A NEW APPROACH ON COUPLED FIXED POINT THEORY IN JS-METRIC SPACES

TANUSRI SENAPATI* AND LAKSHMI KANTA DEY**
*Department of Mathematics, National Institute of Technology Durgapur
West Bengal, India
E-mail: senapati.tanusri@gmail.com
** Department of Mathematics, National Institute of Technology Durgapur
West Bengal, India
E-mail: lakshmikdey@yahoo.co.in

Abstract

In this article, we study coupled fixed point theorems in newly appeared JS-metric spaces. It is important to note that the class of JS-metric spaces includes standard metric spaces, dislocated metric spaces, b^{\prime}-metric spaces, modular spaces etc. The purpose of this paper is to present several coupled fixed point results in a more general way. Moreover, the techniques used in our proofs are indeed different from the comparable existing literature. Finally, we present non-trivial examples to validate our main results.

Key Words and Phrases: Metric space, partially ordered set, coupled fixed point.
2010 Mathematics Subject Classification: 47H10, 54E50.

1. Introduction

Throughout this article, we use usual arithmetic operations in the set of (affinely) extended real number system $\overline{\mathbb{R}}=\mathbb{R} \cup\{+\infty,-\infty\}$ and the notations have their usual meanings. Let X be a nonempty set and $\mathcal{D}: X^{2} \rightarrow[0, \infty]$ be a mapping. For every $x \in X$, we consider the set $C(\mathcal{D}, X, x)$ (see, [8]) as follows:

$$
C(\mathcal{D}, X, x)=\left\{\left(x_{n}\right) \subset X: \lim _{n \rightarrow \infty} \mathcal{D}\left(x_{n}, x\right)=0\right\} .
$$

Very recently, Jleli and Samet [8] introduced an interesting generalization of a metric space in the following way.
Definition 1.1. [8] Let X be a nonempty set and $\mathcal{D}: X^{2} \rightarrow[0, \infty]$ be a mapping. Then (X, \mathcal{D}) is said to be a generalized metric space if the following conditions are satisfied:
(D1) $\forall x, y \in X, \mathcal{D}(x, y)=0 \Rightarrow x=y$;
(D2) $\forall x, y \in X, \mathcal{D}(x, y)=\mathcal{D}(y, x)$;
(D3) there exists $c>0$ such that for all $(x, y) \in X^{2}$ and $\left(x_{n}\right) \in C(\mathcal{D}, X, x)$,

$$
\mathcal{D}(x, y) \leq c \limsup _{n \rightarrow \infty} \mathcal{D}\left(x_{n}, y\right)
$$

If $C(\mathcal{D}, X, x)=\phi$, then (X, \mathcal{D}) is a generalized metric space if \mathcal{D} satisfies $(D 1-D 2)$.
Throughout this article, we call this metric space as a 'JS-metric space' (due to Jleli and Samet). The authors of [8] reported that different abstract spaces such as standard metric spaces, dislocated metric spaces, b^{\prime}-metric spaces, modular spaces etc. can be derived from their newly introduced metric space. They also established several fixed point results for the mappings like famous Banach contraction, Ćirić quasicontraction, Banach contraction in partially ordered metric spaces etc. Motivated by their work, Senapati et al. [13] studied and established some more important results on this structure. For the notion of convergence, Cauchy sequence, completeness and other topological details, the readers are referred to see [8] and [13].

In another direction, Bhaskar and Lakshmikantham [2] introduced the concept of coupled fixed point in the setting of partially ordered metric spaces as follows:
Definition 1.2. [2] An element $(x, y) \in X^{2}$ is said to be a coupled fixed point of $F: X^{2} \rightarrow X$ if $x=F(x, y)$ and $y=F(y, x)$.

They also introduced the concept of a mixed monotone operator which is given by: Definition 1.3. [2] Let (X, \leq) be a partially ordered set and $F: X^{2} \rightarrow X$ be a function. Then F is said to have the mixed monotone property if F has the following properties:

$$
x_{1} \leq x_{2} \Rightarrow F\left(x_{1}, y\right) \leq F\left(x_{2}, y\right) ; \forall x_{1}, x_{2}, y \in X,
$$

and

$$
y_{1} \leq y_{2} \Rightarrow F\left(x, y_{1}\right) \geq F\left(x, y_{2}\right) ; \forall x, y_{1}, y_{2} \in X
$$

Using this concept, the authors of [2] presented the following result in support of the existence of a coupled fixed point of an operator satisfying mixed monotone property in partially ordered complete metric spaces.
Theorem 1.4. [2] Let (X, \leq) be a partially ordered set and (X, d) be a complete partially ordered metric space. Suppose $F: X^{2} \rightarrow X$ is a mixed monotone operator having the following property:

$$
\begin{equation*}
d(F(x, y), F(u, v)) \leq \frac{k}{2}\{d(x, u)+d(y, v)\} \forall x \geq u ; y \leq v . \tag{1.1}
\end{equation*}
$$

