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1. Introduction

In [2] Banás and Rzepka study a very interesting property for the solutions of some
functional equations. This property was also researched by Burton and Zhang in [5],
in a more general case. Let F : BC(R+)→ BC(R+) be an operator, where BC(R+)
consists of all bounded and continuous functions from R+ to Rd, R+ := [0,∞), d ≥ 1.
Let | · | be a norm in Rd.

The following definition is given in [2, 5], for the solutions x ∈ BC(R+) of the
equation

x = Fx. (1.1)

Definition 1.1. A function x is said to be an asymptotically stable solution of (1.1)
iff for any ε > 0 there exists T = T (ε) > 0 such that for every t ≥ T and for every
solution y of (1.1), we have

|x(t)− y(t)| ≤ ε.

A sufficient condition for the existence of asymptotically stable solutions is given
by the following proposition (see [2, 5]).

Proposition 1.1. Assume that there exist a constant k ∈ [0, 1) and a continuous
function a : R+ → R+ with lim

t→∞
a(t) = 0, such that

|(Fx)(t)− (Fy)(t)| ≤ k|x(t)− y(t)|+ a(t), ∀t ∈ R+, ∀x, y ∈ BC(R+). (1.2)

Then every solution of (1.1) is asymptotically stable.
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Let us remark that basically the property of the asymptotic stability is a property
of the fixed points of the operator F . Actually, in [1, 5], the proof of the existence
of an asymptotically stable solution is done by applying the Schauder’s fixed point
theorem. So, it is enough to require that Definition 1.1 is only fulfilled on the closed,
bounded, and convex set on which the Schauder’s theorem is applied.

Another remark concerning Proposition 1.1 is that if (1.2) is fulfilled then every
solution of (1.1) is asymptotically stable. Moreover, by (1.2) we deduce that the
result of Proposition 1.1 is appropriate for the case when F = A + B, where A is
contraction and lim

t→∞
(Bx)(t) = 0, for every x belonging to the set on which the fixed

point theorem is applied. On the other hand, the set of the fixed points of F should
be “big” enough such that Definition 1.1 is consistent. In this direction, in the case
when Schauder’s fixed point Theorem is used an interesting result has been obtained
by Zamfirescu in [11], stating that if Bρ is the closed ball of radius ρ > 0 from a
Banach space and F : Bρ → Bρ is a compact operator, then for most functions F ,
the set of solutions of (1.1) is homeomorphic to the Cantor set (“most” means “all”
except those in a first category set).

Finally, let us remark that in order to fulfil Definition 1.1 it is not necessary that
the solutions of (1.1) be bounded on R+.

In [6] Islam and Adivar prove the existence of asymptotically stable solutions to a
nonlinear Volterra integral equation, by applying Schauder’s fixed point theorem on
the space Cl of all functions of BC (R+) , having finite limits at ∞. In [5] the authors
proved that, under certain hypotheses, the nonlinear Volterra integral equation

x(t) = f(t, x(t)) +

∫ t

0

u(t, s, x(s))ds, t ≥ 0 (1.3)

has at least one solution, and every solution is asymptotically stable and converges
to the unique continuous function ψ : R+ → Rd satisfying

ψ(t) = f(t, ψ(t)), t ≥ 0.

Actually, in our note [1], we proved a similar theorem without using hypothesis (i*)
from [5]. Let us also remark that in (1.3) one has F = A+B, where A is a contraction
in BC(R+) and B is a compact operator which in the admitted hypotheses fulfills the
property

lim
t→∞

(Bx)(t) = 0, (1.4)

the limit being uniform with respect to x ∈ BC(R+). The second result in our Note
[1] is obtained in the absence of condition (1.4).

