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Abstract. In this article, we study coupled fixed point theorems in newly appeared JS-metric spaces.
It is important to note that the class of JS-metric spaces includes standard metric spaces, dislocated
metric spaces, b -metric spaces, modular spaces etc. The purpose of this paper is to present several
coupled fixed point results in a more general way. Moreover, the techniques used in our proofs are
indeed different from the comparable existing literature. Finally, we present non-trivial examples to
validate our main results.
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1. INTRODUCTION

Throughout this article, we use usual arithmetic operations in the set of (affinely)
extended real number system R = RU {400, —0o} and the notations have their usual
meanings. Let X be a nonempty set and D : X2 — [0, 00] be a mapping. For every
x € X, we consider the set C'(D, X, z) (see, [8]) as follows:

CD,X,z)={(zn) C X: nlLIr;OD(xn,x) = 0}.

Very recently, Jleli and Samet [8] introduced an interesting generalization of a metric
space in the following way.
Definition 1.1. [8] Let X be a nonempty set and D : X2 — [0, 0] be a mapping.
Then (X, D) is said to be a generalized metric space if the following conditions are
satisfied:

(D1) Va,y € X,D(z,y) =0=z = y;

(D2) Vz,y € X,D(x,y) = D(y, z);

(D3) there exists ¢ > 0 such that for all (z,y) € X? and (x,) € C(D, X, z),

D(z,y) < climsup D(zp,y).
n—oo
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If C(D, X, x) = ¢, then (X, D) is a generalized metric space if D satisfies (D1—D?2).

Throughout this article, we call this metric space as a ‘JS-metric space’ (due to
Jleli and Samet). The authors of [8] reported that different abstract spaces such as
standard metric spaces, dislocated metric spaces, b -metric spaces, modular spaces etc.
can be derived from their newly introduced metric space. They also established several
fixed point results for the mappings like famous Banach contraction, Ciri¢ quasi-
contraction, Banach contraction in partially ordered metric spaces etc. Motivated by
their work, Senapati et al. [13] studied and established some more important results
on this structure. For the notion of convergence, Cauchy sequence, completeness and
other topological details, the readers are referred to see [8] and [13].

In another direction, Bhaskar and Lakshmikantham [2] introduced the concept of
coupled fixed point in the setting of partially ordered metric spaces as follows:
Definition 1.2. [2] An element (z,y) € X? is said to be a coupled fixed point of
F:X? > X ifx=F(z,y) and y = F(y, ).

They also introduced the concept of a mixed monotone operator which is given by:
Definition 1.3. [2] Let (X, <) be a partially ordered set and F : X2 — X be a
function. Then F' is said to have the mixed monotone property if F' has the following
properties:

21 < a9 = F(a1,y) < F(x2,y); Va1, 29,y € X,
and
yi Sy2 = Flz,y1) = F(2,92); Vo, 41,92 € X.

Using this concept, the authors of [2] presented the following result in support
of the existence of a coupled fixed point of an operator satisfying mixed monotone
property in partially ordered complete metric spaces.

Theorem 1.4. [2] Let (X, <) be a partially ordered set and (X,d) be a complete
partially ordered metric space. Suppose F : X? — X is a mized monotone operator
having the following property:

A(F (,), F(u,0)) < 5 {d(u) + dly,v)} Vo > uiy <. (1)

Also consider that there exist xg,yo € X with zo < F(x0,Y0); Y0 > F(yo,20). If

(A) F is continuous or

(B) X has the following property:
(a) If a non-decreasing sequence (x,,) — x, then x, < x for all n € N;
(b) If a non-increasing sequence (yn) — y, then y, >y for alln € N|

then there exist x,y € X such that x = F(z,y) and y = F(y, z).
Afterwards, in 2011, Berinde [1] generalized the contraction condition 1.1 as follows:

A(F(z,y), F(u,0)) + d(F(y, z), F(v,u)) < k[d(z,u) + d(y, v)] (1.2)

for all x > wu;y < v and established coupled fixed point for a mixed monotone operator
in partially ordered complete metric spaces. For more results on fixed points and
coupled fixed points, the readers may see [5, 9, 12, 11, 6, 7, 4, 3, 10].

