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1. Introduction

Fractional order differential equations appear in various areas of engineering, math-
ematics, physics, bio-engineering, etc. [15, 29]. For theoretical development of frac-
tional calculus and fractional differential equations, we refer the reader to the mono-
graphs by Abbas et al. [5, 6], Kilbas et al. [21] and Zhou [35, 36], and a series of
papers [3, 7, 8, 38, 39, 41, 40, 37], and the references therein.

The nature of a dynamic system in engineering or natural sciences depends on the
accuracy of values of parameters describing the system. Further, a precisely described
dynamic system gives rise to a deterministic dynamical system. Unfortunately, in
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most cases, the available data for the description and evaluation of parameters of a
dynamic system are inaccurate, imprecise or confusing. In other words, evaluation
of parameters of a dynamical system involves certain uncertainties. In case the pa-
rameters of a dynamic system are of statistical nature (probabilistic), the common
approach to model such systems is based on random or stochastic differential equa-
tions. Random differential equations, regarded as natural extension of deterministic
ones, arise in many applications and have been investigated by many researchers, for
instance, see the monographs [9, 22, 31].

The issue of stability of functional equations was originally raised by Ulam [32]),
followed by Hyers [16] and Rassias [25]. The concept of stability for a functional
equation arises when we replace the functional equation by an inequality which acts
as a perturbation to the equation. Several authors have discussed Ulam-Hyers and
Ulam-Hyers-Rassias stabilities for functional equations, for example, see [6, 17], and
the articles by Abbas et al. [1, 2, 3, 4, 7], Petru et al. [23], etc. Rus [26, 27] discussed
the Ulam-Hyers stability for operatorial equations and inclusions. For the historical
and recent developments of such stabilities, for instance, see [18, 26].

In recent years, initial and boundary value problems of fractional differential
equations involving Hilfer fractional derivative have been studied by many authors
[11, 15, 19, 30, 33].

In this article, we discuss the existence and the Ulam stability of solutions for the
following problem of Random Hilfer fractional differential equations:

(Dα,β
0 u)(t, w) = f(t, u(t, w), w); t ∈ R+ := [0,+∞),

(I1−γ
0 u)(t, w)|t=0 = φ(w),

w ∈ Ω, (1.1)

where α ∈ (0, 1), β ∈ [0, 1], γ = α+β−αβ, (Ω,A) is a measurable space, φ : Ω→ R is

a measurable function, f : R+ ×R×Ω→ R is a given function, I1−γ
0 is the left-sided

mixed Riemann-Liouville integral of order 1 − γ, and Dα,β
0 is the Hilfer fractional

derivative of order α and type β.
Next, we consider the following problem of random Hilfer-Hadamard fractional

differential equations of the form
(HDα,β

1 u)(t, w) = g(t, u(t, w), w); t ∈ [1,+∞),

(HI1−γ
1 u)(1, w) = φ0(w),

w ∈ Ω, (1.2)

where α ∈ (0, 1), β ∈ [0, 1], γ = α + β − αβ, φ0 : Ω → R is a measurable function,

g : [1,+∞)×R×Ω→ R is a given function, HI1−γ
1 is the left-sided mixed Hadamard

integral of order 1 − γ, and HDα,β
1 is the Hilfer-Hadamard fractional derivative of

order α and type β.
The present paper initiates the Ulam stability for random differential equations

involving Hilfer and Hilfer-Hadamard fractional derivatives in in Fréchet spaces.



HILFER AND HADAMARD RANDOM FRACTIONAL DIFFERENTIAL EQUATIONS 393

2. Preliminaries

Let C be the Banach space of all continuous functions v from I := [0, T ]; T > 0
into R with the supremum (uniform) norm

‖v‖∞ := sup
t∈I
|v(t)|.

As usual, AC(I) denotes the space of absolutely continuous functions from I into R.
By L1(I), we denote the space of Lebesgue-integrable functions v : I → R with the
norm

‖v‖1 =

∫ T

0

|v(t)|dt.

Let L∞(I) be the Banach space of measurable functions u : I → R which are essen-
tially bounded, equipped with the norm

‖u‖L∞ = inf{c > 0 : |u(t)| ≤ c, a.e. t ∈ I}.
By Cγ(I) and C1

γ(I), we denote the weighted spaces of continuous functions defined
by

Cγ(I) = {w : (0, T ]→ R : t1−γw(t) ∈ C},
with the norm

‖w‖Cγ := sup
t∈I
|t1−γw(t)|,

and

C1
γ(I) = {w ∈ C :

dw

dt
∈ Cγ},

with the norm
‖w‖C1

γ
:= ‖w‖∞ + ‖w′‖Cγ .