Also consider that there exist $x_{0}, y_{0} \in X$ with $x_{0} \leq F\left(x_{0}, y_{0}\right) ; y_{0} \geq F\left(y_{0}, x_{0}\right)$. If
(A) F is continuous or
(B) X has the following property:
(a) If a non-decreasing sequence $\left(x_{n}\right) \rightarrow x$, then $x_{n} \leq x$ for all $n \in \mathbb{N}$;
(b) If a non-increasing sequence $\left(y_{n}\right) \rightarrow y$, then $y_{n} \geq y$ for all $n \in \mathbb{N}$,
then there exist $x, y \in X$ such that $x=F(x, y)$ and $y=F(y, x)$.
Afterwards, in 2011, Berinde [1] generalized the contraction condition 1.1 as follows:

$$
\begin{equation*}
d(F(x, y), F(u, v))+d(F(y, x), F(v, u)) \leq k[d(x, u)+d(y, v)] \tag{1.2}
\end{equation*}
$$

for all $x \geq u ; y \leq v$ and established coupled fixed point for a mixed monotone operator in partially ordered complete metric spaces. For more results on fixed points and coupled fixed points, the readers may see $[5,9,12,11,6,7,4,3,10]$.

In this article, inspired by the ideas of JS-metric spaces, we extend and improve the coupled fixed point results of Berinde [1] due to contraction condition 1.2 for a mapping satisfying mixed monotone property in complete JS-metric spaces endowed with
partial order. It is notable that the triangular inequality, so called basic property of the standard metric space, is replaced by a more weaker condition in JS-metric spaces. Necessarily, the techniques used in our proofs are quite different and most remarkably some of the proofs become simpler. Finally we construct non-trivial examples to substantiate our main results.

2. Main Results

In order to state our main results, we need to define some basic things regarding this structure. Let (X, \mathcal{D}) be a JS-metric space. Now we consider X^{2} and define

$$
\mathcal{D}_{+}((x, y),(u, v))=\mathcal{D}(x, u)+\mathcal{D}(y, v)
$$

for all $(x, y),(u, v) \in X^{2}$. We prove that $\left(X^{2}, \mathcal{D}_{+}\right)$is a \mathcal{D}_{+}-JS-metric space induced by the metric \mathcal{D}.
$\left(D^{\prime}\right)$ Let $\mathcal{D}_{+}((x, y),(u, v))=0$. It implies that $\mathcal{D}(x, u)+\mathcal{D}(y, v)=0$. It is possible only when both $\mathcal{D}(x, u)=0$ and $\mathcal{D}(y, v)=0$, i.e., $x=u$ and $y=v$. Therefore,

$$
\mathcal{D}_{+}((x, y),(u, v))=0 \Rightarrow(x, y)=(u, v)
$$

for all $(x, y),(u, v) \in X^{2}$.
$\left(D^{\prime \prime}\right)$ Clearly, $\mathcal{D}_{+}((x, y),(u, v))=\mathcal{D}_{+}((u, v),(x, y))$ for all $(x, y),(u, v) \in X^{2}$.
$\left(D^{\prime \prime \prime}\right)$ Let $\left(x_{n}, y_{n}\right) \rightarrow(x, y)$ as $n \rightarrow \infty$. Then

$$
\begin{aligned}
\mathcal{D}_{+}((x, y),(u, v)) & =\mathcal{D}(x, u)+\mathcal{D}(y, v) \\
& \leq \lim \sup \left\{c_{1} \mathcal{D}\left(x_{n}, u\right)+c_{2} \mathcal{D}\left(y_{n}, v\right)\right\} \\
& \leq c_{0} \limsup \mathcal{D}_{+}\left(\left(x_{n}, y_{n}\right),(u, v)\right)
\end{aligned}
$$

where $c_{0}=\max \left\{c_{1}, c_{2}\right\}$.
Thus \mathcal{D}_{+}satisfies all the axioms of JS-metric. Hence $\left(X^{2}, \mathcal{D}_{+}\right)$is a \mathcal{D}_{+}-JS-metric space. Proceeding in this way, we can define a distance function on any n-tuple set X^{n} for $n \geq 2$.
Example 2.1. Let $X=\mathbb{R}$ and \mathcal{D} be a distance function on X defined by

$$
\mathcal{D}(x, y)= \begin{cases}3, & (x, y)=(0,1) \text { or }(1,0) \\ |x-y|, & \text { otherwise }\end{cases}
$$