In this article, inspired by the ideas of JS-metric spaces, we extend and improve the
coupled fixed point results of Berinde [1] due to contraction condition 1.2 for a map-
ping satisfying mixed monotone property in complete JS-metric spaces endowed with
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partial order. It is notable that the triangular inequality, so called basic property of
the standard metric space, is replaced by a more weaker condition in JS-metric spaces.
Necessarily, the techniques used in our proofs are quite different and most remark-
ably some of the proofs become simpler. Finally we construct non-trivial examples
to substantiate our main results.

2. MAIN RESULTS

In order to state our main results, we need to define some basic things regarding
this structure. Let (X, D) be a JS-metric space. Now we consider X2 and define

D+(($, y)a (’U/7 ’U)) = D(l‘7 u) + D(y7 ’U)
for all (z,v), (u,v) € X2 We prove that (X2, D, ) is a D;-JS-metric space induced
by the metric D.
(D) Let Dy((x,y), (u,v)) = 0. It implies that D(z,u) + D(y,v) = 0. It is possible
only when both D(x,u) = 0 and D(y,v) = 0, i.e., z = v and y = v. Therefore,
Di((z,y), (u,v)) = 0= (z,y) = (u,v)
for all (z,v), (u,v) € X2.
(D) Clearly, Dy ((z, ), (u,0)) = Dy (1, ), (z,)) for all (z,y), (u,0) € X°.
(D) Let (zn,yn) = (z,y) as n — co. Then
D+((x,y),(u,v)) = D($7u) +D(y,’U)
lim sup{c1D(xy, u) + c2D(yn,v)}
co lim sup D+((Ina yn)v (ua U))

INIA

where ¢g = max{ci,ca}.

Thus D, satisfies all the axioms of JS-metric. Hence (X2,Dy) is a D-JS-metric
space. Proceeding in this way, we can define a distance function on any n-tuple set
X" forn > 2.

Example 2.1. Let X =R and D be a distance function on X defined by

D(z,y) = { 5 (z,y) = (0,1) or (1,0);

|z —y|, otherwise.
Our first aim is to show that (X,D) is a JS-metric space. Conditions (D1) and
(D2) are trivially hold. Now we check the condition (D3). Let z,y € X such that
C(D, X, x) # ¢. Then following two possibilities may occur:
Case I. Let z = 0 and y = 1. Then D(z,y) = 3 and D(xy,y) = |z, — 1| and

D(z,y) =3 < climsup |z, —y| < ¢
which holds for all ¢ > 3. Again, if z =1 and y = 0, then we have D(1,0) = 3 and
D(x,y) = 3 < climsupD(zy,,y) = climsup |z, — 0| = ¢

which also holds for all ¢ > 3.
Case II. Suppose (z,y) # (0,1), (1,0). Then for any other (z,y) with C(D, X, ) # ¢,

D(a,y) = | — y| < climsup D(wn, y) = climsup |z, — |
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which holds for any ¢ > 1. Therefore, all the axioms of JS-metric spaces hold. Hence,
(X, D) is a JS-metric space and this implies that (X2, D) is also a JS-metric space
under the metric D, on X? defined by

D+((l‘, y)7 (u7 U)) = D(:L'a u) + D(ya U)'
Next, we define another function D,,, : X? — RT by
Dm((x7 y)a (U, ’U)) = maX{D(xa ’LL)7 D(ya 7})}

Then, it can be checked that D,, also satisfies the axioms of distance function in JS-
metric spaces. Hence, (X2,D,,) is also a D,,-JS-metric space. In a similar fashion,
one can define n-tuple D,,-JS-metric space for any n > 2. In order to state our main
results, the following propositions will be necessary.

Proposition 2.2. Let (z,) = (2, yn) be a sequence in (X2,D,). Suppose (z,) D -
converges to x* = (x,y) and u* = (u,v). Then z* = u*.

Proof. By the condition (D"'), we have

Di((w,y), (u,v)) < climsupDy((zn,yn), (u,v))
< climsup{D(z,,u) + D(yn,v)} = 0
= (z,y) = (u,v).
Proposition 2.3. Let () be a convergent sequence in (X, D), converging to x € X.
Then D(z,z) = 0.
Proof. By the hypothesis of JS-metric spaces, we can find some ¢ > 0 such that
D(z,z) < climsup D(z, x,) = 0.
n—oo
Similarly, we can deduce the following result.
Proposition 2.4. Let (z,) be a convergent sequence in (X2,D,), converging to
(x,y) € X, where zp, = (xp,yn).- Then Dy((x,y), (z,y)) = 0.
If (X,D) is a complete JS-metric space then one can easily check that (X2, D)
and (X2, D,,) are complete, too. Let us consider (x,y) € X2. We define

r(D, (2,y)) = sup{D(F* (z,y), F (z,y)) : i,j € N}
and

0r (D, (y,x)) = sup{D(F'(y,x), F? (y,x)) : i, j € N}.
Throughout this article, we assume the partial order * <’ on X? as follows:

(u,0) < (2,y) Su< a0 >y

for all z,y,u,v € X and we consider (X2, D) as partially ordered complete D, -JS-
metric space.