Throughout this paper, we denote ‖w‖Cγ by ‖w‖C .
Let X be a Fréchet space with a family of semi-norms {‖ · ‖n}n∈N∗ . We assume that
the family of semi-norms {‖ · ‖n} verifies:

‖x‖1 ≤ ‖x‖2 ≤ ‖x‖3 ≤ . . . for every x ∈ X.
Let Y ⊂ X, we say that Y is bounded if for every n ∈ N, there exists Mn > 0 such
that

‖y‖n ≤Mn for all y ∈ Y.
To X we associate a sequence of Banach spaces {(Xn, ‖ · ‖n)} as follows: For every
n ∈ N, we consider the equivalence relation ∼n defined by: x ∼n y if and only if
‖x− y‖n = 0 for x, y ∈ X. We denote by Xn = (X|∼n , ‖ · ‖n) the quotient space, the
completion of Xn with respect to ‖·‖n. To every Y ⊂ X, we associate a sequence {Y n}
of subsets Y n ⊂ Xn as follows: For every x ∈ X, we denote by [x]n the equivalence
class of x of subset Xn and we define Y n = {[x]n : x ∈ Y }. We denote Y n, intn(Y n)
and ∂nY

n, respectively, the closure, the interior and the boundary of Y n with respect
to ‖ · ‖n in Xn. For more details about the properties in Fréchet spaces see [10].
For each p ∈ N\{0}, we set Ip := [0, p], we consider the following set, Cp,γ = Cγ([0, p]),
and we define in Cγ the semi-norms by

‖u‖p = sup
t∈[0,p]

|t1−γu(t)|.
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Then Cγ is a Fréchet space with the family of semi-norms {‖u‖p}. Also Cγ,ln is a
Fréchet space with the family of semi-norms {‖v‖p}p∈N\{0,1}, such that

‖v‖p = sup
t∈[1,p]

|(ln t)1−γv(t)|.

Let X be a Fréchet space. A mapping T : Ω ×X → X is called a random operator
if T (w, u) is measurable in w for all x ∈ X and it expressed as T (w)x = T (w, x). In
this case we say that T (w) is a random operator on X. A random operator T (w) on
X is called continuous (resp. compact, totally bounded and completely continuous)
if T (w, x) is continuous (resp. compact, totally bounded and completely continuous)
in x for all w ∈ Ω. The details of completely continuous random operators in Fréchet
spaces and their properties appear in Goudarzi [12].

Definition 2.1. Let βX be the σ-algebra of Borel subsets of X. A mapping v : Ω→ X
is said to be measurable if for any B ∈ βX , one has

v−1(B) = {w ∈ Ω : v(w) ∈ B} ⊂ A.

A mapping T : Ω×X → X is called jointly measurable if for any B ∈ βX , one has

T−1(B) = {(w, x) ∈ Ω×X : T (w, x) ∈ B} ⊂ A× βX ,

where A × βB is the direct product of the σ-algebras A and βX those defined in Ω
and X respectively.

Definition 2.2. Let D be a nonempty convex subset of X. A self mapping T on D
is said to be affine if

T (λx+ (1− λ)y) = λT (x) + (1− λ)T (y),

for all x, y ∈ D and λ ∈ (0, 1).

As in [14], we can show the following results about the measurability and the random
Carathéodory mappings.

Lemma 2.3. Let T : Ω ×X → X be a mapping such that T (·, x) is measurable for
all x ∈ X, and T (w, ·) is continuous for all w ∈ Ω. Then the map (w, x) 7→ T (w, x)
is jointly measurable.

Definition 2.4. A function f : I×X×Ω→ X is called random Carathéodory if the
following conditions are satisfied:

(i) The map (t, x, w)→ f(t, x, w) is jointly measurable for all x ∈ X, and
(ii) The map x→ f(t, x, w) is continuous for almost all t ∈ I and w ∈ Ω.

Now, we give some results and properties of fractional calculus.

Definition 2.5. [5, 21, 28] The Riemann-Liouville integral of order r > 0 of a function
w ∈ L1(I) is defined by

(Ir0w)(t) =
1

Γ(r)

∫ t

0

(t− s)r−1w(s)ds; for a.e. t ∈ I,
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where Γ(·) is the (Euler’s) Gamma function defined by

Γ(ξ) =

∫ ∞
0

tξ−1e−tdt; ξ > 0.

