4.17), we deduce that inequality (4.13) does not imply
inequality (4.15) in general.

Even without considering the above mentioned fact, it is easy to see that contrary
to the claim in [25], by using inequality (4.14), we do not obtain inequality (4.11) as
an estimation of ‖u − un+1‖2 for all n ≥ 0. In fact, by means of (4.14) and taking
into account that

〈un+1 − un, u− un+1〉 = ‖u− un‖2 − ‖un+1 − un‖2 − ‖u− un+1‖2, ∀n ≥ 0,

it follows that

‖u− un+1‖2 ≤ ‖u− un‖2 − ‖un − un+1‖2, ∀n ≥ 0. (4.18)

Accordingly, in view of (4.14) and without considering the fatal error existing in it,
we get inequality (4.18) not (4.11) as an estimation of ‖u − un+1‖2 for all n ≥ 0.
In the light of the above mentioned argument, the statement of Theorem 4.13 is not
valid in its present form.

Noor et al. [25] established the following theorem.

Theorem 4.15. [25, Theorem 3.9] Let H be a finite dimensional real Hilbert space,
and {un+1} be a sequence generated by Algorithm 4.12. If u ∈ Kr is a solution of
(4.6) and ρ < 1

4γ , then lim
n→∞

un = u.

Now we analyze the proof of Theorem 4.15.
Theorem 4.13 plays a crucial role in the proof of Theorem 4.15. However, as we

have seen Theorem 4.13 is not valid in its present form. Beside this fact, we also
observe that there are two other fatal errors in the proof of Theorem 4.15. First, it
is claimed that inequality (4.9) guarantees the boundedness of the sequence {un}. In
fact, Noor et al. [25] asserted that by using inequality (4.11), it follows that

‖u− un+1‖ ≤ ‖u− un‖, ∀n ≥ 0, (4.19)

that is, the sequence {u−un} is nonincreasing, and then by utilizing inequality (4.19),
they concluded the boundedness of the sequence {un}. But, by means of inequality
(4.11), we obtain

‖u− un+1‖ ≤
1√

1− 4γρ
‖u− un‖, (4.20)

not inequality (4.19). It is clear that inequality (4.20) does not imply that the sequence
{‖u − un‖} is nonincreasing. Hence, under the assumptions of Theorem 4.15, the
sequence {un} is not necessarily bounded.
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Noor et al. [25] also claimed that by virtue of inequality (4.11), one can deduce
the following inequality:

∞∑
n=0

‖un − un+1‖2 ≤ ‖u− u0‖2, (4.21)

which implies that

lim
n→∞

‖un − un+1‖ = 0. (4.22)

However, by employing inequality (4.11), we obtain

∞∑
n=0

‖un − un+1‖2 ≤ ‖u− u0‖2 +

∞∑
n=0

4ργ‖u− un+1‖2, (4.23)

not inequality (4.21). Obviously, inequality (4.23) does not imply inequality (4.21).
Taking into consideration the facts that the boundedness of the sequence {un} and
relation (4.22) have key roles in proving Theorem 4.15, it follows that Theorem 4.15
is not true in its present form.

By taking ϕ ≡ 0 in Proposition 3.3 and ϕ ≡ 0 in Theorem 3.4, we obtain the
correct version of Theorems 4.13 and 4.15, respectively.

Theorem 4.16. Let {un} be a sequence generated by Algorithm 4.12 and u ∈ Kr be
a solution of RNMEP (4.6). If the bifunctions F and B are jointly pseudomonotone
with constant γ, then

‖u− un+1‖2 ≤ ‖u− un‖2 − ‖un − un+1‖2, ∀n ≥ 0.

Theorem 4.17. Let H be a finite dimensional real Hilbert space. Assume that B :
Kr ×Kr → R is continuous in both the arguments, F : Kr ×Kr → R is continuous
in the first argument, RNMEP(F,B,Kr) 6= ∅ and all the conditions of Theorem 4.16
hold. Then, the sequence {un} generated by Algorithm 4.12 converges to a solution
û ∈ Kr of RNMEP (4.6).

