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Abstract. In this research, we focus on two main problems, the first one is a fixed point problem of
a nonexpansive semigroup and the other is a variational inequality problem for an inverse strongly
accretive mapping. Passing through the modified Mann iterative method, we propose the new
iterative scheme to find the common elements solving our mentioned problems. Furthermore, we aim
to obtain some strong convergence theorems under certain appropriate conditions in the g-uniformly
smooth Banach spaces. Our results improve and extend resulting outcomes in the literature.
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1. INTRODUCTION

According to our framework throughout this research, we first preview some defi-
nitions involving a Banach space E as follows. Let U = {x € E : ||z| = 1}.
e [ is said to be uniformly convez if, for any e € (0, 2], there exists ¢ > 0 such
that, for any z,y € U, |z — y|| > € implies ||*F¥|| <1 —4.
It is known that a uniformly convex Banach space is reflexive and strictly
convex.
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e F is said to be smooth if lim exists for all z,y € U.

t—
It is also said to be uniformly smooth if the limit is attained uniformly for all
x,y € U. The modulus of smoothness of E is defined by

1
p(r) = sup {S(llz +yll + o = yl) = 1: 2,y € B, o = 1, Jyll =},

where p : [0,00) — [0, 00) is a function.

It is known that E is uniformly smooth if and only if lir% @ =0.
T—

e F is said to be g-uniformly smooth if there exists a constant ¢ > 0 such that
p(1) < er? for all 7 > 0 where ¢ is a fixed real number with 1 < ¢ < 2.
Let E be a real Banach space and E* be the dual space of E with norm ||| and (-, -)
pairing between E and E*. For ¢ > 1, the generalized duality mapping J, : E — 2F”
is defined by
Jo(w) ={f € B* < (z, f) = ||=[|%, | f] = ="}

for all x € E. In particular, if ¢ = 2, the mapping J, is called the normalized duality
mapping and written by Jo = J as usual. Further, we have the following properties
of the generalized duality mapping J;:
(i) Jy(z) = ||z||972J2(2) for all z € E with z # 0;
(ii) J,(tz) = t971J,(z) for all z € F and t € [0, 00);
(iil) Jo(—z) = —Jy(x) for all x € E.
Certainly, if E is smooth, then J, is single-valued and can be written by j, (see also
[7, 31]).

Let C be a nonempty closed convex subset of a real Banach space E. Recall that
a mapping A : C — C is said to be
(i) Lipschitzian with Lipschitz constant L > 0 if ||[Az — Ay|| < Ll — y||, Vz,y € C;
(ii) nonexpansive if ||Azx — Ay|| < ||z — y||, Va,y € C.

An operator A : C — E is said to be
(i) accretive if there exists jq,(z —y) € J4(z — y) such that

<A.’£ - Ay,jq(l' - y)> Z 07 V(E,y S Ca
(ii) p-strongly accretive if for any 8 > 0 there exists j,(z —y) € Jq(x — y) such that
(Az — Ay, jo(x —y)) = Bllz —y|?, Va,y € C;
(iii) B-inverse strongly accretive if, for any 8 > 0 there exists j,(x —y) € Jy(z — y),
(Az — Ay, jo(z — y)) > B||Az — Ay||9, Vz,y € C.

Let D be a subset of C' and @ : C' — D. Then @Q is said to be sunny if

Q(Qz + t(x — Qx)) = Qx, whenever Qz + t(x — Qz) € C for x € C and t > 0.
A subset D of C'is said to be a sunny nonexpansive retract of C' if there exists a sunny
nonexpansive retraction @ of C' onto D (see [32, 9, 18]). A mapping Q : C — C is
called a retraction if Q? = Q. If a mapping Q : C — C is a retraction, then Qz = z
for all z are in the range of Q.

A family S = {S(s) : 0 < s < oo} of mappings of C' into itself is called a nonex-
pansive semigroup on C' if it satisfies the following conditions:

(i) S(0)z =z for all z € C;



ON SOLVING THE VARIATIONAL INEQUALITY 367

(ii) S(s+1t) = S5(s)S(¢) for all s,t > 0;
(iii) [|S(s)x — S(s)yll < ||z — y|| for all z,y € C and s > 0;
(iv) for each x € C, the mapping S(-)x from [0, 00) into C' is continuous.

Let F(S) stands for the common fixed point set of the semigroup S, i.e.,
F(S)={zeC:85(s)xr ==x,Vs > 0}. It is easy to see that F(S) is closed and convex
(see also [20, 25, 38, 11]).

In 1969, Takahashi [36] proved the first fixed point theorem for a noncommutative
semigroup of nonexpansive mappings which generalizes De Marr’s [8] fixed point theo-
rem. For works related to semigroups of nonexpansive, asymptotically nonexpansive,
and asymptotically nonexpansive type related to reversibility of a semigroup, we refer
the reader to [13, 15, 26, 19, 24, 21, 22, 23, 37, 1, 12, 14]. In 2007, Lau et al. [22]
introduced the following Mann’s explicit iteration process;

Tp41 = Qn + (]‘ - O‘n)T(Nn)fm vn 2 1a

for a semigroup & = {T'(s) : s € S} of nonexpansive mappings on a compact convex
subset C of a smooth and strictly convex Banach space. In 2012, Wangkeeree and
Preechasilp [39] introduced the iterative scheme:

x1 € C,

Zn = TnTn + (1= 7)1 (tn)Tn,

Yn = nZpn + (1 — )T (tn) 20,

Tnt1 = an(xn) + (]- - 5n)yn7n > 0.
They proved the strong convergence theorems by using a nonexpansive semigroup in
Banach spaces.