Before stating the coupled fixed point results, we would like to draw the reader’s
attention to an important thing regarding this structure. The authors of [13] have
already proved that the existence of a fixed point of a contractive mapping satisfying
certain conditions is guaranteed only when we choose k € [0,1) N[0, 1), where ¢ is the
least value for which condition (D3) is satisfied in Definition 1.1 (see, Theorem 3.2 in
[13]). If the least value ¢ = 0, then it leads to a trivial case. Similarly, to establish
the coupled fixed point results, we choose k& € [0,1) N [0, %) in the following result,
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where ¢y denotes the least value for which condition (D) is satisfied in D -JS-metric
spaces.

2.1. Coupled fixed point results. In this section, we extend the results of Berinde
[1] which generalize the results of Bhaskar and Lakshmikantham [2]. The contraction
condition 1.2 in the setting of (X2, D, ) is presented by

D(F(x,y), F(u,v)) + D(F(y,z), F(v,u)) < k[D(z,u) + D(y,v)] (2.1)
for all z > u;y <wvand k € [0,1) N0, é) We define an operator Tr : X2 — X2 by
Tr(z,y) = (F(z,y), F(y, z)) (2.2)

for all (z,y) € X2. Then we can write the contraction condition 2.1 as follows:
D (Tr(X), T (U)) < kD (X, U) (2.3)

where X = (1,y),U = (u,v) € X? with z > u;y <wv and k € [0,1) N[0, %)
Remark 2.1.1. From the above presentation, it is clear that the coupled fixed point
theorem for F' reduces to usual Banach fixed point theorem for the operator T
because F' has a coupled fixed point iff Tr has a fixed point.

By the notation §(D4,Tr, 20), we define
8(D4,Tr, z0) = sup{ D4 (Tr(20), TH(20)); 4,5 € N}.

The following results are the extended version of the results given in Berinde [1].
Theorem 2.1.2. Let F : X2 :— X be a mapping with mized monotone property on a
partially ordered complete D, -JS-metric space (X2, Dy ). Suppose for allx > u;y < v,
F satisfies the contraction condition 2.1. If there exists zo = (7o, y0) € X2 with the
following conditions:

(1) zo < F(zo,y0) and yo > F(yo, o) or

(2) o = F(xo,y0) and yo < F(yo, o),

(3) 6r(D, (w0,90)) < 0o and (D, (yo,z0)) < o0,
then there exists a coupled fized point 2 = (z,7) € X2 of F, i.e., T = F(2,7);
y=F(7).
Proof. By the hypothesis of the theorem, let us assume, there exists 2o = (20, yo) € X>
with 2o < F(x0,y0) and yo > F(yo,xo). We denote 21 = F(z0,yo) and y1 = F(yo, Zo)
and we also denote

F2(x07y0) = F(F(z0,90), F'(Y0,%0)) = F(z1,y1) = @2;
F(yo, 20) = F(F(yo, %0), F(x0,0)) = F(y1,21) = y2.
Processing in this way, by the mixed monotone property of F, we get
F™(x0,40) = F(F" " (20,0), F" ' (Y0, %0)) = n;
F™(yo,2z0) = F(F" (0, %0), F" (20, %0)) = Un-
In view of Remark 2.1.1, to prove the existence of a coupled fixed point of F, it

is sufficient to establish the existence of a fixed point of the operator Tr given by
Equation 4. In order to show this we consider

z1 = (z1,91) = (F(20,0), F'(¥0,20)) = Tr(z0,90) = Tr(20)
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and

z2 = (xZﬂyQ) = (F2($07y0)7F2(y07$0)) = (F(1'1,y1),F(y1,$1)) = TF(Zl) = T}%‘(ZO)

In a similar way, we obtain

Zn = (Tn, Yn) = (F" (20, 0), F" (Y0, T0)) = -+ = T (20)

for all n € N. Hence, (z,) is a Picard sequence with initial approximation zg.