Noor et al. [25] considered the following auxiliary regularized nonconvex mixed
equilibrium problem: For a given u ∈ Kr satisfying (4.6), find w ∈ Kr such that

ρF (u, v) + ρB(u, v − w) + 〈w − u, v − w〉+ γ‖v − w‖2 ≥ 0, ∀v ∈ Kr, (4.24)

where ρ > 0 is a constant. They claimed that if w = u, then clearly w is a solution
of problem (4.6). With the help of this fact, they proposed the following predictor-
corrector method for solving RNMEP (4.6).

Algorithm 4.18. [25, Algorithm 3.10] For a given u0 ∈ Kr, compute un+1 ∈ Kr by
the following iterative scheme:

ρF (un, v)+ρB(un, v−un+1)+〈un+1−un, v−un+1〉+γ‖v−un+1‖2 ≥ 0, ∀v ∈ Kr.

As we argued, the condition “u ∈ Kr satisfying (4.6)” should be removed from
problem (4.24). But, if we omit the condition “u ∈ Kr satisfying (4.6)” from problem
(4.24), then w would not be a solution of RNMEP (4.6) when w = u. In fact, if w = u
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then problem (4.24) reduces to the following regularized nonconvex mixed equilibrium
problem:

ρF (u, v) + ρB(u, v − u) + γ‖v − u‖2 ≥ 0, ∀v ∈ Kr. (4.25)

However, the following example illustrates that a solution of problem (4.25) need
not be a solution of RNMEP (4.6).

Example 4.19. Suppose that H and Kr are the same as in Example 4.7. Define
F,B : H×H → R by

F (x, y) =

{
ς(emx + xn)(y − x), if x, y ∈ Kr,
θ p
√
xq(x− y), otherwise,

and

B(x, y) =

{
ξ
s
√
xty, if x, y ∈ Kr,

λxy, otherwise,

respectively, where p, s ∈ N\{1} and q, t ∈ N are arbitrary but fixed natural num-

bers, m,n ∈ R, 0 < θ < δ−α
(β−α) p

√
αq

, λ < α−δ+θ(β−α) p
√
αq

α(β−α) , α−δ
(β−α) s

√
αt

< ξ < 0 and

λα−θ p
√
αq−ξ s

√
αt

emα+αn < ς < α−δ−(β−α)ξ s
√
αt

(β−α)(emα+αn) are arbitrary but fixed real numbers. Take

u = α and let ρ ∈
(
− 1
λα−θ p

√
αq
,− 1

ς(emα+αn)+ξ
s√
αt

]
be a positive real constant. Then,

for all v ∈ Kr, we have

ρF (u, v)+ρB(u, v−u)+γ‖v−u‖2 = (v−α)
(
ρς(emα+αn)+ρξ

s
√
αt+

1

β − α
(v−α)

)
.

In the case when v ∈ [0, α], the fact that ς, ξ < 0 implies that

(v − α)
(
ρς(emα + αn) + ρξ

s
√
αt +

1

β − α
(v − α)

)
≥ 0.

If v ∈ [β, δ], from the facts that 1
β−α (v − α) ≥ 1 for all v ∈ [β, δ], ς, ξ < 0 and

0 < ρ ≤ − 1

ς(emα+αn)+ξ
s√
αt

, we deduce that

(v − α)
(
ρς(emα + αn) + ρξ

s
√
αt +

1

β − α
(v − α)

)
≥ 0.

Thus, ρF (u, v) + ρB(u, v − u) + γ‖v − u‖2 ≥ 0 for all v ∈ Kr. In the meanwhile, for
all v ∈ (α, β), we get

ρF (u, v) + ρB(u, v−u) + γ‖v−u‖2 = (v−α)
(
− ρθ p

√
αq + ρλα+

1

β − α
(v−α)

)
.