In 2006, Aoyama et al. [3] proved a weak convergence theorem in Banach spaces

by using the iterative algorithm as the following

{ T =x € C,
Tn+1 = OpTn + (1 - an)QC(xn - )\nAxn)7
for all n > 1. They solved the generalized variational inequality problem for finding a
point € C such that
(Az, J(y—x)) >0 (1.1)

for all y € C. The solution set of (1.1) is denoted by VI(C, A). Variational inequality
has become a rich of inspiration in pure and applied mathematics. Recently, clas-
sical variational inequality problems have been extended and generalized to study a
large variety of problems arising in structural analysis, economics, optimization, op-
erations research and engineering sciences and have witnessed an explosive growth in
theoretical advances, algorithmic development, etc; see e.g. [5, 6, 29].

In 2013, Song and Ceng [33] proved a strong convergence theorem in a g-uniformly
smooth Banach space as the following:

xr1 € C,
n — QC(xn - O—Bin)v

n — ﬁnkn + (1 - an)x’ru
Tn+1 = QC[Q7L7fxn + YnTpn + ((1 - 'Yn)l - anﬂv) nyn] n > 0.
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They introduced a general iterative algorithm for finding a common element of the
set of common fixed points of an infinite family of nonexpansive mappings and the
solution set of systems of variational inequalities.

Motivated and inspired by Wangkeeree and Preechasilp [39] and Song and Ceng
[33]. In this paper, we introduce a new iterative scheme for finding common solutions
of a variational inequality for an inverse-strongly accretive mapping and the solutions
of a fixed point problem for a nonexpansive semigroup by using the modified Mann
iterative method. We shall prove the strong convergence theorem in a g-uniformly
smooth Banach spaces under some parameters controlling conditions. Our results ex-
tend and improve the recent results of Aoyama et al. [3], Wangkeeree and Preechasilp
[39], Song and Ceng [33] and other authors.

2. PRELIMINARIES

A Banach space F is said to satisfy Opial’s condition if for any sequence {z,} in
E, x, — z(n — o0) implies

limsup ||z, — z|| < limsup ||z, — y||, Yy € E with x #y.
n— oo n—o00

By [10, Theorem 1], it is well known that if E admits a weakly sequentially continuous
duality mapping, then F satisfies Opial’s condition, and E is smooth.
We need the following lemmas for proving our main results.

Proposition 2.1. ([32]) Let E be a smooth banach space and let C be a nonempty
subset of E. Let Q : E— C be a retraction and let J be the normalized duality mapping
on E. Then the following are equivalent:

(i) Q is sunny and nonexpansive;

(i1) 1Qz — QylI® < (x — y, J(Q — Qy))., Vo, y € E;

(iii) (v — Qz,J(y — Qx)) < 0,Vx € E,y € C.

If Jy is the generalized duality mapping on E then (x — Qz, J,(y —Qz)) <0, Vr € E,
y € C is equivalent to this Proposition (see [33]).

Proposition 2.2. ([9, 18, 16]) Let C be a nonempty closed convex subset of a uni-
formly convex and uniformly smooth Banach space E and let T be a monexpansive
mapping of C into itself with F(T) # (). Then the set F(T) is a sunny nonezpansive
retract of C.

Lemma 2.3. ([3]) Let C be a nonempty closed convex subset of a smooth Banach
space E. Let Q¢ be a sunny nonezxpansive retraction from E onto C and let A be an
accretive operator of C into E. Then, for all A > 0,

VI(C,A) = F(Q(I — M),
where VI(C,A) = {z* € C: (Az*, J(z — z*)) > 0,Vz € C}.

Lemma 2.4. ([4])Let C be a nonempty bounded closed convex subset of a uniformly
convex Banach space E and T : C — C be a nonexpansive mapping. If {x,} is a
sequence of C' such that ©,, — = and x, — Tx, — 0 then x is a fized point of T.
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Lemma 2.5. ([40]) Let r > 0 and let E be a uniformly convexr Banach space. Then,
there exists a continuous, strictly increasing and convex function g : [0,00) — [0, 00)
with g(0) = 0 such that

Az + (1= Nyl* < Ml* + (1 =2 yll* = A1 = Ng(ll= - yll)
forallz,y € By :={z€ E:|z|| <r} and 0 <A < 1.
Lemma 2.6. ([17]) Let E be a real smooth and uniformly convex Banach space and

let ¥ > 0. Then there exists a strictly increasing, continuous and convex function

g :10,2r] — R such that g(0) =0 and
g(lz = yl) < ll2l* = 2z, Jy) + llyl|*, Va,y € By,
where B, ={z € E : ||z]| <r}.

Lemma 2.7. ([40]) Let E be a real g-uniformly smooth Banach space, then there
exists a constant cq > 0 such that

lz+yll* <zl + (y, Jo(2)) + cqllyll?, Ve, y € E-.

In particular, if E is real 2-uniformly smooth Banach space, then there exists a best
smooth constant K > 0 such that

o +yll* < llal® + 2{y, J (2)) + 2K ||y||*,Va,y € E.

Lemma 2.8. ([27]) Let E be a real Banach space and J : E — 25" be the normalized
duality mapping. Then, for any x,y € E, we have

lz +yl* < llzl* + 2{y. j(z +y))
for all j(x +y) € J(xz +y) with x #y.

Lemma 2.9. ([35]) Let {x,} and {y,} be bounded sequences in a Banach space X
and let {B,} be a sequence in [0,1] with 0 < liminf 3, < limsup B, < 1. Suppose
n— oo

n—oo

Tnt+1 = (1 - /Bn)yn + Bnn
for all integers n > 0 and Umsup(||yn+1 — Ynl| — [[Tnt1 — zn||) < 0. Then,

n—oo
lim [y, — 2| = 0.
n— oo
Lemma 2.10. ([41]) Assume {a,} is a sequence of nonnegative real numbers such
that
ant+1 < (1 —ap)an +0,, n>0

where {an} is a sequence in (0,1) and {0,} is a sequence in R such that
(1) Z Uy = 00
n=1

On >
2) limsup — <0 or On| < oc0.
( ) n—>oop o7 ; | nl

Then lim a, = 0.
n—oo
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Lemma 2.11. ([30, 34]) Let C be a nonempty, closed and convex subset of a real
q-uniformly smooth Banach space E, Ly : C'— E be a k-Lipschitzian and n-strongly
accretive operator with constants k,m > 0 and let

;11*1 q—1,q
0<M<<qn> , T:M(W_W),
cqkd q

then for t € (0,min{1,1}), the mapping S : C — E defined by S := (I — tuLs) is a
contraction with a constant 1 — tr.

