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Abstract. In this article, we study coupled fixed point theorems in newly appeared JS-metric spaces.
It is important to note that the class of JS-metric spaces includes standard metric spaces, dislocated

metric spaces, b
′
-metric spaces, modular spaces etc. The purpose of this paper is to present several

coupled fixed point results in a more general way. Moreover, the techniques used in our proofs are
indeed different from the comparable existing literature. Finally, we present non-trivial examples to

validate our main results.
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1. Introduction

Throughout this article, we use usual arithmetic operations in the set of (affinely)
extended real number system R̄ = R∪{+∞,−∞} and the notations have their usual
meanings. Let X be a nonempty set and D : X2 → [0,∞] be a mapping. For every
x ∈ X, we consider the set C(D, X, x) (see, [8]) as follows:

C(D, X, x) = {(xn) ⊂ X : lim
n→∞

D(xn, x) = 0}.

Very recently, Jleli and Samet [8] introduced an interesting generalization of a metric
space in the following way.
Definition 1.1. [8] Let X be a nonempty set and D : X2 → [0,∞] be a mapping.
Then (X,D) is said to be a generalized metric space if the following conditions are
satisfied:

(D1) ∀x, y ∈ X,D(x, y) = 0⇒ x = y;
(D2) ∀x, y ∈ X,D(x, y) = D(y, x);
(D3) there exists c > 0 such that for all (x, y) ∈ X2 and (xn) ∈ C(D, X, x),

D(x, y) ≤ c lim sup
n→∞

D(xn, y).
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If C(D, X, x) = φ, then (X,D) is a generalized metric space if D satisfies (D1−D2).
Throughout this article, we call this metric space as a ‘JS-metric space ’ (due to

Jleli and Samet). The authors of [8] reported that different abstract spaces such as

standard metric spaces, dislocated metric spaces, b
′
-metric spaces, modular spaces etc.

can be derived from their newly introduced metric space. They also established several
fixed point results for the mappings like famous Banach contraction, Ćirić quasi-
contraction, Banach contraction in partially ordered metric spaces etc. Motivated by
their work, Senapati et al. [13] studied and established some more important results
on this structure. For the notion of convergence, Cauchy sequence, completeness and
other topological details, the readers are referred to see [8] and [13].

In another direction, Bhaskar and Lakshmikantham [2] introduced the concept of
coupled fixed point in the setting of partially ordered metric spaces as follows:
Definition 1.2. [2] An element (x, y) ∈ X2 is said to be a coupled fixed point of
F : X2 → X if x = F (x, y) and y = F (y, x).

They also introduced the concept of a mixed monotone operator which is given by:
Definition 1.3. [2] Let (X,≤) be a partially ordered set and F : X2 → X be a
function. Then F is said to have the mixed monotone property if F has the following
properties:

x1 ≤ x2 ⇒ F (x1, y) ≤ F (x2, y);∀x1, x2, y ∈ X,
and

y1 ≤ y2 ⇒ F (x, y1) ≥ F (x, y2);∀x, y1, y2 ∈ X.
Using this concept, the authors of [2] presented the following result in support

of the existence of a coupled fixed point of an operator satisfying mixed monotone
property in partially ordered complete metric spaces.
Theorem 1.4. [2] Let (X,≤) be a partially ordered set and (X, d) be a complete
partially ordered metric space. Suppose F : X2 → X is a mixed monotone operator
having the following property:

d(F (x, y), F (u, v)) ≤ k

2
{d(x, u) + d(y, v)} ∀x ≥ u; y ≤ v. (1.1)

Also consider that there exist x0, y0 ∈ X with x0 ≤ F (x0, y0); y0 ≥ F (y0, x0). If

(A) F is continuous or
(B) X has the following property:

(a) If a non-decreasing sequence (xn)→ x, then xn ≤ x for all n ∈ N;
(b) If a non-increasing sequence (yn)→ y, then yn ≥ y for all n ∈ N,

then there exist x, y ∈ X such that x = F (x, y) and y = F (y, x).
Afterwards, in 2011, Berinde [1] generalized the contraction condition 1.1 as follows:

d(F (x, y), F (u, v)) + d(F (y, x), F (v, u)) ≤ k[d(x, u) + d(y, v)] (1.2)

for all x ≥ u; y ≤ v and established coupled fixed point for a mixed monotone operator
in partially ordered complete metric spaces. For more results on fixed points and
coupled fixed points, the readers may see [5, 9, 12, 11, 6, 7, 4, 3, 10].