Our first aim is to show that (X, \mathcal{D}) is a JS-metric space. Conditions (D1) and (D2) are trivially hold. Now we check the condition (D3). Let $x, y \in X$ such that $C(\mathcal{D}, X, x) \neq \phi$. Then following two possibilities may occur:
Case I. Let $x=0$ and $y=1$. Then $\mathcal{D}(x, y)=3$ and $\mathcal{D}\left(x_{n}, y\right)=\left|x_{n}-1\right|$ and

$$
\mathcal{D}(x, y)=3 \leq c \limsup \left|x_{n}-y\right| \leq c
$$

which holds for all $c \geq 3$. Again, if $x=1$ and $y=0$, then we have $\mathcal{D}(1,0)=3$ and

$$
\mathcal{D}(x, y)=3 \leq c \lim \sup \mathcal{D}\left(x_{n}, y\right)=c \limsup \left|x_{n}-0\right|=c
$$

which also holds for all $c \geq 3$.
Case II. Suppose $(x, y) \neq(0,1),(1,0)$. Then for any other (x, y) with $C(\mathcal{D}, X, x) \neq \phi$,

$$
\mathcal{D}(x, y)=|x-y| \leq c \limsup \mathcal{D}\left(x_{n}, y\right)=c \limsup \left|x_{n}-y\right|
$$

which holds for any $c \geq 1$. Therefore, all the axioms of JS-metric spaces hold. Hence, (X, \mathcal{D}) is a JS-metric space and this implies that $\left(X^{2}, \mathcal{D}_{+}\right)$is also a JS-metric space under the metric \mathcal{D}_{+}on X^{2} defined by

$$
\mathcal{D}_{+}((x, y),(u, v))=\mathcal{D}(x, u)+\mathcal{D}(y, v)
$$

Next, we define another function $\mathcal{D}_{m}: X^{2} \rightarrow \mathbb{R}^{+}$by

$$
\mathcal{D}_{m}((x, y),(u, v))=\max \{\mathcal{D}(x, u), \mathcal{D}(y, v)\}
$$

Then, it can be checked that \mathcal{D}_{m} also satisfies the axioms of distance function in JSmetric spaces. Hence, $\left(X^{2}, \mathcal{D}_{m}\right)$ is also a \mathcal{D}_{m}-JS-metric space. In a similar fashion, one can define n-tuple \mathcal{D}_{m}-JS-metric space for any $n \geq 2$. In order to state our main results, the following propositions will be necessary.
Proposition 2.2. Let $\left(z_{n}\right)=\left(x_{n}, y_{n}\right)$ be a sequence in $\left(X^{2}, \mathcal{D}_{+}\right)$. Suppose $\left(z_{n}\right) \mathcal{D}_{+-}$ converges to $x^{*}=(x, y)$ and $u^{*}=(u, v)$. Then $x^{*}=u^{*}$.
Proof. By the condition $\left(D^{\prime \prime \prime}\right)$, we have

$$
\begin{aligned}
& \mathcal{D}_{+}((x, y),(u, v)) \leq c \lim \sup \mathcal{D}_{+}\left(\left(x_{n}, y_{n}\right),(u, v)\right) \\
& \leq c \lim \sup \left\{\mathcal{D}\left(x_{n}, u\right)+\mathcal{D}\left(y_{n}, v\right)\right\}=0 \\
& \Rightarrow(x, y)=(u, v)
\end{aligned}
$$

Proposition 2.3. Let $\left(x_{n}\right)$ be a convergent sequence in (X, \mathcal{D}), converging to $x \in X$. Then $\mathcal{D}(x, x)=0$.
Proof. By the hypothesis of JS-metric spaces, we can find some $c>0$ such that

$$
\mathcal{D}(x, x) \leq c \limsup _{n \rightarrow \infty} \mathcal{D}\left(x, x_{n}\right)=0
$$

Similarly, we can deduce the following result.
Proposition 2.4. Let $\left(z_{n}\right)$ be a convergent sequence in $\left(X^{2}, \mathcal{D}_{+}\right)$, converging to $(x, y) \in X$, where $z_{n}=\left(x_{n}, y_{n}\right)$. Then $\mathcal{D}_{+}((x, y),(x, y))=0$.

If (X, \mathcal{D}) is a complete JS-metric space then one can easily check that $\left(X^{2}, \mathcal{D}_{+}\right)$ and $\left(X^{2}, \mathcal{D}_{m}\right)$ are complete, too. Let us consider $(x, y) \in X^{2}$. We define

$$
\delta_{F}(\mathcal{D},(x, y))=\sup \left\{\mathcal{D}\left(F^{i}(x, y), F^{j}(x, y)\right): i, j \in \mathbb{N}\right\}
$$

and

$$
\delta_{F}(\mathcal{D},(y, x))=\sup \left\{\mathcal{D}\left(F^{i}(y, x), F^{j}(y, x)\right): i, j \in \mathbb{N}\right\}
$$

Throughout this article, we assume the partial order ' \leq ' on X^{2} as follows:

$$
(u, v) \leq(x, y) \Leftrightarrow u \leq x, v \geq y
$$

for all $x, y, u, v \in X$ and we consider $\left(X^{2}, \mathcal{D}_{+}\right)$as partially ordered complete \mathcal{D}_{+}-JSmetric space.