Lemma 2.12. ([33]) Let C be a nonempty, closed and convex subset of a real reflexive
and g-uniformly smooth Banach space E which admits a weakly sequentially continu-
ous generalized duality mapping J, from E into E*. Let Q¢ be a sunny nonexpansive
retraction from E onto C, V : C — E a k-Lipschitzian and n-strongly accretive oper-
ator with constants k, n > 0. Suppose f : C — E is a L-Lipschitzian mapping with
constant L > 0 and T : C — C' a nonexpansive mapping such that F(T) # (. Let

1
-1 q—1,q
0<u<(qn> andOS’yL<7’whereT:,u<77—W).
Cqk9 q
Then {x:} defined by x; = Qcltyfrr+ (I —tpV)Tx:] converges strongly to some point
x* € F(T) ast — 0, which is the unique solution of the variational inequality:

(vfa* —pVa*, Jy(p— %)) <0,Vp e F(T).

Lemma 2.13. ([33]) Let C be a closed convex subset of a smooth Banach space E.
Let C be a nonempty subset of C. Let Q : C — C be a retraction and let J, Jy be
the normalized duality mapping and generalized duality mapping on E, respectively.
Then the following are equivalent:

(i) Q is sunny and nonexpansive;

(ii) |Qx — Qy|* < {z -y, J(Qz — Qy)),Va,y € E;

(iii) (x — Qz,J(y — Qx)) < 0,Vx € C,y € C;

(iv) (x — Qx, Jy(y — Qx)) <0,V € C,y € C.

Lemma 2.14. ([28]) Let ¢ > 1. Then the following inequality holds:
1 —1
ab < —a? + Lbﬁ
q q
for arbitrary positive real numbers a, b.

3. MAIN RESULTS

Theorem 3.1. Let C be a sunny nonexpansive retract and nonempty closed conver
subset of a g-uniformly smooth and uniformly convex Banach space E which admits a
weakly sequentially continuous generalized duality mapping J, : E — E*. Let Q¢ be
a sunny nonexpansive retraction from E onto C, A: C — E be an B-inverse-strongly
accretive operator, S = {S(s) : s > 0} be a nonexpansive semigroup from C into
itself, L1 : C — E be a L-Lipschitzian mapping with constant L >0 and Lo : C — E
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be a k-Lipschitzian and n-strongly accretive operator with constant k,n > 0. Assume
{ant B} v} {An} € (0,1), {un} C (0,00) such that

() C[a,b] € (0,1), 0< < < m )

Cqk4
where ¢4 15 a positive real number,
q—1,q
0<a<A, <b<(iﬂ) O§7L<7where7':u<n—cq'uqﬁ>
q

and F:= F(S)NVI(C,A) #0. Let {z,} be the sequences defined by x1 € C and

= QC(wn - )\nAmn)

= Qc[onyLizn + Ynan + (1 — )T — cpL2)S(pn)2n ] (3.1)

Tni1 = BnTn + (1 - 571)5(:“71)971:

which satisfy the following conditions:

*©zel
6) hm [Yn+1 — ] = 0,0 < linrggf'yn < limsup,,_,o ¥n < 1.

(C1) nILrI;O a, =0, Zan = o00; and hm lan1 — ap| =05
n 0
(C2) hm [An+1 — An| =0, hmmf)\ > 0;
(C3) 0 < hm 1nf B, < limsup ,37, <1;
n—oo
(C4) lim p, =0;
n— oo .
(C5) hm sup [|S(pnt1)z — S(pn)zl| = 0, C bounded subset of C;
(C

Then {:cn} converges strongly to x* € F which also solves the following variational
inequality:
(vLraz® — pLoz™, Jy(z — 2*)) < 0,Vz € F. (3.2)

Proof. First of all, we prove that {z,} is bounded. Let p € F' and

O<a</\n<b<(qﬂ> ,

Cq
we have
[zn —pll* = [|Qc(zn — AnAzn) — Qc(p — AnAp)||?

< [ =AA)zn — (I = A A)p||?

= |[l(zn = p) = An(Azyn — Ap)||?

< lzn = pll? = ¢ (Azn — Ap, jo(zn — p)) + cgAL || Az, — Apl|?

< lzn = pll? = aBAnl|Azn — Ap||* + e AL || Az, — Ap]|?

= [lzn =Pl = Ma(aB — AT | Azy — Ap||

< lon = pl| (3.3)
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Therefore ||z, — p|| < ||z, — p|| and I — A, A is a nonexpansive where I is an identity
mapping. By condition (C1), we may assume, without loss of generality, that

ay, < min {a, 8} where 0 < o < liminf(1 — 7,).
T

n—oo

From Lemma 2.11, we conclude that ||(1 — v, )T — appuls|| < (1 —9n) — anT.
Since 0 < vL < 7, we have

[Zne1 =2l = [Ba(@n —p) + (1= Ba)(S(tn)yn — D)

< Ballzn —pll + (1= Bo)llyn — pll

= Ballzn —pll+ 1 - 5n)HQC [O‘n’YLll’n + YnZn
(1 =)l — anML2)S(Mn)Zn] - p”

< Bullwn = pll + (1 = Ba)I[(1 = v )T — anpLo][S(pn) zn — pl
+on(YLizy — pLop) + Yn(zn — p)||

< Ballen = pll + (1 = Ba) (X = v — anT)|[S(1n) 20 — D
+(1 = Bn)anllvLizn — pLop|l + (1 = Ba)vnllwn — pl|

< Bullzn —pll + (1 = Bp)(1 = v — anT) |20 — |
+(1 = Bn)any | L1zn — Lipl| + (1 = Bn) oy L1p — pLap||
+(1 = Bn)vnllzn — pll