In this paper we will consider the following nonlinear integral equation of mixed
(Volterra-Hammerstein) type

x (t) = q (t) + F (t, x (t)) +

∫ t

0

K (t, s, x (s)) ds+

∫ ∞
0

G (t, s, x (s)) ds, t ∈ R+, (1.5)

where q : R+ → Rd, F : R+ × Rd → Rd, K : ∆ × E → E, G : ∆ × Rd → Rd are
continuous functions, and

∆ =
{

(t, s, x) , t, s ∈ R+, 0 ≤ s ≤ t, x ∈ Rd
}
.
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We will prove the existence of asymptotically stable solutions to Eq. (1.5) , without
requiring the boundedness of solutions. Our result needs a more sophisticated argu-
ment than the one used in [1] and it is mainly based on the application of a fixed
point theorem of Schaefer’s type on Fréchet spaces.

2. Fixed point approach

Two main results of the fixed point theory are Banach contraction principle and
Schauder’s fixed point theorem. Krasnoselskii combined them into the following result
(see [7], [8], [10], [12]).

Theorem 2.1. (Krasnoselskii). Let M be a closed convex non-empty subset of a
Banach space X. Suppose that A and B maps M into X, such that the following
hypotheses are fulfilled:

(i) Ax+By ∈M , ∀x, y ∈M ;
(ii) A is continuous and AM is contained in a compact set;
(iii) B is a contraction with constant α < 1.

Then, there is a x ∈M , with Ax+Bx = x.

This is a captivating result and it has many interesting applications. In recent
years much attention has been paid to this result. T.A. Burton (see [3]) remarked
that in practice it is difficult to check hypothesis (i) and he proposed to replace it by
the condition

(i′) (x = Bx+Ay, y ∈M) =⇒ x ∈M.

Following the improvement of hypothesis (i), Burton and Kirk (see [4]) proved the
following variant of Theorem 2.1.

Theorem 2.2. (Burton & Kirk). Let X be a Banach space, A, B : X → X, B a
contraction and A a compact operator. Then either

(a) x = λB
(
x
λ

)
+ λAx has a solution for λ = 1

or
(b) the set

{
x ∈ X, x = λB

(
x
λ

)
+ λAx, λ ∈ (0, 1)

}
is unbounded.

We mention that through compact operator one understands a continuous operator
which transforms bounded sets into relatively compact sets.

The proof of Theorem 2.2 is based on the remark that λB
(
x
λ

)
, λ ∈ (0, 1) is a

contraction, too, with the same contraction constant and therefore

x = λB
(x
λ

)
+ λAx⇐⇒ x = λ (I −B)

−1
Ax

and it uses the following fundamental result due to Schaefer (see [8], [9], [10], [12]).

Theorem 2.3. (Schaefer). Let E be a linear locally convex space and let H : B → B
be a compact operator. Then either

(α) the equation x = λHx has a solution for λ = 1
or

(β) the set {x ∈ X, x = λHx, λ ∈ (0, 1)} is unbounded.
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Since we research the existence of solutions to Eq. (1.5), that is defined on the
noncompact interval R+, we remark that the application either of Theorem 2.1 or
Theorem 2.2 is very difficult. Therefore, in the proof of our main result, we will apply
the following extension of Theorem 2.2 from Banach spaces to Fréchet spaces (i.e
locally convex spaces that are completely metrizable).

Theorem 2.4. Let Y be a Fréchet space and A, B : Y → Y be two operators. Admit
that:

(a) A is contraction on Y ;
(b) B is compact operator on Y ;
(c) The following set is bounded{

x ∈ Y, x = λA(
x

λ
) + λBx, λ ∈ (0, 1)

}
. (2.1)

Then the operator A+B admits fixed points.

Proof. The proof of this theorem is immediate. Indeed, hypothesis (a) ensures us the

existence and the continuity of the operator (I −B)
−1
. By applying to the operator

x → λ (I −B)
−1
Ax the Schaefer’s Theorem 2.3, from hypothesis (c) the conclusion

follows, since U1x = Bx+Ax.

3. The existence of solutions

Consider the function space

X = Cc
(
R+,Rd

)
:=
{
x : R+ → Rd, x continuous

}
,

that, endowed with the countable familiy of seminorms

|x|n := sup
t∈[0,n]

{|x (t)|} , n ≥ 1, (3.1)

becomes a a Fréchet space. The most natural metric that can be defined on X is

d (x, y) :=

∞∑
n=0

1

2n
|x− y|n

1 + |x− y|n
.