In this article, inspired by the ideas of JS-metric spaces, we extend and improve the
coupled fixed point results of Berinde [1] due to contraction condition 1.2 for a map-
ping satisfying mixed monotone property in complete JS-metric spaces endowed with
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partial order. It is notable that the triangular inequality, so called basic property of
the standard metric space, is replaced by a more weaker condition in JS-metric spaces.
Necessarily, the techniques used in our proofs are quite different and most remark-
ably some of the proofs become simpler. Finally we construct non-trivial examples
to substantiate our main results.

2. Main results

In order to state our main results, we need to define some basic things regarding
this structure. Let (X,D) be a JS-metric space. Now we consider X2 and define

D+((x, y), (u, v)) = D(x, u) +D(y, v)

for all (x, y), (u, v) ∈ X2. We prove that (X2,D+) is a D+-JS-metric space induced
by the metric D.

(D′) Let D+((x, y), (u, v)) = 0. It implies that D(x, u) +D(y, v) = 0. It is possible
only when both D(x, u) = 0 and D(y, v) = 0, i.e., x = u and y = v. Therefore,

D+((x, y), (u, v)) = 0⇒ (x, y) = (u, v)

for all (x, y), (u, v) ∈ X2.
(D′′) Clearly, D+((x, y), (u, v)) = D+((u, v), (x, y)) for all (x, y), (u, v) ∈ X2.
(D′′′) Let (xn, yn)→ (x, y) as n→∞. Then

D+((x, y), (u, v)) = D(x, u) +D(y, v)

≤ lim sup{c1D(xn, u) + c2D(yn, v)}
≤ c0 lim supD+((xn, yn), (u, v))

where c0 = max{c1, c2}.
Thus D+ satisfies all the axioms of JS-metric. Hence (X2,D+) is a D+-JS-metric
space. Proceeding in this way, we can define a distance function on any n-tuple set
Xn for n ≥ 2.
Example 2.1. Let X = R and D be a distance function on X defined by

D(x, y) =

{
3, (x, y) = (0, 1) or (1, 0);
|x− y|, otherwise.

Our first aim is to show that (X,D) is a JS-metric space. Conditions (D1) and
(D2) are trivially hold. Now we check the condition (D3). Let x, y ∈ X such that
C(D, X, x) 6= φ. Then following two possibilities may occur:
Case I. Let x = 0 and y = 1. Then D(x, y) = 3 and D(xn, y) = |xn − 1| and

D(x, y) = 3 ≤ c lim sup |xn − y| ≤ c

which holds for all c ≥ 3. Again, if x = 1 and y = 0, then we have D(1, 0) = 3 and

D(x, y) = 3 ≤ c lim supD(xn, y) = c lim sup |xn − 0| = c

which also holds for all c ≥ 3.
Case II. Suppose (x, y) 6= (0, 1), (1, 0). Then for any other (x, y) with C(D, X, x) 6= φ,

D(x, y) = |x− y| ≤ c lim supD(xn, y) = c lim sup |xn − y|
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which holds for any c ≥ 1. Therefore, all the axioms of JS-metric spaces hold. Hence,
(X,D) is a JS-metric space and this implies that (X2,D+) is also a JS-metric space
under the metric D+ on X2 defined by

D+((x, y), (u, v)) = D(x, u) +D(y, v).

Next, we define another function Dm : X2 → R+ by

Dm((x, y), (u, v)) = max{D(x, u),D(y, v)}.
Then, it can be checked that Dm also satisfies the axioms of distance function in JS-
metric spaces. Hence, (X2,Dm) is also a Dm-JS-metric space. In a similar fashion,
one can define n-tuple Dm-JS-metric space for any n ≥ 2. In order to state our main
results, the following propositions will be necessary.
Proposition 2.2. Let (zn) = (xn, yn) be a sequence in (X2,D+). Suppose (zn) D+-
converges to x∗ = (x, y) and u∗ = (u, v). Then x∗ = u∗.
Proof. By the condition (D′′′), we have

D+((x, y), (u, v)) ≤ c lim supD+((xn, yn), (u, v))

≤ c lim sup{D(xn, u) +D(yn, v)} = 0

⇒ (x, y) = (u, v).