Notice that for all r, r1, r2 > 0 and each w ∈ C, we have Ir0w ∈ C, and

(Ir10 Ir20 w)(t) = (Ir1+r2
0 w)(t); for a.e. t ∈ I.

Definition 2.6. [5, 21, 28] The Riemann-Liouville fractional derivative of order r ∈
(0, 1] of a function w ∈ L1(I) is defined by

(Dr
0w)(t) =

(
d

dt
I1−r
0 w

)
(t)

=
1

Γ(1− r)
d

dt

∫ t

0

(t− s)−rw(s)ds; for a.e. t ∈ I.

Let r ∈ (0, 1], γ ∈ [0, 1) and w ∈ C1−γ(I). Then the following expression leads to the
left inverse operator as follows.

(Dr
0I
r
0w)(t) = w(t); for all t ∈ (0, T ].

Moreover, if I1−r
0 w ∈ C1

1−γ(I), then the following composition is proved in [28]

(Ir0D
r
0w)(t) = w(t)− (I1−r

0 w)(0+)

Γ(r)
tr−1; for all t ∈ (0, T ].

Definition 2.7. [5, 21, 28] The Caputo fractional derivative of order r ∈ (0, 1] of a
function w ∈ AC(I) is defined by

(cDr
0w)(t) =

(
I1−r
0

d

dt
w

)
(t)

=
1

Γ(1− r)

∫ t

0

(t− s)−rw′(s)ds; for a.e. t ∈ I.

In [15], R. Hilfer studied applications of a generalized fractional operator having the
Riemann-Liouville and the Caputo derivatives as specific cases (see also [19, 30]).

Definition 2.8. (Hilfer derivative). Let α ∈ (0, 1), β ∈ [0, 1], w ∈ L1(I),

I
(1−α)(1−β)
0 ∈ AC(I). The Hilfer fractional derivative of order α and type β of w

is defined as

(Dα,β
0 w)(t) =

(
I
β(1−α)
0

d

dt
I

(1−α)(1−β)
0 w

)
(t); for a.e. t ∈ I. (2.1)

Properties. Let α ∈ (0, 1), β ∈ [0, 1], γ = α+ β − αβ, and w ∈ L1(I).

1) The operator (Dα,β
0 w)(t) can be written as

(Dα,β
0 w)(t) =

(
I
β(1−α)
0

d

dt
I1−γ
0 w

)
(t) =

(
I
β(1−α)
0 Dγ

0w
)

(t); for a.e. t ∈ I.

Moreover, the parameter γ satisfies

γ ∈ (0, 1], γ ≥ α, γ > β, 1− γ < 1− β(1− α).
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2) The generalization (2.1) for β = 0, coincides with the Riemann-Liouville derivative
and for β = 1 with the Caputo derivative.

Dα,0
0 = Dα

0 , and D
α,1
0 = cDα

0 .

3) If D
β(1−α)
0 w exists and in L1(I), then

(Dα,β
0 Iα0 w)(t) = (I

β(1−α)
0 D

β(1−α)
0 w)(t); for a.e. t ∈ I.

Furthermore, if w ∈ Cγ(I) and I
1−β(1−α)
0 w ∈ C1

γ(I), then

(Dα,β
0 Iα0 w)(t) = w(t); for a.e. t ∈ I.

4) If Dγ
0w exists and in L1(I), then

(Iα0 D
α,β
0 w)(t) = (Iγ0D

γ
0w)(t) = w(t)− I1−γ

0 (0+)

Γ(γ)
tγ−1; for a.e. t ∈ I.

Corollary 2.9. Let h ∈ Cγ(I). The linear problem
(Dα,β

0 u)(t) = h(t); t ∈ I,

(I1−γ
0 u)(t)|t=0 = φ,

has a unique solution u ∈ L1(I) given by

u(t) =
φ

Γ(γ)
tγ−1 + (Iα0 h)(t).

From the above corollary, we concluded the following lemma.

Lemma 2.10. Let f : R+ × R × Ω → R be such that f(·, u(·, w), w) ∈ Cγ for all
w ∈ Ω, and any u(w) ∈ Cγ . Then problem (1.1) is equivalent to the problem of the
solutions of the integral equation

u(t, w) =
φ(w)

Γ(γ)
tγ−1 + (Iα0 f(·, u(·, w), w)(t); w ∈ Ω.