Again, due to mixed monotone property of F', it is easy to show that for all n > 0,
Xy < Tpy1 and yp > Ynp1. This implies that z, < 2,41, i.e., (z,) is a non-decreasing
sequence.

Our next intention is to prove that (z,) is a Cauchy sequence. Since F' satisfies
the contraction condition 2.1, for all n > 0 and i < j, we get

D(F™* (0, 90), F"* (20, 40)) + D(F" (0, 20), F"* (3o, 20))

< K[D(F" (o, 90), F* (w0, 90)) + D(F" " (yo, o), F*7 " (yo, m0))]
o Dy (TP (20), TR (20)) < KD (TR (20), To™ " (20) [by 2.3

= 6(Dy,Tr, Ti(20)) < k6(Dy, Tr, TR (20)).

This is true for all n € N. Hence for all i < j, we obtain

D(TEF (), TE (20)) < koD, T, TE(20))
< K*(Dy, T, T} *(20))
S kn5(D+,TF,Zo). (24)

Again, we know that

8(Dy,Tp,20) = sup{Dy(Th(20), Th(20)) : i,j € N}
= sup{D(F" (20, y0), F (z0,40)) + D(F"(y0,%0), F’ (40, 0))}
= 5F(D7 (l'o,yo)) +5F(D7 (y()v‘rO))‘

As dp(D, (x0,90)) < oo and dr (D, (yo, zo)) < 00, so we must have
0(Dy, Tk, z0) < 00.
Employing this in (2.4), for all m € N, we obtain
Dy (zns 2n4m) = D+(T}L(z0),T}L+m(z’0))
5(D+7 Tr, Tg(z‘J))
kné(p+,TF, Zo)

0asn— oo.

L IAIA

This implies that (z,) is a Cauchy sequence. As (X2, D, ) is complete, so the sequence
(2n) converges to z for some z = (Z,7) € X>.
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Next, we prove that z = (Z,%) is a coupled fixed point of F, i.e., a fixed point of
TF. NOW,

Dy (241, Tr(2)) = D (Tr(2n), Tr(2)) < kD (20, 2)
= Dy (2p41,Tr(2)) =0as n — 0
=z, = Tr(Z) as n — oco. (2.5)

Since limit of a convergent sequence in this structure is unique, so we must have

zZ =Tr(2), i.e., 2 is a fixed point of Tr. In view of Remark 2.1.1, we can conclude

that Z = (Z,y) is a coupled fixed point of F, that is, ¥ = F(z,y) and y = F(y, T).
Next, we present some additional conditions for the uniqueness of a coupled fixed

point of F'.

Theorem 2.1.3. Let z = (Z,%) and w = (u,v) be two comparable coupled fized points

of F with Dy (w,z) < co. Then w =Z.

Proof. We have

D, (w,3) = Dy (Tp(w), Tr(3)) < kD4 (w,3)

= D+ (’U)7 EJI> = 0

Sw=2

= (u,v) = (2,9).
Hence the proof follows.
Theorem 2.1.4. Let w = (u,v) and z = (Z,y) be two incomparable coupled fized
points of F. Suppose there exists an upper bound or lower bound z* = (z*,y*) € X2
of w and Z with Dy (w,z*) < 0o and D4 (Z,2*) < co. Then w = Z.
Proof. Clearly, for every n € N, TR(z*) is comparable to w = Th(w) as well as to
z = TE(Z). By the contraction principle 2.3, we obtain

D (Tr(w), T (%)) < kD4 (w, 2°),
and
Do (TR(w), T3 (=) < kD4 (T (w), Te(=*)) < KDy (w, =),
Proceeding in this way, one can obtain,
D (TR(w), TA(=)) < K™Dy (w, %), (2.6)
By using the axioms of D -JS-metric spaces and the above inequality, we have
Dy(w, Tp(2")) < climsup Dy (Tp(w), Tp(2")) < k"cDy(w, 27).

Since, Dy (w,z*) < oo and 0 < k < 1, Dy (w, TE(z*)) — 0, whenever n — oo. This
implies that the sequence (Th(z*)) converges to w.

Analogously, it can be proved that the sequence (TR(z*)) also converges to z. In
view of Proposition 2.2, we must have z = w, that is, (Z,y) = (u,v).