Proposition 2.3. Let (xn) be a convergent sequence in (X,D), converging to x ∈ X.
Then D(x, x) = 0.
Proof. By the hypothesis of JS-metric spaces, we can find some c > 0 such that

D(x, x) ≤ c lim sup
n→∞

D(x, xn) = 0.

Similarly, we can deduce the following result.
Proposition 2.4. Let (zn) be a convergent sequence in (X2,D+), converging to
(x, y) ∈ X, where zn = (xn, yn). Then D+((x, y), (x, y)) = 0.

If (X,D) is a complete JS-metric space then one can easily check that (X2,D+)
and (X2,Dm) are complete, too. Let us consider (x, y) ∈ X2. We define

δF (D, (x, y)) = sup{D(F i(x, y), F j(x, y)) : i, j ∈ N}
and

δF (D, (y, x)) = sup{D(F i(y, x), F j(y, x)) : i, j ∈ N}.
Throughout this article, we assume the partial order ‘ ≤’ on X2 as follows:

(u, v) ≤ (x, y)⇔ u ≤ x, v ≥ y
for all x, y, u, v ∈ X and we consider (X2,D+) as partially ordered complete D+-JS-
metric space.

Before stating the coupled fixed point results, we would like to draw the reader’s
attention to an important thing regarding this structure. The authors of [13] have
already proved that the existence of a fixed point of a contractive mapping satisfying
certain conditions is guaranteed only when we choose k ∈ [0, 1)∩ [0, 1c ), where c is the
least value for which condition (D3) is satisfied in Definition 1.1 (see, Theorem 3.2 in
[13]). If the least value c = 0, then it leads to a trivial case. Similarly, to establish
the coupled fixed point results, we choose k ∈ [0, 1) ∩ [0, 1

c0
) in the following result,
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where c0 denotes the least value for which condition (D′′′) is satisfied in D+-JS-metric
spaces.

2.1. Coupled fixed point results. In this section, we extend the results of Berinde
[1] which generalize the results of Bhaskar and Lakshmikantham [2]. The contraction
condition 1.2 in the setting of (X2,D+) is presented by

D(F (x, y), F (u, v)) +D(F (y, x), F (v, u)) ≤ k[D(x, u) +D(y, v)] (2.1)

for all x ≥ u; y ≤ v and k ∈ [0, 1) ∩ [0, 1
c0

). We define an operator TF : X2 → X2 by

TF (x, y) = (F (x, y), F (y, x)) (2.2)

for all (x, y) ∈ X2. Then we can write the contraction condition 2.1 as follows:

D+(TF (X), TF (U)) ≤ kD+(X,U) (2.3)

where X = (x, y), U = (u, v) ∈ X2 with x ≥ u; y ≤ v and k ∈ [0, 1) ∩ [0, 1
c0

).
Remark 2.1.1. From the above presentation, it is clear that the coupled fixed point
theorem for F reduces to usual Banach fixed point theorem for the operator TF
because F has a coupled fixed point iff TF has a fixed point.

By the notation δ(D+, TF , z0), we define

δ(D+, TF , z0) = sup{D+(T i
F (z0), T j

F (z0)); i, j ∈ N}.
The following results are the extended version of the results given in Berinde [1].
Theorem 2.1.2. Let F : X2 :→ X be a mapping with mixed monotone property on a
partially ordered complete D+-JS-metric space (X2,D+). Suppose for all x ≥ u; y ≤ v,
F satisfies the contraction condition 2.1. If there exists z0 = (x0, y0) ∈ X2 with the
following conditions:

(1) x0 ≤ F (x0, y0) and y0 ≥ F (y0, x0) or
(2) x0 ≥ F (x0, y0) and y0 ≤ F (y0, x0),
(3) δF (D, (x0, y0)) <∞ and δF (D, (y0, x0)) <∞,

then there exists a coupled fixed point z̃ = (x̃, ỹ) ∈ X2 of F, i.e., x̃ = F (x̃, ỹ);
ỹ = F (ỹ, x̃).
Proof. By the hypothesis of the theorem, let us assume, there exists z0 = (x0, y0) ∈ X2

with x0 ≤ F (x0, y0) and y0 ≥ F (y0, x0). We denote x1 = F (x0, y0) and y1 = F (y0, x0)
and we also denote

F 2(x0, y0) = F (F (x0, y0), F (y0, x0)) = F (x1, y1) = x2;

F 2(y0, x0) = F (F (y0, x0), F (x0, y0)) = F (y1, x1) = y2.