Before stating the coupled fixed point results, we would like to draw the reader's attention to an important thing regarding this structure. The authors of [13] have already proved that the existence of a fixed point of a contractive mapping satisfying certain conditions is guaranteed only when we choose $k \in[0,1) \cap\left[0, \frac{1}{c}\right.$), where c is the least value for which condition $(D 3)$ is satisfied in Definition 1.1 (see, Theorem 3.2 in [13]). If the least value $c=0$, then it leads to a trivial case. Similarly, to establish the coupled fixed point results, we choose $k \in[0,1) \cap\left[0, \frac{1}{c_{0}}\right)$ in the following result,
where c_{0} denotes the least value for which condition $\left(D^{\prime \prime \prime}\right)$ is satisfied in \mathcal{D}_{+}-JS-metric spaces.
2.1. Coupled fixed point results. In this section, we extend the results of Berinde [1] which generalize the results of Bhaskar and Lakshmikantham [2]. The contraction condition 1.2 in the setting of $\left(X^{2}, \mathcal{D}_{+}\right)$is presented by

$$
\begin{equation*}
\mathcal{D}(F(x, y), F(u, v))+\mathcal{D}(F(y, x), F(v, u)) \leq k[\mathcal{D}(x, u)+\mathcal{D}(y, v)] \tag{2.1}
\end{equation*}
$$

for all $x \geq u ; y \leq v$ and $k \in[0,1) \cap\left[0, \frac{1}{c_{0}}\right)$. We define an operator $T_{F}: X^{2} \rightarrow X^{2}$ by

$$
\begin{equation*}
T_{F}(x, y)=(F(x, y), F(y, x)) \tag{2.2}
\end{equation*}
$$

for all $(x, y) \in X^{2}$. Then we can write the contraction condition 2.1 as follows:

$$
\begin{equation*}
\mathcal{D}_{+}\left(T_{F}(X), T_{F}(U)\right) \leq k \mathcal{D}_{+}(X, U) \tag{2.3}
\end{equation*}
$$

where $X=(x, y), U=(u, v) \in X^{2}$ with $x \geq u ; y \leq v$ and $k \in[0,1) \cap\left[0, \frac{1}{c_{0}}\right)$.
Remark 2.1.1. From the above presentation, it is clear that the coupled fixed point theorem for F reduces to usual Banach fixed point theorem for the operator T_{F} because F has a coupled fixed point iff T_{F} has a fixed point.

By the notation $\delta\left(\mathcal{D}_{+}, T_{F}, z_{0}\right)$, we define

$$
\delta\left(\mathcal{D}_{+}, T_{F}, z_{0}\right)=\sup \left\{\mathcal{D}_{+}\left(T_{F}^{i}\left(z_{0}\right), T_{F}^{j}\left(z_{0}\right)\right) ; i, j \in \mathbb{N}\right\}
$$

The following results are the extended version of the results given in Berinde [1].
Theorem 2.1.2. Let $F: X^{2}: \rightarrow X$ be a mapping with mixed monotone property on a partially ordered complete \mathcal{D}_{+-}JS-metric space $\left(X^{2}, \mathcal{D}_{+}\right)$. Suppose for all $x \geq u ; y \leq v$, F satisfies the contraction condition 2.1. If there exists $z_{0}=\left(x_{0}, y_{0}\right) \in X^{2}$ with the following conditions:
(1) $x_{0} \leq F\left(x_{0}, y_{0}\right)$ and $y_{0} \geq F\left(y_{0}, x_{0}\right)$ or
(2) $x_{0} \geq F\left(x_{0}, y_{0}\right)$ and $y_{0} \leq F\left(y_{0}, x_{0}\right)$,
(3) $\delta_{F}\left(\mathcal{D},\left(x_{0}, y_{0}\right)\right)<\infty$ and $\delta_{F}\left(\mathcal{D},\left(y_{0}, x_{0}\right)\right)<\infty$,
then there exists a coupled fixed point $\widetilde{z}=(\widetilde{x}, \widetilde{y}) \in X^{2}$ of F, i.e., $\widetilde{x}=F(\widetilde{x}, \widetilde{y})$; $\widetilde{y}=F(\widetilde{y}, \widetilde{x})$.
Proof. By the hypothesis of the theorem, let us assume, there exists $z_{0}=\left(x_{0}, y_{0}\right) \in X^{2}$ with $x_{0} \leq F\left(x_{0}, y_{0}\right)$ and $y_{0} \geq F\left(y_{0}, x_{0}\right)$. We denote $x_{1}=F\left(x_{0}, y_{0}\right)$ and $y_{1}=F\left(y_{0}, x_{0}\right)$ and we also denote

$$
\begin{aligned}
& F^{2}\left(x_{0}, y_{0}\right)=F\left(F\left(x_{0}, y_{0}\right), F\left(y_{0}, x_{0}\right)\right)=F\left(x_{1}, y_{1}\right)=x_{2} \\
& F^{2}\left(y_{0}, x_{0}\right)=F\left(F\left(y_{0}, x_{0}\right), F\left(x_{0}, y_{0}\right)\right)=F\left(y_{1}, x_{1}\right)=y_{2}
\end{aligned}
$$