Next, we are interested in finding additional conditions for the equality of the
components of a coupled fixed point. In order to show this we consider the following
conditions:

(C1) Let (z,y) be a coupled fixed point of F' such that Z and y are comparable in
X with D(z,7) < 0.
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(C2) Suppose every pair of elements z,y € X has either an upper bound or a
lower bound w € X with D(z,w) < o00,D(y,w) < oo, D(z,y) < oo and
D(w,w) < oo.

(C3) Let zo,yo be comparable in X with D(zg,yo) < oo.

Theorem 2.1.5. By adding any of the above mentioned conditions with the hypothe-
ses of Theorem 2.1.2, one can derive the equality of the components of coupled fized
point.

Proof. We prove this theorem in the following steps:

Step I. Suppose the condition (C1) is satisfied along with the hypotheses of Theorem
2.1.2. We consider X = (Z,y) and U = (y,z). Using the contraction principle in
Theorem 2.1.2, we get,

= D(F(Z,9), F(¥,7)
= D(F(Z,9), F(§,7)
= D(z,y) < kD(Z,Y)

= D(F,7) =0, ie, T=7.

+D(F(y, %), F(T,9)) < k(D(T,9) + D(y, 7))
< kD(T,7)

~— —

Step II. Suppose the condition (C2) is satisfied along with the hypotheses of Theorem
2.1.2 and (7, y) is coupled fixed point of F' such that Z, y are not comparable. Let
w € X be an upper bound of Z and y with D(Z, w) < oo, D(y, w) < 0o, D(Z,y) < o0
and D(w,w) < oo. Then, T < w and § < w. With respect to partial order in (X2, D),
we must have that
(@,9) > (@, w); (7, w) < (w,7); (w,7) > (y, 7).

Let us consider X = (7,y) and U = (Z,w). Since X, U are comparable, so from
contraction conditions 2.1 and 2.3, we get

D(F(z,y), F(z,w)) + D(F(y, 1), F(w, 7)) < k[D(Z,Z) + D(y, w)]
= D (Tr(X),Tr(U)) < k[D(z,7) + D(y, w)].
In view of Proposition 2.3, we have D(Z,Z) = 0 and hence we have
Dy (Tr(X), Tr(U)) < kD(y,w). (2.7)
Now, since X = (z,y) is a fixed point of Tr, so TE(X) = X for all n € N. Hence,
Equation 2.7 is reduced to
D (Tp(X), Tp(U)) < k"D (X, U)
= D (X, Tp(U)) < k"D(y, w)
=D (X, TR(U)) =0 (2.8)
as n — oo and D(y, w) < co. This implies that the sequence (TR(U)) converges to X.

Next, we consider that ¥ = (y,Z) and V = (y,w). Then obviously Y,V are

comparable and hence we get

Dy (Tr(Y),Tp(V)) kD (Y, V)
k[D(y,y) + D(z,w)]
kD(Z,w).

IAN A IA
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In a similar fashion, we have
= D.(V,TH(V)) < k"D(F, @)
= D (Y, TA(V)) =0 (2.9)
as n — oo and D(T,w) < oo. This implies that the sequence (TR(V)) converges to
Y. Again, since U and V are comparable, then using the contraction principle 2.3,
we yield
D (Tp(U),Te(V)) < k"D (U, V)
= D (Tp(U),Tp(V)) < k"{D(3,y) + D(w,w)}
= D (Tp(U),Tp(V)) =0 (2.10)
as n — oo and D(7,y) < oo, D
along with (2.8), (2.9) and (2.10

w,w) < oco. By the axioms of D, -JS-metric space
, there exists ¢ > 0 such that

= <

= X=Y
= (2,9) = (¥, 2)
=T =71.

Alternatively, one can find the equality of components of a couple fixed point by taking
w € X as a lower bound of ¥ and y with D(Z,w) < oo, D(y,w) < oo, D(Z,y) < 00
and D(w, w) < 0.