< Bullen —pll+ (1 = Bu)llzn — pll = (1 = Bu)ynllzn —p

—(1 = Bn)antllzn = pll + (1 = Bn)anyL|zn = pl|

+(1 = Bn)anllyLip — pLapll + (1 = Ba)ynllzn — b
= lzn —pl = (1= Bn)ant|zn —pl

+(1 = Br)anyLl|lzn — pll + (1 = Bn)an|yLip — pLopl
= lzn —pll = (1 = Bn)an(r = L) |lzn — p|

Lip — pLap
1= Ba)a (7 — y L) P #E22]
T—~L
By induction, we conclude that

| |vLip — pLopl|

Vn > 1.
T—~L },n_

law — p] < max{nxl pl

This implies that {z,} is bounded, so are {Az,}, {yn}, {S(tn)yn}, {zn} and
{S(un)znt-

Next, we will show that lim ||z,41 — 2| = 0 and we observe that
n— oo

[2n+1 = 2nll = |Qc(Tnt1 — Ant14%nt1) — Qc(Tn — AnAzy) ||
< st — Ans1A2n11) — (2 — Anday)|
= [(Tn+1 — M1 ATn41) = (Tn — Angr1420) + (An — Any1) Az ||
ST = A1 A) T — (I = A1 A)zn | + [Ansr — An [ Azy|
< @nt1 = znll + [Ang1 = An||Azn ||,
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15 (knt1)zn+1 = S(pn)znll < 1S (Hn+1)2n41 = S(pnt1) 2zl

||yn+1 - ynH

IN

IN

IA

IN

+ 1S (tn+1)2n — S(pn) 2l

< lznsr = 2nll + 115 (kns1) 20 — S(pn) znl
< lzns1 — @l + [Ant1 — Anll|Azn |

+ sup [|S(pni1)z — S(un)zl,

z€{zn

|Qc [ant 1y Laizni1 + my1Tns1

(1 =Y = g1 ppL)S (fn41)Zn 11

—Qc[any Ly +nwn + (1= )T — cnppLa)S(pin) zn] |
|| [Oén+1’7L1$n+1 + Yn4+1Tn41

F((1 = s )T = g1 ptL2)S(ftn 1) Znt1 ]

- [an'ylen + InTn + ((1 - ’Vn)l - O‘nMLQ)S(Mn)Zn] H

|| [Oén+1’YL1$n+1 t Yn+1Tnt1

(1= Y1) = ang1pLo)S(fns1)2n11]

- [an'ylen + Ynxn + (1 — ) — anuLg)S(un)zn]
Fant1v7L12n — nr1YL1%n + Yn+1Tn — Yn+1Zn

+((1 - '7n+1)I - an+1UL2)S(Un)Zn

_((1 - 'Yn+1)I - an+1ML2)S(Mn)ZnH

U1V L1%ng1 — LiZy || + Vg1 |Tng1 — 2nl|

Jr|| [(1 = Ynt1)! — an+1ﬂL2] [S(Un+1)zn+1 - S(Hn)zn} ||
Hlant1 — an V| Liznl| + lant1 — an|pl|L2S (1n) 25 |
V1 = YnlllS(pn)2n — 20|

1YL\ Tnt1 — 2ol + Yngrl|Znsr — 2a|

(@ =Y+ 1)I = an17][[S(Hnt1) 2nt1 — S (k) 2nl
+lans1 — o ['VHLIan + u||L25(pn)an]

H V1 = YIS (pn) 2n — 24|

1YL\ Tnt1 — 2ol + Yngrl|Zngr — 20|

+[(1 — Yng1)d — O‘n+17'] [”xn—&-l — Znll + [An1 — /\n|||Aan

+ sup [|S(pnt1)z — S(un)z]]
ZE{Zn}

+an1 — anl [’Y”len” + M||L2S(Nn)zn”]
Hn41 — Wl 1S (Bn)zn — 24|

[1 = ans1(T = vD)][|[Zn+1 — 24|

(1 = 1) — any17] U)‘nJrl = Al | Az ||

373
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+ sup (1S (pny1)z — S(pn)2|]
z€{zn}
+|O‘n+1 - O‘n| [7”L1$n” + N‘|L2S(Hn)zn”]
+|'7n+1 — YIS (1tn) 20 — an

< lzngr — ol + [ Ans1 — Anl[| Ay ||
+ sup [[S(knt1)z — S(pn)z|l
z€{zn}
a1 — an| [V Liza || + pll L2S () 20 ]
Hn+1 = alllS(pn)2n — zn||
< ||xn+1 - an + [|an+1 - an| + |'7n+1 - 7n| + |)‘n+1 - )‘n‘]M

+ sup |[S(pnt1)z — S(un)zll,

ZE€E12Zn

where

M = sup {Il Azl VI Lrznll + pll LS () znll, 1S (1) 20 — 2|} < 00

It follows that

1S (tns1)Uns1 = S(pn)ynll < NS (nt1)Yns1 — S(ns1)Ynll + 1S (kns1)yn — S(kn) Yl
< Nynt1 = ynll + 15 (nt1)yn — S(kn)ynll
< Hxn+1_xn||+[|an+1_an|+|’7n+1_’Yn|+|)‘n+1_>‘n|]M
+ sup [|S(pnt1)z — S(pn)z||

zZE€E1zZn

+ sup |[[S(pns1)y — S(pn)yll- (3.4)
ye{yn}

Form the condition (C1), (C2), (C5)-(C6) and 3.4, we have

limsup ([|S(tnt1)yn+1 — S(n)ynll = |lZn1 — 2a]) <0.

n—oo

Applying Lemma 2.9, we obtain
T}ggo 1S (kn)yn — znll = 0.
Therefore, we get
nh_{rgo |Zn+1 — znll = 0. (3.5)
Next, we will show that

lim |z, — S(pn)znl =0,

n—oo
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by the convexity of || - || for all ¢ > 1, Lemma 2.7 and (3.3), we have

lyn — p|?

where

M, =

[VARVAN

IN

IN

IN

Qc [an'Ylen +YnZn + (1 =)l — anﬂLQ)S(:un)Zn] —p||?