Processing in this way, by the mixed monotone property of F, we get

$$
\begin{aligned}
& F^{n}\left(x_{0}, y_{0}\right)=F\left(F^{n-1}\left(x_{0}, y_{0}\right), F^{n-1}\left(y_{0}, x_{0}\right)\right)=x_{n} \\
& F^{n}\left(y_{0}, x_{0}\right)=F\left(F^{n-1}\left(y_{0}, x_{0}\right), F^{n-1}\left(x_{0}, y_{0}\right)\right)=y_{n}
\end{aligned}
$$

In view of Remark 2.1.1, to prove the existence of a coupled fixed point of F, it is sufficient to establish the existence of a fixed point of the operator T_{F} given by Equation 4. In order to show this we consider

$$
z_{1}=\left(x_{1}, y_{1}\right)=\left(F\left(x_{0}, y_{0}\right), F\left(y_{0}, x_{0}\right)\right)=T_{F}\left(x_{0}, y_{0}\right)=T_{F}\left(z_{0}\right)
$$

and

$$
z_{2}=\left(x_{2}, y_{2}\right)=\left(F^{2}\left(x_{0}, y_{0}\right), F^{2}\left(y_{0}, x_{0}\right)\right)=\left(F\left(x_{1}, y_{1}\right), F\left(y_{1}, x_{1}\right)\right)=T_{F}\left(z_{1}\right)=T_{F}^{2}\left(z_{0}\right)
$$

In a similar way, we obtain

$$
z_{n}=\left(x_{n}, y_{n}\right)=\left(F^{n}\left(x_{0}, y_{0}\right), F^{n}\left(y_{0}, x_{0}\right)\right)=\cdots=T_{F}^{n}\left(z_{0}\right)
$$

for all $n \in \mathbb{N}$. Hence, $\left(z_{n}\right)$ is a Picard sequence with initial approximation z_{0}.
Again, due to mixed monotone property of F, it is easy to show that for all $n \geq 0$, $x_{n} \leq x_{n+1}$ and $y_{n} \geq y_{n+1}$. This implies that $z_{n} \leq z_{n+1}$, i.e., $\left(z_{n}\right)$ is a non-decreasing sequence.

Our next intention is to prove that $\left(z_{n}\right)$ is a Cauchy sequence. Since F satisfies the contraction condition 2.1, for all $n \geq 0$ and $i \leq j$, we get

$$
\begin{aligned}
& \mathcal{D}\left(F^{n+i}\left(x_{0}, y_{0}\right), F^{n+j}\left(x_{0}, y_{0}\right)\right)+\mathcal{D}\left(F^{n+i}\left(y_{0}, x_{0}\right), F^{n+j}\left(y_{0}, x_{0}\right)\right) \\
& \leq k\left[\mathcal{D}\left(F^{n+i-1}\left(x_{0}, y_{0}\right), F^{n+j-1}\left(x_{0}, y_{0}\right)\right)+\mathcal{D}\left(F^{n+i-1}\left(y_{0}, x_{0}\right), F^{n+j-1}\left(y_{0}, x_{0}\right)\right)\right] \\
& \Rightarrow \mathcal{D}_{+}\left(T_{F}^{n+i}\left(z_{0}\right), T_{F}^{n+j}\left(z_{0}\right)\right) \leq k \mathcal{D}_{+}\left(T_{F}^{n-1+i}\left(z_{0}\right), T_{F}^{n-1+j}\left(z_{0}\right)\right)[b y 2.3] \\
& \Rightarrow \delta\left(\mathcal{D}_{+}, T_{F}, T_{F}^{n}\left(z_{0}\right)\right) \leq k \delta\left(\mathcal{D}_{+}, T_{F}, T_{F}^{n-1}\left(z_{0}\right)\right) .
\end{aligned}
$$