In addition, we will use another countable family of seminorms,

‖x‖n := ‖x‖γn + ‖x‖λn , n ≥ 1, (3.2)

where

‖x‖γn := sup
t∈[0,γn]

{|x (t)|} , ‖x‖λn := sup
t∈[γn,n]

{
e−λn(t−γn) |x (t)|

}
,

γn ∈ (0, n), λn > 0 are arbitrary numbers.

Remark 3.1. Since, obviously,

e−λn(n−γn) |x|n ≤ ‖x‖n ≤ 2 |x|n , ∀n ∈ N∗,

the families (3.1) and (3.2) are equivalent and define the same topology on X, i.e. the
topology of the uniform convergence on compact subsets of R+. Consequently, a family
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in X is relatively compact if and only if it is equicontinuous and uniformly bounded
on compact subsets of R+.

The following general hypotheses will be required:
(H1) there exists a continuous function f : R+ → [0, 1), such that

|F (t, x)− F (t, y)| ≤ f (t) |x− y| , ∀t ∈ R+, ∀x, y ∈ Rd;

(H2) there exists a continuous function k : R+ → R+ and α ∈ [0, 1), such that

|K (t, s, x)−K (t, s, y)| ≤ k (t)

tα
|x− y| , ∀ (t, s, x) , (t, s, y) ∈ ∆, t > 0; (3.3)

(H3) there exists a continuous function ψ : ∆→ R+, such that the integral∫ ∞
0

ψ (t, s) ds

is convergent, uniformly with respect to t on compact subsets of R+ and

|G (t, s, x)| ≤ ψ (t, s) , ∀ (t, s) ∈ ∆, x ∈ Rd.

We can state and prove the following lemma.

Lemma 3.1. Suppose that hypotheses (H1) and (H2) are fulfilled. Then there is a
unique continuous function ξ : R+ → Rd, such that

ξ (t) = q (t) + F (t, ξ (t)) +

∫ t

0

K (t, s, ξ (s)) ds, ∀t ∈ R+.

Proof. We define the operator A : X → X through the equality

(Ax) (t) := q (t) + F (t, x (t)) +

∫ t

0

K (t, s, x (s)) ds,

∀t ∈ R+, ∀x ∈ X. By taking into account hypotheses (H1) and (H2), it follows that
∀t > 0, ∀x, y ∈ X,

|(Ax) (t)− (Ay) (t)| ≤ f (t) |x (t)− y (t)|+ k (t)

tα

∫ t

0

|x (s)− y (s)| ds. (3.4)

We show that A is contraction with respect to the family of seminorms (3.2), i.e.
there exists δn ∈ [0, 1) such that for any x, y ∈ X,

‖Ax−Ay‖n ≤ δn ‖x− y‖n , ∀n ∈ N∗. (3.5)

Let n ≥ 1 be fixed. Consider γn ∈ (0, n) and λn > 0 that will be specified later.
Let t ∈ (0, γn] be arbitrary. From (3.4) we deduce

|(Ax) (t)− (Ay) (t)| ≤ fn |x (t)− y (t)|+ kn
tα

∫ t

0

|x (s)− y (s)| ds

≤
(
fn + knγ

1−α
n

)
‖x− y‖γn ,

where

fn := sup
t∈[0,n]

{f (t)} , kn := sup
t∈[0,n]

{k (t)} ,
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In addition, since

lim
t→0

1

tα

∫ t

0

|x (s)− y (s)| ds = lim
t→0

t1−α |x (0)− y (0)| = 0,

and A is continuous, we get

|(Ax) (0)− (Ay) (0)| ≤ lim
t→0

(f (t) |x (t)− y (t)|) + lim
t→0

k (t)

tα

∫ t

0

|x (s)− y (s)| ds

= f (0) [x (0)− y (0)] .