Processing in this way, by the mixed monotone property of F , we get

Fn(x0, y0) = F (Fn−1(x0, y0), Fn−1(y0, x0)) = xn;

Fn(y0, x0) = F (Fn−1(y0, x0), Fn−1(x0, y0)) = yn.

In view of Remark 2.1.1, to prove the existence of a coupled fixed point of F , it
is sufficient to establish the existence of a fixed point of the operator TF given by
Equation 4. In order to show this we consider

z1 = (x1, y1) = (F (x0, y0), F (y0, x0)) = TF (x0, y0) = TF (z0)



328 TANUSRI SENAPATI AND LAKSHMI KANTA DEY

and

z2 = (x2, y2) = (F 2(x0, y0), F 2(y0, x0)) = (F (x1, y1), F (y1, x1)) = TF (z1) = T 2
F (z0).

In a similar way, we obtain

zn = (xn, yn) = (Fn(x0, y0), Fn(y0, x0)) = · · · = Tn
F (z0)

for all n ∈ N. Hence, (zn) is a Picard sequence with initial approximation z0.
Again, due to mixed monotone property of F , it is easy to show that for all n ≥ 0,

xn ≤ xn+1 and yn ≥ yn+1. This implies that zn ≤ zn+1, i.e., (zn) is a non-decreasing
sequence.

Our next intention is to prove that (zn) is a Cauchy sequence. Since F satisfies
the contraction condition 2.1, for all n ≥ 0 and i ≤ j, we get

D(Fn+i(x0, y0), Fn+j(x0, y0)) +D(Fn+i(y0, x0), Fn+j(y0, x0))

≤ k[D(Fn+i−1(x0, y0), Fn+j−1(x0, y0)) +D(Fn+i−1(y0, x0), Fn+j−1(y0, x0))]

⇒ D+(Tn+i
F (z0), Tn+j

F (z0)) ≤ kD+(Tn−1+i
F (z0), Tn−1+j

F (z0)) [by 2.3]

⇒ δ(D+, TF , T
n
F (z0)) ≤ kδ(D+, TF , T

n−1
F (z0)).

This is true for all n ∈ N. Hence for all i ≤ j, we obtain

D+(Tn+i
F (z0), Tn+j

F (z0)) ≤ kδ(D+, TF , T
n−1
F (z0))

≤ k2δ(D+, TF , T
n−2
F (z0))

...

≤ knδ(D+, TF , z0). (2.4)

Again, we know that

δ(D+, TF , z0) = sup{D+(T i
F (z0), T j

F (z0)) : i, j ∈ N}
= sup{D(F i(x0, y0), F j(x0, y0)) +D(F i(y0, x0), F j(y0, x0))}
= δF (D, (x0, y0)) + δF (D, (y0, x0)).

As δF (D, (x0, y0)) <∞ and δF (D, (y0, x0)) <∞, so we must have

δ(D+, TF , z0) <∞.

Employing this in (2.4), for all m ∈ N, we obtain

D+(zn, zn+m) = D+(Tn
F (z0), Tn+m

F (z0))

≤ δ(D+, TF , T
n
F (z0))

≤ knδ(D+, TF , z0)

→ 0 as n→∞.

This implies that (zn) is a Cauchy sequence. As (X2,D+) is complete, so the sequence
(zn) converges to z̃ for some z̃ = (x̃, ỹ) ∈ X2.
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Next, we prove that z̃ = (x̃, ỹ) is a coupled fixed point of F , i.e., a fixed point of
TF . Now,

D+(zn+1, TF (z̃)) = D+(TF (zn), TF (z̃)) ≤ kD+(zn, z̃)

⇒ D+(zn+1, TF (z̃)) = 0 as n→∞
⇒ zn → TF (z̃) as n→∞. (2.5)

Since limit of a convergent sequence in this structure is unique, so we must have
z̃ = TF (z̃), i.e., z̃ is a fixed point of TF . In view of Remark 2.1.1, we can conclude
that z̃ = (x̃, ỹ) is a coupled fixed point of F , that is, x̃ = F (x̃, ỹ) and ỹ = F (ỹ, x̃).