Then λ < 0 < θ and ρ > 1
θ p
√
αq−λα together with the fact that 1

β−α (v−α) ∈ (0, 1) for

all v ∈ (α, β), imply that

(v − α)
(
− ρθ p

√
αq + ρλα+

1

β − α
(v − α)

)
< 0, ∀v ∈ (α, β),

that is, ρF (u, v) + ρB(u, v − u) + γ‖v − u‖2 < 0, ∀v ∈ (α, β).
Hence, ρF (u, v) +ρB(u, v−u) +γ‖v−u‖2 ≥ 0 cannot hold for all v ∈ H, but it holds
only for all v ∈ Kr.
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On the other hand, for all v ∈ Kr, one has

F (u, v)+B(u, v−u)+γ‖v−u‖2 = (v−α)
(
ς(emα+αn)+ξ

s
√
αt+

1

β − α
(v−α)

)
.

In light of the facts that 1
β−α (v − α) ∈ [1, δ−αβ−α ] for all v ∈ [β, δ], α−δ

(β−α) s
√
αt

< ξ and

ς < α−δ−(β−α)ξ s
√
αt

(β−α)(emα+αn) , it follows that

(v − α)
(
ς(emα + αn) + ξ

s
√
αt +

1

β − α
(v − α)

)
< 0, ∀v ∈ [β, δ].

Hence, F (u, v) + B(u, v − u) + γ‖v − u‖2 ≥ 0 cannot hold for all v ∈ Kr. Thus, a
solution of problem (4.25) may not be a solution of RNMEP (4.6).

Algorithm 4.12 is constructed based on the fact that in auxiliary problem (4.24), if
w = u for some given u ∈ Kr satisfying (4.6), then w is a solution of RNMEP (4.6).
But, it is not true, and hence Algorithm 4.18 is not applicable. To overcome with
these difficulties, we consider the following auxiliary problem and algorithm.

Let F , B and γ be the same as in RNMEP (4.6). For a given u ∈ Kr, we consider
the auxiliary regularized nonconvex mixed equilibrium problem of finding w ∈ Kr

such that

ρF (u, v) + ρB(u, v − u) + 〈w − u, v − w〉+ ργ‖v − w‖2 ≥ 0, ∀v ∈ Kr, (4.26)

where ρ > 0 is a constant. Clearly, problems (4.10) and (4.26) are quite different. In
special case, if w = u then obviously w is a solution of problem (4.6). This fact allows
us to suggest the following iterative algorithm for solving RNMEP (4.6).

Algorithm 4.20. For a given u0 ∈ Kr, compute {un} ∈ Kr by the following iterative
scheme:

ρF (un, v)+ρB(un, v−un)+〈un+1−un, v−un+1〉+ργ‖v−un+1‖2 ≥ 0, ∀v ∈ Kr,

where ρ > 0 is a constant and n = 0, 1, 2, . . . .

The following proposition is obtained by taking ϕ ≡ 0 in Proposition 3.8 which
is a main tool to establish the convergence of the iterative sequence generated by
Algorithm 4.20

Proposition 4.21. Let {un} be a sequence generated by Algorithm 4.20 and u ∈ Kr

be a solution of RNMEP (4.6). If F is partially β-relaxed monotone of type (I), and
B is partially (α, 2γ)-mixed relaxed and strongly monotone of type (I), then

‖u− un+1‖2 ≤ ‖u− un‖2 − (1− 2(α+ β)ρ)‖un+1 − un‖2, ∀n ≥ 0.

By taking ϕ ≡ 0 in Theorem 3.9, we obtain the following theorem which provides
the convergence of the iterative sequence generated by Algorithm 4.20 to a solution
of RNMEP (4.6).

Theorem 4.22. Let H be a finite dimensional real Hilbert space, F : H×H → R be
continuous in the first argument and B : H×H → R be continuous in both the argu-
ments. Suppose that all conditions of Proposition 4.21 hold and RNMEP(F,B,Kr) 6=



448 QAMRUL HASAN ANSARI AND JAVAD BALOOEE

∅. Then, the iterative sequence {un} generated by Algorithm 4.20 converges to a
solution û ∈ Kr of RNMEP (4.6).

Acknowledgement. Authors are grateful to the referees and the handling editor for
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