Now, we consider the Ulam stability for the problem (1.1). Let ε > 0 and Φ : I×Ω→
[0,∞) be a measurable and bounded function. We consider the following inequalities

|(Dα,β
0 u)(t, w)− f(t, u(t, w), w)| ≤ ε; t ∈ Ip, w ∈ Ω, (2.2)

|(Dα,β
0 u)(t, w)− f(t, u(t, w), w)| ≤ Φ(t, w); t ∈ Ip, w ∈ Ω, (2.3)

|(Dα,β
0 u)(t, w)− f(t, u(t, w), w)| ≤ εΦ(t, w); t ∈ Ip, w ∈ Ω. (2.4)

Definition 2.11. [5, 26] The problem (1.1) is Ulam-Hyers stable if there exists a real
number cf > 0 such that for each ε > 0 and for each random solution u : Ω→ Cγ of
the inequality (2.2) there exists a random solution v : Ω→ Cγ of (1.1) with

|u(t, w)− v(t, w)| ≤ εcf ; t ∈ Ip, w ∈ Ω.
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Definition 2.12. [5, 26] The problem (1.1) is generalized Ulam-Hyers stable if there
exists cf : C([0,∞), [0,∞)) with cf (0) = 0 such that for each ε > 0 and for each
random solution u : Ω → Cγ of the inequality (2.2) there exists a random solution
v : Ω→ Cγ of (1.1) with

|u(t, w)− v(t, w)| ≤ cf (ε); t ∈ Ip, w ∈ Ω.

Definition 2.13. [5, 26] The problem (1.1) is Ulam-Hyers-Rassias stable with respect
to Φ if there exists a real number cf,Φ > 0 such that for each ε > 0 and for each random
solution u : Ω→ Cγ of the inequality (2.4) there exists a random solution v : Ω→ Cγ
of (1.1) with

|u(t, w)− v(t, w)| ≤ εcf,ΦΦ(t, w); t ∈ Ip, w ∈ Ω.

Definition 2.14. [5, 26] The problem (1.1) is generalized Ulam-Hyers-Rassias stable
with respect to Φ if there exists a real number cf,Φ > 0 such that for each random
solution u : Ω→ Cγ of the inequality (2.3), there exists a random solution v : Ω→ Cγ
of (1.1) with

|u(t, w)− v(t, w)| ≤ cf,ΦΦ(t, w); t ∈ Ip, w ∈ Ω.

Remark 2.15. It is clear that

(i) Definition 2.11 ⇒ Definition 2.12,
(ii) Definition 2.13 ⇒ Definition 2.14,

(iii) Definition 2.13 for Φ(·, ·) = 1 ⇒ Definition 2.11.

One can have similar remarks for the inequalities (2.2) and (2.4).
In pure and applied aspects of Fixed point Theory, there are useful results such

as Markov-Kakutani and Krasnoselski theorems. We need the following stochastic
analogue fixed point of these theorems in the case of a Fréchet space.

Theorem 2.16. [12] Let K be a compact convex subset of a Fréchet space X and
T : Ω×K → K be a continuous affine random operator. Then T has a random fixed
point.

We recall now an integral inequality which based on an iteration argument.

Lemma 2.17. [34] Suppose β > 0, a(t) is a nonnegative function locally integrable
on 0 ≤ t < T (some T ≤ +∞) and g(t) is a nonnegative, nondecreasing continuous
function defined on 0 ≤ t < T, g(t) ≤M (constant), and suppose u(t) is nonnegative
and locally integrable on 0 ≤ t < T with

u(t) ≤ a(t) + g(t)

∫ t

0

(t− s)β−1u(s)ds

on this interval. Then

u(t) ≤ a(t) +

∫ t

0

[ ∞∑
n=1

(g(t)Γ(β))n

Γ(nβ)
(t− s)nβ−1a(s)

]
ds, 0 ≤ t < T.

From the above lemma, we concluded the following lemma.
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Lemma 2.18. Suppose β > 0, a(t, w) is a nonnegative function locally integrable on
[0, T ) × Ω (some T ≤ +∞) and g(t, w is a nonnegative, nondecreasing continuous
function with respect to t defined on [0, T )×Ω, g(t, w) ≤M (constant), and suppose
u(t, w) is nonnegative and locally integrable with respect to t on [0, T )× Ω with

u(t, w) ≤ a(t, w) + g(t, w)

∫ t

0

(t− s)β−1u(s, w)ds

on [0, T )× Ω. Then

u(t, w) ≤ a(t, w) +

∫ t

0

[ ∞∑
n=1

(g(t, w)Γ(β))n

Γ(nβ)
(t− s)nβ−1a(s, w)

]
ds, (t, w) ∈ [0, T )× Ω.