Next, we present some additional conditions for the uniqueness of a coupled fixed
point of F .
Theorem 2.1.3. Let z̃ = (x̃, ỹ) and w = (u, v) be two comparable coupled fixed points
of F with D+(w, z̃) <∞. Then w = z̃.
Proof. We have

D+(w, z̃) = D+(TF (w), TF (z̃)) ≤ kD+(w, z̃)

⇒ D+(w, z̃) = 0

⇒ w = z̃

⇒ (u, v) = (x̃, ỹ).

Hence the proof follows.
Theorem 2.1.4. Let w = (u, v) and z̃ = (x̃, ỹ) be two incomparable coupled fixed
points of F . Suppose there exists an upper bound or lower bound z∗ = (x∗, y∗) ∈ X2

of w and z̃ with D+(w, z∗) <∞ and D+(z̃, z∗) <∞. Then w = z̃.
Proof. Clearly, for every n ∈ N, Tn

F (z∗) is comparable to w = Tn
F (w) as well as to

z̃ = Tn
F (z̃). By the contraction principle 2.3, we obtain

D+(TF (w), TF (z∗)) ≤ kD+(w, z∗),

and

D+(T 2
F (w), T 2

F (z∗)) ≤ kD+(TF (w), TF (z∗)) ≤ k2D+(w, z∗).

Proceeding in this way, one can obtain,

D+(Tn
F (w), Tn

F (z∗)) ≤ knD+(w, z∗). (2.6)

By using the axioms of D+-JS-metric spaces and the above inequality, we have

D+(w, Tn
F (z∗)) ≤ c lim supD+(Tn

F (w), Tn
F (z∗)) ≤ kncD+(w, z∗).

Since, D+(w, z∗) < ∞ and 0 ≤ k < 1, D+(w, Tn
F (z∗)) → 0, whenever n → ∞. This

implies that the sequence (Tn
F (z∗)) converges to w.

Analogously, it can be proved that the sequence (Tn
F (z∗)) also converges to z̃. In

view of Proposition 2.2, we must have z̃ = w, that is, (x̃, ỹ) = (u, v).
Next, we are interested in finding additional conditions for the equality of the

components of a coupled fixed point. In order to show this we consider the following
conditions:

(C1) Let (x̃, ỹ) be a coupled fixed point of F such that x̃ and ỹ are comparable in
X with D(x̃, ỹ) <∞.
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(C2) Suppose every pair of elements x, y ∈ X has either an upper bound or a
lower bound w ∈ X with D(x,w) < ∞,D(y, w) < ∞, D(x, y) < ∞ and
D(w,w) <∞.

(C3) Let x0, y0 be comparable in X with D(x0, y0) <∞.

Theorem 2.1.5. By adding any of the above mentioned conditions with the hypothe-
ses of Theorem 2.1.2, one can derive the equality of the components of coupled fixed
point.
Proof. We prove this theorem in the following steps:
Step I. Suppose the condition (C1) is satisfied along with the hypotheses of Theorem
2.1.2. We consider X = (x̃, ỹ) and U = (ỹ, x̃). Using the contraction principle in
Theorem 2.1.2, we get,

⇒ D(F (x̃, ỹ), F (ỹ, x̃)) +D(F (ỹ, x̃), F (x̃, ỹ)) ≤ k(D(x̃, ỹ) +D(ỹ, x̃))

⇒ D(F (x̃, ỹ), F (ỹ, x̃)) ≤ kD(x̃, ỹ)

⇒ D(x̃, ỹ) ≤ kD(x̃, ỹ)

⇒ D(x̃, ỹ) = 0, i.e., x̃ = ỹ.

Step II. Suppose the condition (C2) is satisfied along with the hypotheses of Theorem
2.1.2 and (x̃, ỹ) is coupled fixed point of F such that x̃, ỹ are not comparable. Let
w̃ ∈ X be an upper bound of x̃ and ỹ with D(x̃, w̃) <∞, D(ỹ, w̃) <∞, D(x̃, ỹ) <∞
and D(w̃, w̃) <∞. Then, x̃ ≤ w̃ and ỹ ≤ w̃.With respect to partial order in (X2, D+),
we must have that

(x̃, ỹ) ≥ (x̃, w̃); (x̃, w̃) ≤ (w̃, x̃); (w̃, x̃) ≥ (ỹ, x̃).

Let us consider X = (x̃, ỹ) and U = (x̃, w̃). Since X, U are comparable, so from
contraction conditions 2.1 and 2.3, we get

D(F (x̃, ỹ), F (x̃, w̃)) +D(F (ỹ, x̃), F (w̃, x̃)) ≤ k[D(x̃, x̃) +D(ỹ, w̃)]

⇒ D+(TF (X), TF (U)) ≤ k[D(x̃, x̃) +D(ỹ, w̃)].