[Yn (20 = p) + (1 = 7) (S(kn)zn — p) + n (YL1zn — pL2S (n) 20 ||
[y (@n =) + (1 = 70) (S(1n) 20 — ) |17

—|—q<ozn (’ylen - uLgS(un)zn), Jq (%L(xn —p)

+(1 - 'Vn)(S(Mn)Zn _p))>

JrCq”()‘n ('Ylen - NLZS(Nn)Zn) [

Yollzn = plI? + (L= 7) 1S (tn)zn — pl|

+qan||yLizn — pLaS(pn)zn |l

X H'Yn(xn —-p)+(1- 'Vn)(s(ﬂn)zn - p) Hq_l

Feqof |y Lian — pL2S(pn)znl?

Yallzn = pI* 4+ (1 = v0)llzn — plI? + M

Yallan =PI+ (=) 20 =PI = An(g8 = ¢8| Az, — Apll]
+o, My

zn —p[|9 = (1 —v)An(gB — CquLil)HAmn — Ap||? + o, My,

Sgpo {QH'Ylen — Lo S(pn) zn ||| V0 (20 —p) + (1 — ’Yn)(S(ﬂn)Zn - p) ||q71

g0l Lo, = pLaS (un) 2|} < oo

By the convexity of || - ||? for all ¢ > 1, we obtain

[€n1 = pl*

Bullzn —pl|* + (1 = Ba)[IS (n)yn — pII*

Bullen = pl|” + (1 = Bn)llyn — pl|?

Bullzn —pl|? 4+ (1 = Bn) [Hxn —pll?

—(1 = yn)An(gB — cq)\fl_l)HAac — Ay||? + a, My

=z =27 = 1 = B2) (1 =) An(aB — el )| Az — Ay|?
+(1 = Bn)anMj.

IA A IA

By the fact that a” — b" < ra"~(a —b),¥r > 1, we get

(1= Ba) (L = 1) Aal(aB — cgXi™H) || Az — Ay]|?
< llzn —pll? = |zns1 =PI + (1 = Bp)an M
< qllzn = plT (l2n = pll = l2nss = pll) + (1= Ba)an M
< qllzn — qu_l”xn — Znp1 | + (1 = Bp)an M.

From 0 < a < A, < b < (£)77, the conditions (C1)-(C3), (C6) and (3.5), we
conclude that

lim ||Az, — Ap|| = 0. (3.6)
n— oo
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From Proposition 2.1 (ii) and Lemma 2.6, we also have

[E2 —p||2

So, we get

= [Qc(mn — AnAzy) — Qc(p — AnAp)|?

< <(xn - )\nAxn) - (p - )\nAp)7 J(Zn - p)>
= <($n*p)f)\n(Axanp),J(zn—p»
= <33n—p, J(Zn_p)> _)\n<Axn_Ap7 J(Zn_p)>
1
< Slllwn =Pl + llzn = pI* = gllzn = 20ll] + AnllAzn = Apllflzn — pll

lzn =l < llon = pl* = gllan = zall + 220 ]| Azn — Apllllz = pl-

By Lemma 2.8, it follows that

llyn — pl|?

M, =

We obtain

1 Znt1

= Qe [anVlen + Y n + (1= yn)1 an,uLQ)S(:un)Zn] - p”2

< ||'7n(33n - p) + (1 - 'Vn)( (Nn> p) + an <7L1$n ML2S(/~Ln Zn)H2

S ||’7n(xn - p) + (1 - ’Y’n)( (Nn) p)||2
+2an<7len - ,U'LQS(//'n)Zna J(Vn(xn 7p) + (1 - ’Yn)(S(,u'n)Zn - p)
+an (’Ylen - MLQS(MH)Zn))>

< Yullon = pl? + (1= 3m)llzn — plI? + cn My

< Ml *p||2 + (1 —7n) [”xn *pHZ = gllzn — 2|
+2n [ Az — Apllllzn = pl] + an s

= |za —p||2 — (I =v)gllzn — zn| +2(1 = ) Al Az — Apl|||zn — Dl
+anM27

sup {2<7L1xn — L2 S (ptn)zn, I (Yo (20 — p) + (1 = 70) (S(kn) 20 — D)

+ay, (’yLmn — /,LLQS(/,Ln)Zn))>} < 0.

-l Bullzn = pl* + (1 = Bu) 1S (1) yn — plI®

Bullzn = plI* + (1 = Ba)lyn — pII?

Bullzn = pl* + (1 = Ba) [llzn — pI* = (1 = y)gllzn — zal
+2(1 = ) An [ Azn — Ap|l|lzn — pll + cn Mo]

lzn = plI* = (1= Ba) (1 = y)gllzn — 2nll

+2(1 = Bn) (1 = ) AnllAzn — Apllll2n — pll + (1 = Bn)on Ma.

IA A IA
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Then we get

A = y)gllen = zall < llzn = pI* = [l@nt1 = plI?
+2(1=5n) (1 = ) Anll Az — Apl|l|zn — pll + (1 = Bn)an M
< llzn = zntall(llzn = pll + lznsr — pll)
+2(1=Bn) (1 = ) An [ Az — Apllllzn — pll + (1 = Bn)an M.