Step III. Suppose the condition (C3) is satisfied along with the hypotheses of Theo-
rem 2.1.2. Due to mixed monotone property of F, for each n > 1, x,, = F(p_1, Yn—1)
and y, = F(Yn—1,%n—1) are also comparable and z,, — ¥ and y,, — ¥ as n — oo. By
the axioms of JS-metric spaces, we obtain

D(Z,y) < climsup D(zp, yn)- (2.11)

Again, by taking X = (rn,yn) and U = (yn,z,) in the contraction condition of
Theorem 2.1.2, for all n > 0, we get

D(F(zn,Yn)s F(Yn,xn)) < ED(Tn, yn)
= D(xn+1ayn+1) é kD(mnvyn) (212)

Using Inequalities 2.11 and 2.12, we must have
D(Z,y) < climsup D(zy,, yn) < limsup k" cD(xo,y0) =0

as n — oo. This implies that D(z,y) = 0. Hence, we obtain = = y.

As Berinde’s theorems are extended versions of the main results of Bhaskar and
Lakshmikantham [2], we can deduce immediate consequences of the above results
which are the sharpened versions of the main results given in Bhaskar and Laksh-
mikantham [2].

The improved version of Theorem 2.1 in Bhaskar and Lakshmikantham [2] is given
as follows:
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Corollary 2.1.6. Let F: X2 — X be a mapping with mized monotone property on
X. Assume that there exists k € [0,1) N[0 io) such that

’ ¢

D(F(2,y), F(u,0)) < £ ((2,9), (u,0))

for x > w;y < wv. If there exist xg,yg € X such that

(A) 2o < F(20,%0);%0 > F(yo,0);
(B) 6F(D’ (l‘o,yo)) < o0 and 6F(D7 (yO’J:O)) < 00,

then there exist x,y € X such that x = F(x,y);y = F(y, x).

Remark 2.1.7. The authors of [2] considered two alternative hypotheses to establish
the existence of coupled fixed points. These are: either the function F' is continuous
or if (z,,) and (y,,) are non-decreasing and non-increasing sequences respectively with
T, — x and y, — y, then z, < x; y, > y for all n € N. But the Corollary
2.1.6 ensures the existence of coupled fixed points without assuming any of the above
mentioned hypotheses.

Remark 2.1.8. As every b-metric space is a JS-metric space with ¢ = s > 1 in
Definition 1.1, so one can obtain the coupled fixed point results in partially ordered
b-metric space from our obtained results. In particular, one can deduce the coupled
fixed point result due to Bota et al. [3] (Theorem 2.2 in [3]) from Corollary 2.1.6
directly.

Remark 2.1.9. The uniqueness of a coupled fixed point and the equality of the
component of a coupled fixed point of F' in Corollary 2.1.6 are guaranteed by the
Theorem 2.1.3, 2.1.4 and 2.1.5 respectively.

If we replace the distance function ‘D’ on X? by D,,’, then we can also prove the
existence of coupled fixed point. In this direction, we present the following theorem.
Theorem 2.1.10. Let F : X2 — X be a mapping with mized monotone property on
X. Assume that there exists k € [0,1) such that

Dy ((F(z,y), F(y, x)), (F(u,v), F(v,u)) < kDm((2,y), (u,v))
for x > w;y <w. If there exist xg,yo € X with
(A) o < F(z0,90); Y0 = F (Yo, %0);
(B) 6r(D, (z0,y0)) < o0 and dr(D, (yo, o)) < 00,

then F has a coupled fived point (x,y) € X2, that is, v = F(x,y) and y = F(y,x).
Proof. Proof is almost similar to the proof of Theorem 2.1.2. Hence, we skip the
proof.

Finally, we furnish some examples which substantiate our obtained results.
Example 2.1.11. Let X = [0, 1] and we define the distance function as

D(x,y) = |z| + [yl

At first, we prove that (X, D) is a JS-metric space. In order to prove this, we check
the axioms of JS-metric spaces.

(1) D(z,y) =0= |z[+|y| = 0= [z| =[y| =0, ie, 2=y =0.

(2) Clearly, D(z,y) = D(y, z).
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(3) Let (z,) be a sequence converging to some z in X. Then for any y € X, we
have D(z,y) = [z| + [y|. Again, D(zy,y) = [2,] + [y[ and
limsup D(zy,y) = limsup(|zn| + [y|) = || + [yl.
So, we can always find some ¢ > 1 such that D(z,y) < climsup D(x,,y).

All the axioms are satisfied. Hence, (X,D) is a JS-metric space. Now, we consider
the metric space (X2, D, ), where,

Dy ((x,y), (u,v)) = D(z,u) + D(y,v).