In view of Proposition 2.3, we have D(x̃, x̃) = 0 and hence we have

D+(TF (X), TF (U)) ≤ kD(ỹ, w̃). (2.7)

Now, since X = (x̃, ỹ) is a fixed point of TF , so Tn
F (X) = X for all n ∈ N. Hence,

Equation 2.7 is reduced to

D+(Tn
F (X), Tn

F (U)) ≤ knD+(X,U)

⇒ D+(X,Tn
F (U)) ≤ knD(ỹ, w̃)

⇒ D+(X,Tn
F (U)) = 0 (2.8)

as n→∞ and D(ỹ, w̃) <∞. This implies that the sequence (Tn
F (U)) converges to X.

Next, we consider that Y = (ỹ, x̃) and V = (ỹ, w̃). Then obviously Y, V are
comparable and hence we get

D+(TF (Y ), TF (V )) ≤ kD+(Y, V )

≤ k[D(ỹ, ỹ) +D(x̃, w̃)]

≤ kD(x̃, w̃).
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In a similar fashion, we have

D+(Tn
F (Y ), Tn

F (V )) ≤ knD+(Y, V )

⇒ D+(Y, Tn
F (V )) ≤ knD(x̃, w̃)

⇒ D+(Y, Tn
F (V )) = 0 (2.9)

as n → ∞ and D(x̃, w̃) < ∞. This implies that the sequence (Tn
F (V )) converges to

Y . Again, since U and V are comparable, then using the contraction principle 2.3,
we yield

D+(Tn
F (U), Tn

F (V )) ≤ knD+(U, V )

⇒ D+(Tn
F (U), Tn

F (V )) ≤ kn{D(x̃, ỹ) +D(w̃, w̃)}
⇒ D+(Tn

F (U), Tn
F (V )) = 0 (2.10)

as n → ∞ and D(x̃, ỹ) < ∞, D(w̃, w̃) < ∞. By the axioms of D+-JS-metric space
along with (2.8), (2.9) and (2.10), there exists c > 0 such that

D+(X,Y ) ≤ c lim supD+(Tn
F (U), Tn

F (V )) = 0

⇒ X = Y

⇒ (x̃, ỹ) = (ỹ, x̃)

⇒ x̃ = ỹ.

Alternatively, one can find the equality of components of a couple fixed point by taking
w̃ ∈ X as a lower bound of x̃ and ỹ with D(x̃, w̃) < ∞, D(ỹ, w̃) < ∞, D(x̃, ỹ) < ∞
and D(w̃, w̃) <∞.
Step III. Suppose the condition (C3) is satisfied along with the hypotheses of Theo-
rem 2.1.2. Due to mixed monotone property of F , for each n ≥ 1, xn = F (xn−1, yn−1)
and yn = F (yn−1, xn−1) are also comparable and xn → x̃ and yn → ỹ as n→∞. By
the axioms of JS-metric spaces, we obtain

D(x̃, ỹ) ≤ c lim supD(xn, yn). (2.11)

Again, by taking X = (xn, yn) and U = (yn, xn) in the contraction condition of
Theorem 2.1.2, for all n ≥ 0, we get

D(F (xn, yn), F (yn, xn)) ≤ kD(xn, yn)

⇒ D(xn+1, yn+1) ≤ kD(xn, yn). (2.12)

Using Inequalities 2.11 and 2.12, we must have

D(x̃, ỹ) ≤ c lim supD(xn, yn) ≤ lim sup kncD(x0, y0) = 0

as n→∞. This implies that D(x̃, ỹ) = 0. Hence, we obtain x̃ = ỹ.
As Berinde’s theorems are extended versions of the main results of Bhaskar and

Lakshmikantham [2], we can deduce immediate consequences of the above results
which are the sharpened versions of the main results given in Bhaskar and Laksh-
mikantham [2].