By the conditions (C1)-(C3), (C6), (3.5) and (3.6), we have
Jimg([lzn = za)) = 0.
It follows from the property of g that
nh—{%o |zn, — 2|l = 0. (3.7)

Similar to the proof of (3.7), we start by using Lemma 2.5 and Lemma 2.8

lyn —2l* = 11Qc[anyLizy +ynzn + (L = yu)I — anpL2)S(pn)za] —
< m(@n —p) + (1 — Vn)(s(ﬂn)zn - p) + an (’Ylen - ﬂLQS(ﬂn)Zn)H2
< n(@n =) + (1= 7) (S(kn)2n — p)II?
+2an(vLrxn — pLaS(ptn)2n, J (Yn (20 — ) + (1 = 1) (S(tn) 2 — D)
+an (YL1zy — pL2S(pn)zn)))
< ullzn = pl2 + (1 = 1)lIS ()2 — 2
— (L = m)g(llen — S(pn)znll) + anM;
< yallzn = plP + (1 =)z — o2
=L =) g([|zn — S(pn)2nll) + cn M2
<yl = pl* + (1 =)z, —pl?
(1 = n)g(len — S(pn)znll) + on Mz
= zn =p1* = %t = w)g(lzn — S(pn)znll) + n Mo,
where
My = sup {2<7L1xn — 1L2S (kn) 2ns J (0 (@0 = p) + (1 = 40) (S (k) 20 — p)
+ay, (’ylen — /,LLQS(/J/“)Z»,L))>} < 0.
We obtain

lzns1 = plI* < Bullzn = plI* + (1 = Ba) 1S () ym — pII?
< Bullen = plI* + (1 = Ba)llyn — pII?
< Bullen =l + (1 = Ba) [lzn — pl
= (L = )g(llzn — S(tn)zall) + 0n Mo]
= llon = plI* = (1 = Bu) (1 = v0)g(l2n — S(n)2nll) + (1 = Bn)an Mo.
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Then we get

(1 - ﬁn)'yn(l - 'Yn)g(”xn - S(Nn)an) < Hxn - sz - Hxn-i-l - sz + (1 - ﬁn)anM2
<|lwn — xn-i-l”(llxn = pll + lzn+1 _pH)
+ (1 — 5n)anM2~

By the conditions (C1), (C3), (C6) and (3.5), we have
lim_ g([lzn — S(pn)znll) = 0.
n—oo

It follows from the property of g that

lim ||, — S(pn)zn|| = 0. (3.8)

n—oo

Since S(pn) is a nonexpansive and from the proof of Lemma 2.12, we get

QcS(pn)zn = S(pn)zn
and observe that
lyn — S(pn)znll = ||QC [an’ylen‘f"Ynxn"‘((l - 'Vn)I_anMLQ)S(Nn)Zn] —S(pn)an

= |lan (VL1zn — pL2S(ptn)2n) + Yo (@n — S(tn)zn) ||
< anllyLizn — pLaS(pn) 20|l + Ynllvn — S(pn)2nl|-

It follows from the conditions (C1), (C6) and (3.8), we get

Jim {lyn — S(pn )2l = 0. (3.9)
Since
|2n — S(n)znll < 20 — S(n) 20|l + 1S (pn)2n — S(pin)znll
<z = S(pn)znll + 120 — 2all,
we have

lim ||z, — S(pn)xs|| = 0.

n—oo

Now, we show that z € F := F(S)NVI(C,A). We can choose a sequence {x,, }
of {z,} such that {z,,} is bounded and there exists a subsequence {Jinkj} of {z,,}
which converges weakly to z. Without loss of generality, we can assume that z,, — z.
(I) First, we show that z € F(S). Let p,, > 0 such that u,, — 0 and

HS(Mnk)‘T”k — Ty, ”
[y

— 0, k — oo.
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Fix s > 0, we can notice that

[S/an]_l

||'rnk - S(S)ZH < Z ||S((Z + 1)Mnk)xnk - S(i.unk)xnk H
=0

+ 1S ([8/ tne ) i) T = S ([8/ by It ) 2|

+ [|S([s/ ny Jtany, ) 2 — S(s)z]|

< 8/ bng ) 1S (bny )Ty, — Ty || + |y, — 2] + ||S(S - [S/ﬂnk]ﬂnk)z — ZH

< M5 )Tn, — on |
oy

< JS(n)en, —zn, |

N

+ |0, — 2| + ||S(5 - [S/Nnk}:“nk)z - ZH

[, —2 ]+ max{[S()2— 2I| £ 0 < 1 < pro }-

For all k£ € N, we have

limsup ||z, — S(s)z|| < limsup ||zn, — 2]
k—o0 k—o0

Since a Banach space E with a weakly sequentially continuous duality mapping sat-
isfies the Opial’s condition, this implies S(s)z = z.

(IT) Next, we show that z € VI(C, A). From the assumption, we see that the control
sequence {A,, } is bounded. So, there exists a subsequence {)‘nkj} converges to Ag.
We may assume, without loss of generality, that A,,, — Ag. Observe that

1Qc(zn, — AoAxn,) — 2p,ll < NQc(Tny — AoAZny) = Yni || + 1Yni — ||
< (@ny = AoAzn,) = (Tn, — Anp Az )|l

+Hxnk - S(/Lnk)znk |+ ”S(Nnk)znk - ynkH

M|[Any, = ol + [0, — S(pny ) 20l

HI1S (g ) 2ns, = Y Il

IN

where M is as appropriate constant such that M > sup{||Ax,||}. It follows from
(3.8), (3.9) and A,, — Ao that "=
lim [ Qc(rn, — Aodr,) - 2, ]| = 0.
We know that Q¢ (I — AgA) is nonexpansive and it follows from Lemma 2.4 that
2z € F(Qe(I — MA)).
By using Lemma 2.3, we obtain that
2 € F(Qo(I — MA)) = VI(C, A).

Therefore, from (I) and (IT), we conclude that z € F := F(S)NVI(C, A).