This is true for all $n \in \mathbb{N}$. Hence for all $i \leq j$, we obtain

$$
\begin{align*}
\mathcal{D}_{+}\left(T_{F}^{n+i}\left(z_{0}\right), T_{F}^{n+j}\left(z_{0}\right)\right) & \leq k \delta\left(\mathcal{D}_{+}, T_{F}, T_{F}^{n-1}\left(z_{0}\right)\right) \\
& \leq k^{2} \delta\left(\mathcal{D}_{+}, T_{F}, T_{F}^{n-2}\left(z_{0}\right)\right) \\
& \vdots \\
& \leq k^{n} \delta\left(\mathcal{D}_{+}, T_{F}, z_{0}\right) \tag{2.4}
\end{align*}
$$

Again, we know that

$$
\begin{aligned}
\delta\left(\mathcal{D}_{+}, T_{F}, z_{0}\right) & =\sup \left\{\mathcal{D}_{+}\left(T_{F}^{i}\left(z_{0}\right), T_{F}^{j}\left(z_{0}\right)\right): i, j \in \mathbb{N}\right\} \\
& =\sup \left\{\mathcal{D}\left(F^{i}\left(x_{0}, y_{0}\right), F^{j}\left(x_{0}, y_{0}\right)\right)+\mathcal{D}\left(F^{i}\left(y_{0}, x_{0}\right), F^{j}\left(y_{0}, x_{0}\right)\right)\right\} \\
& =\delta_{F}\left(\mathcal{D},\left(x_{0}, y_{0}\right)\right)+\delta_{F}\left(\mathcal{D},\left(y_{0}, x_{0}\right)\right)
\end{aligned}
$$

As $\delta_{F}\left(\mathcal{D},\left(x_{0}, y_{0}\right)\right)<\infty$ and $\delta_{F}\left(\mathcal{D},\left(y_{0}, x_{0}\right)\right)<\infty$, so we must have

$$
\delta\left(\mathcal{D}_{+}, T_{F}, z_{0}\right)<\infty
$$

Employing this in (2.4), for all $m \in \mathbb{N}$, we obtain

$$
\begin{aligned}
\mathcal{D}_{+}\left(z_{n}, z_{n+m}\right) & =\mathcal{D}_{+}\left(T_{F}^{n}\left(z_{0}\right), T_{F}^{n+m}\left(z_{0}\right)\right) \\
& \leq \delta\left(\mathcal{D}_{+}, T_{F}, T_{F}^{n}\left(z_{0}\right)\right) \\
& \leq k^{n} \delta\left(\mathcal{D}_{+}, T_{F}, z_{0}\right) \\
& \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

This implies that $\left(z_{n}\right)$ is a Cauchy sequence. As $\left(X^{2}, \mathcal{D}_{+}\right)$is complete, so the sequence $\left(z_{n}\right)$ converges to \widetilde{z} for some $\widetilde{z}=(\widetilde{x}, \widetilde{y}) \in X^{2}$.

Next, we prove that $\widetilde{z}=(\widetilde{x}, \widetilde{y})$ is a coupled fixed point of F, i.e., a fixed point of T_{F}. Now,

$$
\begin{align*}
& \mathcal{D}_{+}\left(z_{n+1}, T_{F}(\widetilde{z})\right)=\mathcal{D}_{+}\left(T_{F}\left(z_{n}\right), T_{F}(\widetilde{z})\right) \leq k \mathcal{D}_{+}\left(z_{n}, \widetilde{z}\right) \\
& \Rightarrow \mathcal{D}_{+}\left(z_{n+1}, T_{F}(\widetilde{z})\right)=0 \text { as } n \rightarrow \infty \\
& \Rightarrow z_{n} \rightarrow T_{F}(\widetilde{z}) \text { as } n \rightarrow \infty \tag{2.5}
\end{align*}
$$

Since limit of a convergent sequence in this structure is unique, so we must have $\widetilde{z}=T_{F}(\widetilde{z})$, i.e., \widetilde{z} is a fixed point of T_{F}. In view of Remark 2.1.1, we can conclude that $\widetilde{z}=(\widetilde{x}, \widetilde{y})$ is a coupled fixed point of F, that is, $\widetilde{x}=F(\widetilde{x}, \widetilde{y})$ and $\widetilde{y}=F(\widetilde{y}, \widetilde{x})$.

Next, we present some additional conditions for the uniqueness of a coupled fixed point of F.
Theorem 2.1.3. Let $\widetilde{z}=(\widetilde{x}, \widetilde{y})$ and $w=(u, v)$ be two comparable coupled fixed points of F with $\mathcal{D}_{+}(w, \widetilde{z})<\infty$. Then $w=\widetilde{z}$.
Proof. We have

$$
\begin{aligned}
& \mathcal{D}_{+}(w, \widetilde{z})=\mathcal{D}_{+}\left(T_{F}(w), T_{F}(\widetilde{z})\right) \leq k \mathcal{D}_{+}(w, \widetilde{z}) \\
& \Rightarrow \mathcal{D}_{+}(w, \widetilde{z})=0 \\
& \Rightarrow w=\widetilde{z} \\
& \Rightarrow(u, v)=(\widetilde{x}, \widetilde{y})
\end{aligned}
$$