3. Hilfer fractional random differential equations

In this section, we are concerned with the existence and Ulam-Hyers-Rassias sta-
bility for problem (1.1). Let us start by defining what we mean by a random solution
of the problem (1.1).

Definition 3.1. By a random solution of the problem (1.1) we mean a measurable

function u : Ω → Cγ that satisfies the condition (I1−γ
0 u)(0+, w) = φ(w), and the

equation (Dα,β
0 u)(t, w) = f(t, u(t, w), w) on I × Ω.

The following hypotheses will be used in the sequel.

(H1) The function f : Ip × R × Ω 7→ f(t, u, w) ∈ R is random Carathéodory on
Ip × R× Ω, and affine with respect to u,

(H2) There exists a measurable and bounded function l : Ω→ L∞(Ip, [0,∞)), such
that

|f(t, u, w)− f(t, v, w)| ≤ l(t, w)|u− v|; for a.e. t ∈ Ip, and each u, v ∈ R, w ∈ Ω,

(H3) There exists λΦ > 0 such that for each t ∈ Ip, and w ∈ Ω, we have∫ t

0

[ ∞∑
n=1

(l∗p)
n

Γ(nα)
(t− s)nα−1Φ(s, w)

]
ds ≤ λΦΦ(t, w),

where l∗p = sup
w∈Ω
‖l(w)‖L∞(Ip).

For any p ∈ N\{0}, set

f∗p = sup
w∈Ω
‖f(·, 0, w)‖L∞(Ip), and φ

∗ = sup
w∈Ω
|φ(w)|.

Now, we shall prove the following theorem concerning the existence of random
solutions of problem (1.1).

Theorem 3.2. Assume that the hypotheses (H1) and (H2) hold. If

l∗pp
1−γ+α

Γ(1 + α)
< 1, (3.1)

then problem (1.1) has at least one random solution in the space Cγ . Furthermore,
if the hypothesis (H3) holds, then problem (1.1) is generalized Ulam-Hyers-Rassias
stable.
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Proof. Define a mapping N : Ω× Cγ → Cγ by:

(N(w)u)(t) =
φ(w)

Γ(γ)
tγ−1 +

∫ t

0

(t− s)α−1 f(s, u(s, w), w)

Γ(α)
ds. (3.2)

The map φ is measurable for all w ∈ Ω. Again, as the indefinite integral is continuous
on I, then N(w) defines a mapping N : Ω × Cγ → Cγ . Thus u is a random solution
for the problem (1.1) if and only if u = N(w)u.
For each p ∈ N\{0} and any w ∈ Ω, we can show that N(w) transforms the ball
Bη := {u ∈ Cγ : ‖u‖p ≤ ηp} into itself, where

ηp ≥
φ∗Γ(1 + α) + Γ(γ)f∗p p

1−γ+α

Γ(γ)(Γ(1 + α)− l∗pp1−γ+α)
.

Indeed, for any w ∈ Ω, and each u ∈ Bη and t ∈ Ĩp, we have

|t1−γ(N(w)u)(t)| ≤ |φ(w)|
Γ(γ)

+
t1−γ

Γ(α)

∫ t

0

(t− s)α−1|f(s, u(s, w), w)|ds

≤ |φ(w)|
Γ(γ)

+
t1−γ

Γ(α)

∫ t

0

(t− s)α−1|f(s, 0, w)|ds

+
t1−γ

Γ(α)

∫ t

0

(t− s)α−1|f(s, u(s, w), w)− f(s, 0, w)|ds

≤ |φ(w)|
Γ(γ)

+
t1−γ

Γ(α)

∫ t

0

(t− s)α−1|f(s, 0, w)|ds

+
t1−γ

Γ(α)

∫ t

0

(t− s)α−1l(s, w)|u(s, w)|ds

≤ |φ(w)|
Γ(γ)

+
f∗pT

1−γ

Γ(α)

∫ t

0

(t− s)α−1ds

+
l∗pηpT

1−γ

Γ(α)

∫ t

0

(t− s)α−1ds

≤ φ∗

Γ(γ)
+

(f∗p + l∗pηp)p
1−γ+α

Γ(1 + α)

≤ ηp.