The improved version of Theorem 2.1 in Bhaskar and Lakshmikantham [2] is given
as follows:
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Corollary 2.1.6. Let F : X2 → X be a mapping with mixed monotone property on
X. Assume that there exists k ∈ [0, 1) ∩ [0, 1

c0
) such that

D(F (x, y), F (u, v)) ≤ k

2
D+((x, y), (u, v))

for x ≥ u; y ≤ v. If there exist x0, y0 ∈ X such that

(A) x0 ≤ F (x0, y0); y0 ≥ F (y0, x0);
(B) δF (D, (x0, y0)) <∞ and δF (D, (y0, x0)) <∞,

then there exist x, y ∈ X such that x = F (x, y); y = F (y, x).
Remark 2.1.7. The authors of [2] considered two alternative hypotheses to establish
the existence of coupled fixed points. These are: either the function F is continuous
or if (xn) and (yn) are non-decreasing and non-increasing sequences respectively with
xn → x and yn → y, then xn ≤ x; yn ≥ y for all n ∈ N. But the Corollary
2.1.6 ensures the existence of coupled fixed points without assuming any of the above
mentioned hypotheses.
Remark 2.1.8. As every b-metric space is a JS-metric space with c = s ≥ 1 in
Definition 1.1, so one can obtain the coupled fixed point results in partially ordered
b-metric space from our obtained results. In particular, one can deduce the coupled
fixed point result due to Bota et al. [3] (Theorem 2.2 in [3]) from Corollary 2.1.6
directly.
Remark 2.1.9. The uniqueness of a coupled fixed point and the equality of the
component of a coupled fixed point of F in Corollary 2.1.6 are guaranteed by the
Theorem 2.1.3, 2.1.4 and 2.1.5 respectively.

If we replace the distance function ‘D+’ on X2 by Dm’, then we can also prove the
existence of coupled fixed point. In this direction, we present the following theorem.
Theorem 2.1.10. Let F : X2 → X be a mapping with mixed monotone property on
X. Assume that there exists k ∈ [0, 1) such that

Dm((F (x, y), F (y, x)), (F (u, v), F (v, u)) ≤ kDm((x, y), (u, v))

for x ≥ u; y ≤ v. If there exist x0, y0 ∈ X with

(A) x0 ≤ F (x0, y0); y0 ≥ F (y0, x0);
(B) δF (D, (x0, y0)) <∞ and δF (D, (y0, x0)) <∞,

then F has a coupled fixed point (x, y) ∈ X2, that is, x = F (x, y) and y = F (y, x).
Proof. Proof is almost similar to the proof of Theorem 2.1.2. Hence, we skip the
proof.

Finally, we furnish some examples which substantiate our obtained results.
Example 2.1.11. Let X = [0, 1] and we define the distance function as

D(x, y) = |x|+ |y|.

At first, we prove that (X,D) is a JS-metric space. In order to prove this, we check
the axioms of JS-metric spaces.

(1) D(x, y) = 0⇒ |x|+ |y| = 0⇒ |x| = |y| = 0, i.e., x = y = 0.
(2) Clearly, D(x, y) = D(y, x).



COUPLED FIXED POINT THEORY IN JS-METRIC SPACES 333

(3) Let (xn) be a sequence converging to some x in X. Then for any y ∈ X, we
have D(x, y) = |x|+ |y|. Again, D(xn, y) = |xn|+ |y| and

lim supD(xn, y) = lim sup(|xn|+ |y|) = |x|+ |y|.

So, we can always find some c ≥ 1 such that D(x, y) ≤ c lim supD(xn, y).

All the axioms are satisfied. Hence, (X,D) is a JS-metric space. Now, we consider
the metric space (X2,D+), where,

D+((x, y), (u, v)) = D(x, u) +D(y, v).

It is clear that (X2,D+) is a D+-JS metric space. Next, we consider a function
F : X2 → X defined by

F (x, y) =


0, whenever x = 0;

(2x− y2)

5
, otherwise.

Then we check the axioms of Theorem (2.1.2)

(1) Let x1 ≤ x2. Then for all y ∈ X, we have 2x1 − y3 ≤ 2x2 − y3 which
implies that F (x1, y) ≤ F (x2, y), i.e., F is monotonic non-decreasing in its
1st component. Again, for all x ∈ X with x 6= 0, whenever y1 ≤ y2, we
get 2x − y31 ≥ 2x − y32 which shows that F (x, y1) ≥ F (x, y2) and for x = 0,
F (x, y1) = F (x, y2) = 0 for all y1, y2 ∈ X. So for all x ∈ X, F (x, y1) ≥
F (x, y2) with y1 ≤ y2, i.e., F is monotonic non-increasing function in its 2nd
component. Thus F has mixed monotone property.