Hence the proof follows.
Theorem 2.1.4. Let $w=(u, v)$ and $\widetilde{z}=(\widetilde{x}, \widetilde{y})$ be two incomparable coupled fixed points of F. Suppose there exists an upper bound or lower bound $z^{*}=\left(x^{*}, y^{*}\right) \in X^{2}$ of w and \widetilde{z} with $\mathcal{D}_{+}\left(w, z^{*}\right)<\infty$ and $\mathcal{D}_{+}\left(\widetilde{z}, z^{*}\right)<\infty$. Then $w=\widetilde{z}$.
Proof. Clearly, for every $n \in \mathbb{N}, T_{F}^{n}\left(z^{*}\right)$ is comparable to $w=T_{F}^{n}(w)$ as well as to $\widetilde{z}=T_{F}^{n}(\widetilde{z})$. By the contraction principle 2.3 , we obtain

$$
\mathcal{D}_{+}\left(T_{F}(w), T_{F}\left(z^{*}\right)\right) \leq k \mathcal{D}_{+}\left(w, z^{*}\right)
$$

and

$$
\mathcal{D}_{+}\left(T_{F}^{2}(w), T_{F}^{2}\left(z^{*}\right)\right) \leq k \mathcal{D}_{+}\left(T_{F}(w), T_{F}\left(z^{*}\right)\right) \leq k^{2} \mathcal{D}_{+}\left(w, z^{*}\right)
$$

Proceeding in this way, one can obtain,

$$
\begin{equation*}
\mathcal{D}_{+}\left(T_{F}^{n}(w), T_{F}^{n}\left(z^{*}\right)\right) \leq k^{n} \mathcal{D}_{+}\left(w, z^{*}\right) \tag{2.6}
\end{equation*}
$$

By using the axioms of $\mathcal{D}_{+}-$JS-metric spaces and the above inequality, we have

$$
\mathcal{D}_{+}\left(w, T_{F}^{n}\left(z^{*}\right)\right) \leq c \limsup \mathcal{D}_{+}\left(T_{F}^{n}(w), T_{F}^{n}\left(z^{*}\right)\right) \leq k^{n} c \mathcal{D}_{+}\left(w, z^{*}\right)
$$

Since, $\mathcal{D}_{+}\left(w, z^{*}\right)<\infty$ and $0 \leq k<1, \mathcal{D}_{+}\left(w, T_{F}^{n}\left(z^{*}\right)\right) \rightarrow 0$, whenever $n \rightarrow \infty$. This implies that the sequence $\left(T_{F}^{n}\left(z^{*}\right)\right)$ converges to w.

Analogously, it can be proved that the sequence $\left(T_{F}^{n}\left(z^{*}\right)\right)$ also converges to \widetilde{z}. In view of Proposition 2.2, we must have $\widetilde{z}=w$, that is, $(\widetilde{x}, \widetilde{y})=(u, v)$.

Next, we are interested in finding additional conditions for the equality of the components of a coupled fixed point. In order to show this we consider the following conditions:
(C1) Let $(\widetilde{x}, \widetilde{y})$ be a coupled fixed point of F such that \widetilde{x} and \widetilde{y} are comparable in X with $\mathcal{D}(\widetilde{x}, \widetilde{y})<\infty$.
(C2) Suppose every pair of elements $x, y \in X$ has either an upper bound or a lower bound $w \in X$ with $\mathcal{D}(x, w)<\infty, \mathcal{D}(y, w)<\infty, \mathcal{D}(x, y)<\infty$ and $\mathcal{D}(w, w)<\infty$.
(C3) Let x_{0}, y_{0} be comparable in X with $\mathcal{D}\left(x_{0}, y_{0}\right)<\infty$.
Theorem 2.1.5. By adding any of the above mentioned conditions with the hypotheses of Theorem 2.1.2, one can derive the equality of the components of coupled fixed point.
Proof. We prove this theorem in the following steps:
Step I. Suppose the condition (C1) is satisfied along with the hypotheses of Theorem 2.1.2. We consider $X=(\widetilde{x}, \widetilde{y})$ and $U=(\widetilde{y}, \widetilde{x})$. Using the contraction principle in Theorem 2.1.2, we get,

$$
\begin{aligned}
& \Rightarrow \mathcal{D}(F(\widetilde{x}, \widetilde{y}), F(\widetilde{y}, \widetilde{x}))+\mathcal{D}(F(\widetilde{y}, \widetilde{x}), F(\widetilde{x}, \widetilde{y})) \leq k(\mathcal{D}(\widetilde{x}, \widetilde{y})+\mathcal{D}(\widetilde{y}, \widetilde{x})) \\
& \Rightarrow \mathcal{D}(F(\widetilde{x}, \widetilde{y}), F(\widetilde{y}, \widetilde{x})) \leq k \mathcal{D}(\widetilde{x}, \widetilde{y}) \\
& \Rightarrow \mathcal{D}(\widetilde{x}, \widetilde{y}) \leq k \mathcal{D}(\widetilde{x}, \widetilde{y}) \\
& \Rightarrow \mathcal{D}(\widetilde{x}, \widetilde{y})=0, \text { i.e., } \widetilde{x}=\widetilde{y}
\end{aligned}
$$