It is clear that (X2,D,) is a Dy-JS metric space. Next, we consider a function
F: X2 & X defined by
0, whenever x = 0;
F(a,y) = 2z — y?)
5
Then we check the axioms of Theorem (2.1.2)

(1) Let #; < xo. Then for all y € X, we have 2x; — y> < 2wy — y3 which
implies that F(x1,y) < F(x2,y), i.e., F' is monotonic non-decreasing in its
1st component. Again, for all z € X with z # 0, whenever y; < ys, we
get 2x — y3 > 2z — y3 which shows that F(z,y;) > F(z,y2) and for z = 0,
F(z,y1) = F(z,y2) = 0 for all y1,y2 € X. So for all z € X, F(z,y1) >
F(x,y2) with y; < yo, i.e., F' is monotonic non-increasing function in its 2nd

component. Thus F' has mixed monotone property.
(2) Let (zo,y0) = (1,0). Then,

, otherwise.

1 = F(xo,9) =F(1,0)=-<zp=1

(S0 V)

and
y1 = F(yo,z0) = F'(0,1) =0 > yo = 0.
It is clear that for all n € N, (F™(x0,y0)) is a decreasing sequence converging
to 0 and (F™(yo, o)) is a constant sequence. Hence, 07 (D, (x0,y0)) < 0o and
(SF(D, (y07.’170)> < 0.
(3) Now we prove that F' satisfies the contraction condition 2.1.
Let (z,y), (u,v) € X2 with 2 > u and y < v.
(a) Suppose, x = u = 0, then for all y,v € X, D(F(z,y), F(u,v)) = 0.

Hence,
D(F(I,y),F(u,v)) +D(F(yax)3F(U7u)) = D(F(y,l‘),F(’U,’U,))
20l 2]
- 5
< 2D((e,y). (wv)).

5
(b) For y =v =0,

D(F(z,y), F(u,v)) + D(F(y, ), F(v,u)) < %DJF((L@/), (u, v)).
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(¢) Analogously, for u = 0,2 # 0 and y = 0,v # 0,
2
D(F(z,y), F(u,v)) + D(F(y, 2), F(v,u)) < =D+ ((,y), (u, ).

(d) Let (z,%), (u,v) € X? with z > u and y < v and u # 0,y # 0. Then

Q% — 3 Qu — 3

20—y | fpu—v?
5 5

2y — 23 20 —

2y 2’| | [v—u
5 5

3
< (ol + lyl +Jul + o)

D(F(z,y), F(u,v)) + D(F(y,x), Fv,u)) =

_|_

< 2D (@), (0,0),

From the above illustrations, it is clear that F' satisfies the contraction con-
dition 2.1.

Thus F' satisfies all the conditions of Theorem 2.1.2. Hence, F' has a
coupled fixed point. Note that (0,0) is the unique coupled fixed point of F.

Next, we construct another example in support of Corollary 2.1.6.
Example 2.1.12. Let us consider X = R U {o0, —oo} and we define the distance
function D on X as D(z,y) = |z| + |y| for all z,y € X. From previous example, it is
clear that (X, D) is a JS-metric space and so (X2, D) is a D;-JS metric space. Let
us define a function F : X2 — X by
F(x,y) = % Vr,y € X.
Then,
(i) Let 1 < x9. Then for all y € X, we have x; — y < x5 — y which implies that
F(z1,y) < F(x2,y), i.e., F' is monotonic non-decreasing in its 1st component.
Again, for all x € X, whenever y; < ys, we get © — y; > x — yo which shows
that F(x,y1) > F(x,y2). So F is monotonic non-increasing function in its
2nd component. Thus F' has mixed monotone property.
(ii) Let (z,y), (u,v) € X?. Then,
[z —yl | Ju—v]
3 3

1 1
< gl +Ju) + 5yl + o)

2Dy ((,y), (u,v))
3 2 '

This shows that F satisfies the contraction condition.
(iii) Let us set o = —3 and yo = 2. Then,

D(F(x,y), F(u,v)) =

<

$1:F(I0,y0):F(7372): ? >x9 = —3

and
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Again, it is easy to show that for all i,j € N, 0p(D, (z0,y0)) < oo and
0r(D, (yo,x0)) < oo.

Thus all the conditions of the Corollary 2.1.6 are satisfied. Therefore F' has a coupled
fixed point. Here, (0,0) is a coupled fixed point of F. Notice that this is not unique
since (0o, —00) is also a coupled fixed point of F'.
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