(2) Let (x0, y0) = (1, 0). Then,

x1 = F (x0, y0) = F (1, 0) =
2

5
≤ x0 = 1

and

y1 = F (y0, x0) = F (0, 1) = 0 ≥ y0 = 0.

It is clear that for all n ∈ N, (Fn(x0, y0)) is a decreasing sequence converging
to 0 and (Fn(y0, x0)) is a constant sequence. Hence, δF (D, (x0, y0)) <∞ and
δF (D, (y0, x0)) <∞.

(3) Now we prove that F satisfies the contraction condition 2.1.
Let (x, y), (u, v) ∈ X2 with x ≥ u and y ≤ v.
(a) Suppose, x = u = 0, then for all y, v ∈ X, D(F (x, y), F (u, v)) = 0.

Hence,

D(F (x, y), F (u, v)) +D(F (y, x), F (v, u)) = D(F (y, x), F (v, u))

≤ |2y|+ |2v|
5

≤ 2

5
D+((x, y), (u, v)).

(b) For y = v = 0,

D(F (x, y), F (u, v)) +D(F (y, x), F (v, u)) ≤ 2

5
D+((x, y), (u, v)).
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(c) Analogously, for u = 0, x 6= 0 and y = 0, v 6= 0,

D(F (x, y), F (u, v)) +D(F (y, x), F (v, u)) ≤ 2

5
D+((x, y), (u, v)).

(d) Let (x, y), (u, v) ∈ X2 with x ≥ u and y ≤ v and u 6= 0, y 6= 0. Then

D(F (x, y), F (u, v)) +D(F (y, x), F (v, u)) =
|2x− y3|

5
+
|2u− v3|

5

+
|2y − x3|

5
+
|2v − u3|

5

≤ 3

5
(|x|+ |y|+ |u|+ |v|)

≤ 3

5
D+((x, y), (u, v)).

From the above illustrations, it is clear that F satisfies the contraction con-
dition 2.1.

Thus F satisfies all the conditions of Theorem 2.1.2. Hence, F has a
coupled fixed point. Note that (0, 0) is the unique coupled fixed point of F .

Next, we construct another example in support of Corollary 2.1.6.
Example 2.1.12. Let us consider X = R ∪ {∞,−∞} and we define the distance
function D on X as D(x, y) = |x|+ |y| for all x, y ∈ X. From previous example, it is
clear that (X,D) is a JS-metric space and so (X2,D+) is a D+-JS metric space. Let
us define a function F : X2 → X by

F (x, y) =
x− y

3
, ∀x, y ∈ X.

Then,

(i) Let x1 ≤ x2. Then for all y ∈ X, we have x1 − y ≤ x2 − y which implies that
F (x1, y) ≤ F (x2, y), i.e., F is monotonic non-decreasing in its 1st component.
Again, for all x ∈ X, whenever y1 ≤ y2, we get x− y1 ≥ x− y2 which shows
that F (x, y1) ≥ F (x, y2). So F is monotonic non-increasing function in its
2nd component. Thus F has mixed monotone property.

(ii) Let (x, y), (u, v) ∈ X2. Then,

D(F (x, y), F (u, v)) =
|x− y|

3
+
|u− v|

3

≤ 1

3
(|x|+ |u|) +

1

3
(|y|+ |v|)

≤ 2

3

D+((x, y), (u, v))

2
.

This shows that F satisfies the contraction condition.
(iii) Let us set x0 = −3 and y0 = 2. Then,

x1 = F (x0, y0) = F (−3, 2) =
−5

3
> x0 = −3

and

y1 = F (y0, x0) = F (2,−3) =
5

3
< y0 = 2.
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Again, it is easy to show that for all i, j ∈ N, δF (D, (x0, y0)) < ∞ and
δF (D, (y0, x0)) <∞.

Thus all the conditions of the Corollary 2.1.6 are satisfied. Therefore F has a coupled
fixed point. Here, (0, 0) is a coupled fixed point of F . Notice that this is not unique
since (∞,−∞) is also a coupled fixed point of F .
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[9] V. Lakshmikantham, L.B. Ćirić, Coupled fixed point theorems for nonlinear contractions in
partially ordered metric spaces, Nonlinear Anal., 70(12)(2009), 4341-4349.
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[11] S. Radenović, Remarks on some coupled coincidence point results in partially ordered metric
spaces, Arab J. Math. Sci., 20(1)(2014), 29-39.
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