Thus
‖N(w)u‖p ≤ ηp. (3.3)

We shall show that the operator N : Ω × Bη → Bη satisfies all the assumptions of
Theorem 2.16. The proof will be given in several steps.
Step 1. N(w) is a random operator on Ω×Bη into Bη.
Since f(t, u, w) is random Carathéodory, the map w → f(t, u, w) is measurable in view
of Definition 2.1. Similarly, the product (t−s)α−1f(s, u(s, w), w) of a continuous and
a measurable function is again measurable. Further, the integral is a limit of a finite
sum of measurable functions, therefore, the map

w 7→ φ(w)

Γ(γ)
tγ−1 +

∫ t

0

(t− s)α−1

Γ(α)
f(s, u(s, w), w)ds,
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is measurable. As a result, N(w) is a random operator on Ω×Bη into Bη.
Step 2. N(w) is continuous.
Let {un}n∈N be a sequence such that un → u in Bη. Then, for each t ∈ Ip, and w ∈ Ω,
we have

|t1−γ(N(w)un)(t)− t1−γ(N(w)u)(t)|
≤ t1−γ

Γ(α)

∫ t
0
(t− s)α−1|f(s, un(s, w), w)− f(s, u(s, w), w)|ds

≤ t1−γ

Γ(α)

∫ t
0
(t− s)α−1l(s, w)|un(s, w)− u(s, w)|ds

≤ l∗pT
1−γ

Γ(α)

∫ t
0
(t− s)α−1|un(s, w)− u(s, w)|ds.

(3.4)

Since un → u as n→∞, then (3.4) implies

‖N(w)un −N(w)u‖p → 0 as n→∞.

Step 3. N(w) is affine.
For eachu, v ∈ Bη, t ∈ Ip, and any λ ∈ (0, 1) and w ∈ Ω, we have

N(w)(λu+ (1− λ)v) = φ
Γ(γ) t

γ−1 +
∫ t

0
(t− s)α−1 f(s,(λu+(1−λ)v)(s,w),w)

Γ(α) ds

= φ
Γ(γ) t

γ−1 + λ
∫ t

0
(t− s)α−1 f(s,u(s,w),w)

Γ(α) ds

+(1− λ)
∫ t

0
(t− s)α−1 f(s,v(s,w),w)

Γ(α) ds

= λφ
Γ(γ) t

γ−1 + λ
∫ t

0
(t− s)α−1 f(s,u(s,w),w)

Γ(α) ds

+ (1−λ)φ
Γ(γ) tγ−1 + (1− λ)

∫ t
0
(t− s)α−1 f(s,v(s,w),w)

Γ(α) ds

= λN(w)(u) + (1− λ)N(w)(v).

Hence N(w) is affine.
As a consequence of Steps 1 to 3, together with the Theorem 2.16, we deduce that

N has a random fixed point v which is a random solution of the problem (1.1).

Step 4. The generalized Ulam-Hyers-Rassias stability.
Let u be a random solution of the inequality (2.3), and let us assume that v is a
random solution of problem (1.1). Thus, we have

v(t, w) =
φ(w)

Γ(γ)
tγ−1 +

∫ t

0

(t− s)α−1 f(s, v(s, w), w)

Γ(α)
ds.

From the inequality (2.3) for each t ∈ Ip, and w ∈ Ω, we have∣∣∣∣u(t, w)− φ(w)

Γ(γ)
tγ−1 −

∫ t

0

(t− s)α−1 f(s, u(s, w), w)

Γ(α)
ds

∣∣∣∣ ≤ (Iα0 Φ)(t, w).

From hypotheses (H2) and (H3), for each t ∈ Ip, and w ∈ Ω, we get

|u(t, w)− v(t, w)| ≤
∣∣∣∣u(t, w)− φ(w)

Γ(γ)
tγ−1 −

∫ t

0

(t− s)α−1 f(s, u(s, w), w)

Γ(α)
ds

∣∣∣∣
+

∫ t

0

(t− s)α−1 |f(s, u(s, w), w)− f(s, v(s, w), w)|
Γ(α)

ds

≤ (Iα0 Φ)(t, w) +
l∗p

Γ(α)

∫ t

0

(t− s)α−1|u(s, w)− v(s, w)|ds.
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From Lemma 2.18, we have

|u(t, w)− v(t, w)| ≤ λφ
l∗p

[
Φ(t, w) +

∫ t

0

[ ∞∑
n=1

(l∗p)
n

Γ(nα)
(t− s)nα−1Φ(s, w)

]
ds

]

≤ λφ
l∗p

(1 + λφ)Φ(t, w)

:= cf,ΦΦ(t, w).