Next, we show that limsup(yLiz* — pLox*, Jy(y, — 2*)) < 0, where z* is the

n—oo
solution of the variational inequality (1.1). Since the Banach space E has a weakly
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sequentially continuous generalized duality mapping J; : E — E* and y,, — z, we

obtain that

limsup(yLiz™ — pLox™, Jy(yn — 27))

n—oo
= lm (yL12" — pLox™, Jg(yn, — 7))
k—o0
= (yLiz"* — pLox™, Jy(z —2*)) < 0. (3.10)

Finally, we show that {x, } converges strongly to z*. Setting

Up = oy YL1xy + Yy + (1 — ) — anpula) S(ptn) 20, Y0 > 0,

it follows from Lemma 2.11, 2.13 and 2.14 that

[y —2*[|* =

IN

IN

IN

IN

IN

which implies that

[yn — 2"

(Qoun = tn, Jo(yn — 7)) + (un — 27, Jo(yn — 27))

(un —a*, Jg(yn — 27))

({(X =) = anpLs][S(pn)zn — 7], Jg(yn — 7))

+O‘n<'7L1xn — pLax™, Jq(yn - m*)> + '7n<xn -, Jq(yn - :E*)>
(1= 9n — o) IS (1n) 2 — 2| lyn — x*”q71

Fynllzn = 2 |[[lyn — 2177 + an(yLiwn — yLaz*, Jy(yn — ¥))
+oa (yLix* — pLlox®, Jy(yn — z*))

(1= = an) ||z — || [lyn — ™77

Fnllzn = 2 [[llyn — 21971 + anyLlle, — 2 [[lyn — 2|47
+on(YLiax™ — pLox™, Jo(yn — 2¥))

[1 = an(r = AL)len = "l — 2]

+an(YLix* — pLox™, Jy(yn — x™))

(1= an(r = D) llan =17+ T = llgn = 2 1]

+04n<’YL11'* - /LLQ’JZ*, Jq(yn - ‘T*)>7

1- an(T B ’YL)

< — r*||e
~ 14 (¢—Dan(t —~L) lzn = 2]
qQn * ® *
L — pLox™, J, (yn —
i + (¢ — Day(t —~L) (Y Laz” = plox”, Jo(yn = 27))
< [ =an(r =yD)flan — 2™

qon

Lyz* — uLoz™, J(yn — z°)).
1+(q—1)an(7—'yL)<W 127 = Lo, Jo(yn — 27)

+
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Therefore,
[#ni1 =2 < Bullon =™ [[* + (1 = Ba) 1S (kn)yn — "7
< Ballzn =274+ (1 = B)llyn — 27|
< Ballzn =274+ (1 = Bn) | [1 — an(T — v L)z — 27|

4 qou,
1+ (qg— 1)an(T - 'YL)

[1 = an(T =vL)(1 = Bo)lllzn — p|*
qan(l B ﬁn)

14 (¢ —Dan(r —~L)

Now, from (C1), (3.10) and applying Lemma 2.10 to (3.11), we get ||z, —2*|| = 0

as n — oo. Therefore, the sequence {z,} converges strongly to 2* € F. The proof is
complete. 0

(yLix™ — pLox™, Jg(yn — 2¥))

(YLriz™ — pLox™, Jy(yn — ™). (3.11)

Corollary 3.2. Let C be a sunny nonexpansive retract and nonempty closed convex
subset of a 2-uniformly smooth and uniformly convexr Banach space E which admits
a weakly sequentially continuous generalized duality mapping J : E — E* with the
best smooth constant K. Let Q¢ be a sunny monexpansive retraction from E onto
C, A: C — FE be an B-inverse-strongly accretive operator, S = {S(s) : s > 0}
be a nonexpansive semigroup from C' into itself, L1 : C — E be a L-Lipschitzian
mapping with constant L > 0 and Ly : C — E be a k-Lipschitzian and n-strongly
accretive operator with constant k,n > 0. Assume {an}, {Bn}: {1}, { )} C (0,1),
{1tn} € (0,00) such that {\,} C [a,0] C (0,1), 0< p < A, 0<a< A\, <0< 2,
0 < ~yL < 7 where 7 = p(n — K?pk?) and F := F(S)NVI(C,A) # 0. Let {x,} be
the sequences defined by x1 € C and

2n = Qo (zn — A\Azy)

yn = Qc [Ozn’yLll‘n + Yo + (1 —vn)! — an,uL2)S(,un)Zn]v

Tnt1 = Bpn + (1 = Bn)S(tn)Yn,
which satisfy the conditions (C1)-(C6) in Theorem 3.1. Then {x,} converges strongly
to x* € F which also solves the following variational inequality:

(vLix™ — plozx™, J(z —a™)) <0, Vz € F.

Corollary 3.3. Let C be a sunny nonexpansive retract and nonempty closed convex
subset of a g-uniformly smooth and uniformly convex Banach space E which admits a
weakly sequentially continuous generalized duality mapping J, : E — E*. Let Q¢ be
a sunny nonexpansive retraction from E onto C, A : C — E be an [-inverse-strongly
accretive operator, S = {S(s) : s > 0} be a nonexpansive semigroup from C into
itself, L1 : C' — E be a L-Lipschitzian mapping with constant L > 0 and Ly : C — E
be a k-Lipschitzian and n-strongly accretive operator with constant k,n > 0. Assume

{anh, {Bn}, {7}, {2} C (0,1), {un} C (0,00) such that {\,} C [a,b] C (0,1),
0<pu< ( 1 )ﬁ where ¢q is a positive real number, 0 < a < A, < b < (g)ﬁ,

cqr4
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0<~L < T wheret=p (77 - C““q:'{q) and F .= F(S)NVI(C,A) # 0. Let {z,} be
the sequences defined by x1 € C' and

Zn = QC(xn - /\nAxn)
tn
yn = Qc [O‘nﬁylen + YnTn + ((1 - ’Yn)I - Oén,UfLQ)i/ S(S)an5]>
0

tn
Tn4+1 = ﬁnxn + (1 - Bn)i/ S(S)yndS,
0

which satisfy the conditions (C1)-(C8) and (C6) in Theorem 3.1 and assume that

1 tnt1 1 tn
/ S(s)xzds — . S(s)xds
0

lim sup
tn+ 1 n JO

n—oo 165

207

C bounded subset of C, lim p, = oo and lim = 1. Then {z,} converges
n—oo

n—oo ,LL'IL—‘,-l
strongly to x* € F which also solves the following variational inequality:

(vLra*® — pLox™, Jy(2z — 2*)) < 0,Vz € F.