Therefore,

‖Ax−Ay‖γn ≤
(
fn + knγ

1−α
n

)
‖x− y‖γn . (3.6)

Let t ∈ [γn, n] be arbitrary. From (3.4) after easy estimates, we get

|(Ax) (t)− (Ay) (t)| ≤ fn |x (t)− y (t)|+ kn
tα

(∫ γn

0

|x (s)− y (s)| ds

+

∫ t

γn

|x (s)− y (s)| e−λn(s−γn) · eλn(s−γn)ds
)

< fn |x (t)− y (t)|+ knγ
−α
n

(
γn ‖x− y‖γn

+ ‖x− y‖λn
eλn(t−γn)

λn

)
.

It follows that

|(Ax) (t)− (Ay) (t)| e−λn(t−γn) < fn |x (t)− y (t)| e−λn(t−γn) + knγ
1−α
n ‖x− y‖γn

+
kn
λn
γ−αn ‖x− y‖λn

and therefore

‖Ax−Ay‖λn ≤ fn sup
t∈[γn,n]

{
|x (t)− y (t)| e−λn(t−γn)

}
+knγ

1−α
n ‖x− y‖γn +

kn
λn
γ−αn ‖x− y‖λn

≤
(
fn +

kn
λn
γ−αnn

)
‖x− y‖λn + knγ

1−αn
n ‖x− y‖γn . (3.7)

By (3.6) and (3.7) we obtain

‖Ax−Ay‖n ≤
(
fn + 2knγ

1−α
n

)
‖x− y‖γn +

(
fn +

kn
λn
γ−αn

)
‖x− y‖λn . (3.8)

Since fn ∈ [0, 1), for γn ∈
(

0,
(

1−fn
2kn

) 1
1−α
)

we deduce fn + kn
λn
γ1−αn < 1 and for

λn >
kn

1−fn γ
−α we deduce γn + kn

λn
γ−αn < 1. Let

δn := max

{
fn +

kn
λn
γ1−αn , γn +

kn
λn
γ−αn

}
.
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It follows that δn < 1 and, since (3.8),

‖Ax−Ay‖n ≤ δn
(
‖x− y‖γn + ‖x− y‖λn

)
= δn ‖x− y‖n , ∀n ∈ N∗.

Hence, A is contraction.
From now on, the existence and the uniqueness of the fixed point to A follows

by applying the Banach Contraction Principle on Fréchet spaces. The proof is now
complete. �

Remark 3.2. The family of seminorms (3.2) is essential in deriving our estimates
on the operator A, while the classical family of seminorms (3.1) is useless when trying
to prove that A is contraction, because condition (3.3) is not fulfilled at t = 0 and so
the function k (t) /tα could be unbounded around 0.

We state and prove now an existence result of the solutions to Eq. (1.5).

Theorem 3.1. If hypotheses (H1)–(H3) are fulfilled, then Eq. (1.5) admits solutions.

Proof. The proof will be made in several steps and it is based on the application of
Theorem 2.4.

Step 1. The transformation of Eq. (1.5) . In Eq. (1.5) we set x = y + ξ (t) , where ξ
is the function obtained through Lemma 3.1. Then (1.5) becomes

y = A1y +B1y, (3.9)

where

(A1y) (t) := q (t) + F (t, y (t) + ξ (t))− ξ (t) +

∫ t

0

K (t, s, y (s) + ξ (s)) ds,

(B1y) (t) :=

∫ ∞
0

G (t, s, y (s) + ξ (s)) ds.

Clearly, if y is a solution to Eq. (3.9), then x = y + ξ(t) is a solution to Eq. (1.5),
and conversely.

Step 2. The properties of the operator A1. One has obviously ∀y1, y2 ∈ X, ∀t ∈ R+,

|(A1y1) (t)− (A1y2) (t)| ≤ f (t) |y1 (t)− y2 (t)|+ k (t)

tα

∫ t

0

|y1 (s)− y2 (s)| ds,

i.e. the operator A1 fulfills an inequality of type (3.4) and, following the proof of
Lemma 3.1, we deduce that

‖A1y1 −A1y2‖n ≤ δn ‖y1 − y2‖n , ∀y1, y2 ∈ X, ∀n ∈ N∗.
Let us also remark that A10 = 0 and ‖A1y‖n ≤ δn ‖y‖n, ∀y ∈ X, ∀n ∈ N∗.
Step 3. The operator B1 : X → X is compact. By hypothesis (H3), the convergence
of the integral ∫ ∞

0

G (t, s, y (s) + ξ (s)) ds

is uniform with respect to t on each compact subset of R+, and so (B1y) (t) is a
continuous function of t.
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(a) We prove that B1 is a continuous operator. Indeed, let us consider {ym}m ⊂ X,
ym → y in X, that is, ∀ε > 0, ∀n ≥ 1, ∃N = N (ε, n) , ∀m ≥ N, |ym − y|n < ε.