Hence, the problem (1.1) is generalized Ulam-Hyers-Rassias stable.

4. Hilfer-Hadamard fractional random differential equations

Now, we are concerned with the existence and the Ulam-Hyers-Rassias stability for
problem (1.2).

Set C := C([1, T ]). Denote the weighted space of continuous functions defined by

Cγ,ln([1, T ]) = {w(t) : (ln t)1−γw(t) ∈ C},
with the norm

‖w‖Cγ,ln := sup
t∈[1,T ]

|(ln t)1−rw(t)|.

Let us recall some definitions and properties of Hadamard fractional integration
and differentiation. We refer to [13, 21] for a more detailed analysis.

Definition 4.1. [13, 21] (Hadamard fractional integral). The Hadamard fractional
integral of order q > 0 for a function g ∈ L1([1, T ]), is defined as

(HIq1g)(x) =
1

Γ(q)

∫ x

1

(
ln
x

s

)q−1 g(s)

s
ds,

provided the integral exists.

Example 4.2. Let 0 < q < 1. Then

HIq1 ln t =
1

Γ(2 + q)
(ln t)1+q, for a.e. t ∈ [0, e].

Set

δ = x
d

dx
, q > 0, n = [q] + 1,

and
ACnδ := {u : [1, T ]→ E : δn−1[u(x)] ∈ AC(I)}.

Analogous to the Riemann-Liouville fractional calculus, the Hadamard fractional de-
rivative is defined in terms of the Hadamard fractional integral in the following way:

Definition 4.3. [13, 21] (Hadamard fractional derivative). The Hadamard fractional
derivative of order q > 0 applied to the function w ∈ ACnδ is defined as

(HDq
1w)(x) = δn(HIn−q1 w)(x).

In particular, if q ∈ (0, 1], then

(HDq
1w)(x) = δ(HI1−q

1 w)(x).



402 S. ABBAS, M. BENCHOHRA, Y. ZHOU AND A. ALSAEDI

Example 4.4. Let 0 < q < 1. Then

HDq
1 ln t =

1

Γ(2− q)
(ln t)1−q, for a.e. t ∈ [0, e].

It has been proved (see e.g. Kilbas [[20], Theorem 4.8]) that in the space L1(I, E), the
Hadamard fractional derivative is the left-inverse operator to the Hadamard fractional
integral, i.e.

(HDq
1)(HIq1w)(x) = w(x).

From Theorem 2.3 of [21], we have

(HIq1 )(HDq
1w)(x) = w(x)− (HI1−q

1 w)(1)

Γ(q)
(lnx)q−1.

Analogous to the Hadamard fractional calculus, the Caputo-Hadamard fractional de-
rivative is defined in the following way:

Definition 4.5. (Caputo-Hadamard fractional derivative). The Caputo-Hadamard
fractional derivative of order q > 0 applied to the function w ∈ ACnδ is defined as

(HcDq
1w)(x) = (HIn−q1 δnw)(x).

In particular, if q ∈ (0, 1], then

(HcDq
1w)(x) = (HI1−q

1 δw)(x).

From the Hadamard fractional integral, the Hilfer-Hadamard fractional derivative is
defined in the following way:

Definition 4.6. (Hilfer-Hadamard fractional derivative).Let α ∈ (0, 1), β ∈ [0, 1],

γ = α + β − αβ, w ∈ L1(I), and HI
(1−α)(1−β)
1 w ∈ AC(I). The Hilfer-Hadamard

fractional derivative of order α and type β applied to the function w is defined as

(HDα,β
1 w)(t) =

(
HI

β(1−α)
1 (HDγ

1w)
)

(t)

=
(
HI

β(1−α)
1 δ(HI1−γ

1 w)
)

(t); for a.e. t ∈ [1, T ].
(4.1)

This new fractional derivative (4.1) may be viewed as interpolating the Hadamard
fractional derivative and the Caputo-Hadamard fractional derivative. Indeed for β = 0
this derivative reduces to the Hadamard fractional derivative and when β = 1, we
recover the Caputo-Hadamard fractional derivative.

HDα,0
1 = HDα

1 , and
HDα,1

1 = HcDα
1 .