Corollary 3.4. Let C be a sunny nonexpansive retract and nonempty closed conver
subset of a g-uniformly smooth and uniformly convex Banach space E which admits a
weakly sequentially continuous generalized duality mapping J, : E — E*. Let Q¢ be
a sunny nonexpansive retraction from E onto C, A: C — E be an B-inverse-strongly
accretive operator, L1 : C — E be a L-Lipschitzian mapping with constant L > 0
and Lo : C' — E be a k-Lipschitzian and n-strongly accretive operator with constant
k,m > 0. Assunie {an}, {Bn}, {7} { ]} C (0,1) such that {\,} C [a,b] C (0,1),

= ‘ N
O<pu< (quq) " where ¢, is a positive real number,
q

=1
0<a§/\n§b<(qg)q , 0<~L <71

Cq

cq,uq’lnq
T=p\N— R

and F:=VI(C,A) #0. Let {x,} be the sequences defined by x; € C' and
zn = Qc(xn — A\pAzy,)
Yn = Qc [ YL1n + Ynn + (1 — )] — anpla)zy),
Tnt1 = BnTn + (1 = Bn)Yn,
which satisfy the conditions (C1)-(C3) and (C6) in Theorem 3.1. Then {x,} con-

verges strongly to x* € F which also solves the following variational inequality:

(vLrz® — pLoz™, Jy(z — 2*)) < 0,Vz € F.

where

Proof. Taking p, = 0 in Theorem 3.1, we can conclude the desired conclusion easily.
The proof is complete. O
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4. NUMERICAL EXAMPLE

In this section, we illustrate a real numerical example by using main theorem.

1 1
Example 4.1. Let E=R, C=[0,1],¢=2,j, =1, vy=p= 3 On = fin = 5,
n
1 2n —1 6n —1
Bn = i7 Yn = L, n = i and x7 = 1 which satisfy the conditions

n
(C1) — (C6) in Theorem 3.1. We define the mappings as follows:

X
2 4eR-C
Qoz=1{ laf" * (S())(@) = ze=*, Ax =%, Lyo =22

z, =x€C, 2

and )
LQ{E = §($2 =+ 2%),

1
where A is i—inverse strongly accretive, Ly is 1-Lipschitzian and Ly is 1-Lipschitzian

2
and g—strongly accretive. Then the sequence

22n 4+ 1
Zn = Tn ;
28n

Tn (Tn  2n—1 2pe 131 (B 41 ze"/3n 42
Yn=— | —+ + _ 7
_n+1 n—1 —1/3n
Tnt1 = 57 Tp + o Un€

converges strongly to 0 shown in Figure 1 and Table 1.

12
1
08

0.6

Sequene value

0 10 20 30 40 50

Iteration step (n)

Figure 1. The iteration process.

Table 1. The value of sequence {z,}

Iteration step (n) Sequence value (x,) | Iteration step (n) Sequence value (x;,)
1 1 10 0.456821
2 1 20 0.182023
3 0.915366 50 0.013817
4 0.828039 100 0.000222
5 0.747896 168 0.0000009
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Example 4.2. Let F = R? and an inner product (-,-) : R? x R®> — R be defined by
<X7y> =X'y= xl : yl +‘T2 ' y2 +SC3 : ydavx = ($17I’2,1173),y = (ylay27y3)

and the usual norm || - || : R — R be defined by

Il = v/(21)2 + (22)2 + (2%)2.

. 1 n-+1 2n —1
Let C = R3 <1l},y=p=< "= ,
e ) {xe®|xl| <1}, v =p=73, 5 —
n—

1
An = and x; = (1,2, 3) which satisfy the conditions (C1) — (C6) in Theorem
n
3.1. We define the mappings as follows:

1
Ofn:ﬂnzgvﬂn:

ckx—{|mw XEC (S0 = xe, Ax= X, Lix =

X, x € C,
and
Lo o
Lox = §(X + 2x).
Forn=1,...,6, we have the sequence
Z,
Zpy = —)\
R A
Y,
Yo =9~ 10
" Y
n+1 n—1 _
S TR TR
where

22n+1
Zn = Xn ;
x ( 28n >
Xn [ Xn m—1 n —1/3n 5 1 n —1/3n 4 9
Xn (Xn n n Zn € n + _ Zn€ + .
6 7 n ™m 18

For n = 7, we have the sequence

22n+1
Zp = Xp 28N )

Y, =

n

Y.
Yo =7~ 0
Y]]
n+1 n—1 _
Xn+1 = —wXn + Yn€ 1/371’
2n 2n

where

Yn_xn ﬁ+2n—1 +zne_1/3" 5n+1_zne_1/3"+2 .
6 7 n ™ 18
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For n = 8,9,10, ..., we have the sequence
22n+1
Zn = X
n n 28n )
_ Xn (Xn n 2n — 1 n Zpe V3 (Bn4+1  zpe /3 42
Yn =% e 7 n ™n 18 ’
n+1 n—1 _
Xpt1 = o™ Xp o™ Y€ 1/3n
Then the sequence converges strongly to 0 = (0,0, 0), shown in Figure 2 and Table 2.
Ky
] B
2.5
] >
27
] .
£ 1.5
7 .
1] .
g L
0.5 o

Sequene value

Iteration step (n)

Figure 2. The iteration process.

Table 2. The value of sequence {x,}

1 1 2 3 10 | 0.229555 | 0.480061 | 0.753976
2 1 2 3 20 | 0.090760 | 0.191436 | 0.303513
3 1 0.794057 | 1.603757 | 2.429100 | 50 | 0.006872 | 0.014536 | 0.023119
4 10.598144 | 1.220303 | 1.867191 | 100 | 0.000110 | 0.000233 | 0.000371
5 1 0.457286 | 0.940376 | 1.450720 | 174 | 0.0000003 | 0.0000006 | 0.0000009
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