Let us fix n ≥ 1. From the convergence of {ym}m and the continuity of ξ, there is
r ≥ 0 such that |ym + ξ|n ≤ r, |y + ξ|n ≤ r, ∀m.

Consider ε > 0. By hypothesis (H3), there is T > 0, such that∫ ∞
T

ψ (t, s) ds <
ε

3
, ∀t ∈ [0, n] . (3.10)

Since G is uniformly continuous on the set [0, n]× [0, T ]×B (r), where

B (r) :=
{
x ∈ Rd, |x| ≤ r

}
,

it follows that for all t ∈ [0, n] , s ∈ [0, T ], and m ≥ N,

|G (t, s, ym (s) + ξ (s))−G (t, s, y (s) + ξ (s))| < ε

3T
.

Therefore, for every t ∈ [0, n] and m ≥ N, we have

|(B1ym) (t)− (B1y) (t)| ≤
∫ T

0

|G (t, s, ym (s) + ξ (s))−G (t, s, y (s) + ξ (s))| ds

+ 2

∫ ∞
T

ψ (t, s) ds.

Hence,

|B1ym −B1y|n ≤ ε, ∀m ≥ N,
and the continuity of B1 is proved.

It remains to show that B1 maps bounded sets into relatively compact sets. Let
S be a bounded subset of X. We have to prove that for each n ≥ 1 the family{
B1y|[0,n], y ∈ S

}
is uniformly bounded and equicontinuous.

Let n ≥ 1 be fixed. Then ∃pn > 0, ∀y ∈ S, |y|n ≤ pn.
Due to hypothesis (H3), there is a cn ≥ 0, such that for all t ∈ [0, n] and y ∈ S, we

have

|(B1y) (t)| ≤
∫ ∞
0

ψ (t, s) ds ≤ cn.

So,
{
B1y|[0,n], y ∈ S

}
is uniformly bounded.

Let ε > 0 be arbitrarily fixed and T > 0 given by (3.10). By hypothesis (H3), it

follows that G (t, s, x) is uniformly continuous on the set [0, n]× [0, T ]×B (R), where

R := p[T ]+1 + ξn and ξn := sup
t∈[0,n]

{|ξ (t)|} .

Hence, there is a δ > 0 such that for all t1, t2 ∈ [0, n] with |t1 − t2| < δ, all s ∈ [0, n] ,
and all y ∈ S,

|G (t1, s, y (s) + ξ (s))−G (t2, s, y (s) + ξ (s))| < ε

3T
.
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Then it follows that for all all t1, t2 ∈ [0, n] with |t1 − t2| < δ and all y ∈ S,

|(B1y) (t1)− (B1y) (t2)| ≤
∫ T

0

|G (t1, s, y (s) + ξ (s))−G (t2, s, y (s) + ξ (s))| ds

+

∫ ∞
T

ψ (t1, s) ds+

∫ ∞
T

ψ (t2, s) ds < ε.

Hence the set
{
B1y|[0,n], y ∈ S

}
is equicontinuous.

By Remark 3, we deduce that B1 is compact operator.

Step 4. Eq. (3.9) admits solutions. It suffices now to show that the set (2.1) is
bounded. We recall a general result stating that if a set is bounded with respect to a
family of seminorms, then it will be bounded with respect to every other equivalent
family of seminorms. So, let us consider y ∈ X, such that

y = λA1

( y
λ

)
+ λB1y, λ ∈ (0, 1).