From Theorem 21 in [24], we concluded the following lemma

Lemma 4.7. Let g : I×R×Ω→ R be such that g(·, u(·, w), w) ∈ Cγ,ln([1, T ]) for any
u(., w) ∈ Cγ,ln([1, T ]). Then Then problem (1.2) is equivalent to the following volterra
integral equation

u(t, w) =
φ0(w)

Γ(γ)
(ln t)γ−1 + (HIα1 g(·, u(·, w), w))(t); w ∈ Ω.
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Definition 4.8. By a random solution of the problem (1.2) we mean a measurable

function u ∈ Cγ,ln that satisfies the condition (HI1−γ
1 u)(1+, w) = φ0(w), and the

equation

(HDα,β
1 u)(t, w) = g(t, u(t, w), w) on [1, T ]× Ω.

For each p ∈ N\{0, 1} we consider following set, Cp,γ,ln = Cγ([1, p]), and we define
in Cγ,ln the semi-norms by

‖u‖p = sup
t∈[0,p]

|(ln t)1−γu(t)|.

Then Cγ,ln is a Fréchet space with the family of semi-norms {‖u‖p}.
Now we give (without proof) existence and Ulam stability results for problem (1.2).
The following hypotheses will be used in the sequel.

(H ′1) The function f : [1, p] × R × Ω 7→ f(t, u, w) ∈ R is random Carathéodory on
[1, p]× R× Ω, and affine with respect to u,

(H ′2) There exists a measurable and bounded function l̃ : Ω → L∞([1, p], [0,∞)),
such that

|g(t, u, w)− g(t, v, w)| ≤ l̃(t, w)|u− v|; for a.e. t ∈ [1, p], and each u, v ∈ R, w ∈ Ω,

(H ′3) There exists λΦ > 0 such that for each t ∈ [1, p], and w ∈ Ω, we have∫ t

1

[ ∞∑
n=1

(lp∗)
n

Γ(nα)

(
ln
t

s

)nα−1

Φ(s, w)

]
ds

s
≤ λΦΦ(t, w),

where lp∗ = sup
w∈Ω
‖l̃(w)‖L∞([1,p]).

Theorem 4.9. Assume that the hypotheses (H ′1) and (H ′2) hold. If

lp∗(ln p)
1−γ+α

Γ(1 + α)
< 1, (4.2)

then problem (1.2) has at least one random solution in the space Cγ,ln. Furthermore,
if the hypothesis (H ′3) holds, then problem (1.2) is generalized Ulam-Hyers-Rassias
stable.

5. An example

Let Ω = (−∞, 0) be equipped with the usual σ-algebra consisting of Lebesgue
measurable subsets of (−∞, 0). Given a measurable function u : Ω→ C 3

4
([0, 1]).

As an application of our results, we consider the following problem of Hilfer fractional
differential equation of the form{

(D
1
2 ,

1
2

0 u)(t, w) = f(t, u(t, w), w); t ∈ [0,∞),

(I
1
4
0 u)(t)|t=0 = 1,

w ∈ Ω, (5.1)

where  f(t, u, w) =
cpt

−1
4 u sin t

(1 +
√
t)(1 + w2)

; t ∈ (0,∞) u ∈ R,

f(0, u, w) = 0; u ∈ R,
w ∈ Ω,
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and 0 < cp <
√
π

2 p−3/4; p ∈ N− {0}. The hypothesis (H2) is satisfied with lp(t, w) =
cpt

−1
4 | sin t|

(1 +
√
t)(1 + w2)

; t ∈ (0, p],

lp(0, w) = 0,

w ∈ Ω.

Also, the hypothesis (H3) is satisfied with

Φ(t, w) =
e3

1 + w2
, and λΦ =

∞∑
n=1

cnp
Γ(1 + nα)

.

A simple computation shows that conditions of Theorem 3.2 are satisfied. Hence,
problem (5.1) has at least one solution defined on [0, 1]. Moreover, problem (5.1) is
generalized Ulam-Hyers-Rassias stable.
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54(2009), no. 4, 125-133.
[27] I.A. Rus, Remarks on Ulam stability of the operatorial equations, Fixed Point Theory, 10(2009),

305-320.

[28] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives. Theory and
Applications, Gordon and Breach, Amsterdam, 1987.

[29] V.E. Tarasov, Fractional Dynamics: Application of Fractional Calculus to Dynamics of Parti-

cles, Fields and Media, Springer, Heidelberg; Higher Education Press, Beijing, 2010.
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