Therefore,

‖y‖n ≤ λ
∥∥∥A1

( y
λ

)∥∥∥
n

+ ‖B1y‖n ≤ δn ‖y‖n + ‖B1y‖n . (3.11)

By hypothesis (H3),

|(B1y) (t)| ≤
∫ ∞
0

ψ (t, s) ds,∀t ≥ 0

and it is readily seen that
‖B1y‖n ≤ bn, (3.12)

where bn := b1n + b2n,

b1n := sup
t∈[0,γn]

{∫ ∞
0

ψ (t, s) ds

}
and b2n := sup

t∈[γn,n]

{
e−λn(t−γn)

∫ ∞
0

ψ (t, s) ds

}
.

From relations (3.11) and (3.12), it follows that

‖y‖n ≤
bn

1− δn
, ∀n ≥ 1,

which allows us to conclude that the set (2.1) is bounded and so the proof of Theorem
3.1 is now complete. �

4. Asymptotically stable solutions

Let x1, x2 be two solutions to Eq. (1.5). Then yi = xi + ξ, i ∈ 1, 2 are solutions
to (3.9). From the definitions of the function ξ and of the operator A1, we get for all
t ∈ R+

|(A1yi) (t)| ≤ |F (t, yi (t) + ξ (t))− F (t, ξ (t))|

+

∫ t

0

|K (t, s, yi (s) + ξ (s))−K (t, s, ξ (s))| ds,

Thus

|yi (t)| ≤ f (t) |yi (t)|+ k (t)

tα

∫ t

0

|yi (s)| ds+

∫ ∞
0

ψ (t, s) ds, ∀t > 0



346 CRISTIAN VLADIMIRESCU

or, equivalently,

|yi (t)| ≤ k (t)

tα (1− f (t))

∫ t

0

|yi (s)| ds+
1

1− f (t)

∫ ∞
0

ψ (t, s) ds, ∀t > 0. (4.1)

Setting

wi (t) :=

∫ t

0

|y (s)| ds, i ∈ 1, 2, β (t) :=
k (t)

tα (1− f (t))
,

and

γ (t) :=
1

1− f (t)

∫ ∞
0

ψ (t, s) ds,

since (4.1) we obtain

wi (0) = 0, w′i (t) = |yi (t)| ≤ β (t)wi (t) + γ (t) , ∀t > 0, ∀i ∈ 1, 2. (4.2)

By (4.2) classical estimates lead us to

|yi (t)| ≤ β (t) e
∫ t
0
β(s)ds ·

∫ t

0

γ (s) e−
∫ s
0
β(u)duds+ γ (t)

= : h (t) , ∀t > 0, ∀i ∈ 1, 2. (4.3)

Let us suppose that lim
t→∞

h (t) = 0. From (4.3) on a hand we have

|x1(t)− x2(t)| = |y1(t)− y2(t)| ≤ 2h(t), ∀t > 0

and on the other hand, for every solution y to (3.9) we obtain lim
t→∞

y (t) = 0 and so

for every solution x to (1.5) , we obtain

lim
t→∞

|x (t)− ξ (t)| = 0.

Therefore we have proved the following theorem.

Theorem 4.1. Assume that hypotheses (H1)–(H3) are fulfilled and

lim
t→∞

h (t) = 0. (4.4)

Then every solution x (t) to Eq. (1.5) is asymptotically stable and

lim
t→∞

|x (t)− ξ (t)| = 0.

In the sequel we present an example when condition (4.4) holds. If the following
conditions are satisfied:

(1) lim
t→∞

β (t) = 0;

(2)

∫ ∞
0

β (t) dt <∞;

(3) lim
t→∞

γ (t) = 0;

(4)

∫ ∞
0

γ (t) dt <∞,



EXISTENCE OF ASYMPTOTICALLY STABLE SOLUTIONS 347

then lim
t→∞

h (t) = 0.

For instance, if we consider

f : R+ → [0, 1), f (t) =
1

1 + t2
,

k : R+ → R+, k (t) :=
tα sin2 t

1 + t2
,

ψ : ∆→ R+, ψ (t, s) =
t2e−t

2−s2

1 + t2
,

and α ∈ [0, 1) arbitrary, then the conditions (1)− (4) are fulfilled.
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