Step II. Suppose the condition (C2) is satisfied along with the hypotheses of Theorem 2.1.2 and $(\widetilde{x}, \widetilde{y})$ is coupled fixed point of F such that $\widetilde{x}, \widetilde{y}$ are not comparable. Let $\widetilde{w} \in X$ be an upper bound of \widetilde{x} and \widetilde{y} with $\mathcal{D}(\widetilde{x}, \widetilde{w})<\infty, \mathcal{D}(\widetilde{y}, \widetilde{w})<\infty, \mathcal{D}(\widetilde{x}, \widetilde{y})<\infty$ and $\mathcal{D}(\widetilde{w}, \widetilde{w})<\infty$. Then, $\widetilde{x} \leq \widetilde{w}$ and $\widetilde{y} \leq \widetilde{w}$. With respect to partial order in $\left(X^{2}, D_{+}\right)$, we must have that

$$
(\widetilde{x}, \widetilde{y}) \geq(\widetilde{x}, \widetilde{w}) ;(\widetilde{x}, \widetilde{w}) \leq(\widetilde{w}, \widetilde{x}) ;(\widetilde{w}, \widetilde{x}) \geq(\widetilde{y}, \widetilde{x})
$$

Let us consider $X=(\widetilde{x}, \widetilde{y})$ and $U=(\widetilde{x}, \widetilde{w})$. Since X, U are comparable, so from contraction conditions 2.1 and 2.3 , we get

$$
\begin{aligned}
& \mathcal{D}(F(\widetilde{x}, \widetilde{y}), F(\widetilde{x}, \widetilde{w}))+\mathcal{D}(F(\widetilde{y}, \widetilde{x}), F(\widetilde{w}, \widetilde{x})) \leq k[\mathcal{D}(\widetilde{x}, \widetilde{x})+\mathcal{D}(\widetilde{y}, \widetilde{w})] \\
& \Rightarrow \mathcal{D}_{+}\left(T_{F}(X), T_{F}(U)\right) \leq k[\mathcal{D}(\widetilde{x}, \widetilde{x})+\mathcal{D}(\widetilde{y}, \widetilde{w})]
\end{aligned}
$$

In view of Proposition 2.3, we have $\mathcal{D}(\widetilde{x}, \widetilde{x})=0$ and hence we have

$$
\begin{equation*}
\mathcal{D}_{+}\left(T_{F}(X), T_{F}(U)\right) \leq k \mathcal{D}(\widetilde{y}, \widetilde{w}) \tag{2.7}
\end{equation*}
$$

Now, since $X=(\widetilde{x}, \widetilde{y})$ is a fixed point of T_{F}, so $T_{F}^{n}(X)=X$ for all $n \in \mathbb{N}$. Hence, Equation 2.7 is reduced to

$$
\begin{align*}
& \mathcal{D}_{+}\left(T_{F}^{n}(X), T_{F}^{n}(U)\right) \leq k^{n} \mathcal{D}_{+}(X, U) \\
& \Rightarrow \mathcal{D}_{+}\left(X, T_{F}^{n}(U)\right) \leq k^{n} \mathcal{D}(\widetilde{y}, \widetilde{w}) \\
& \Rightarrow \mathcal{D}_{+}\left(X, T_{F}^{n}(U)\right)=0 \tag{2.8}
\end{align*}
$$

as $n \rightarrow \infty$ and $\mathcal{D}(\widetilde{y}, \widetilde{w})<\infty$. This implies that the sequence $\left(T_{F}^{n}(U)\right)$ converges to X.
Next, we consider that $Y=(\widetilde{y}, \widetilde{x})$ and $V=(\widetilde{y}, \widetilde{w})$. Then obviously Y, V are comparable and hence we get

$$
\begin{aligned}
\mathcal{D}_{+}\left(T_{F}(Y), T_{F}(V)\right) & \leq k \mathcal{D}_{+}(Y, V) \\
& \leq k[\mathcal{D}(\widetilde{y}, \widetilde{y})+\mathcal{D}(\widetilde{x}, \widetilde{w})] \\
& \leq k \mathcal{D}(\widetilde{x}, \widetilde{w})
\end{aligned}
$$

In a similar fashion, we have

$$
\begin{align*}
& \mathcal{D}_{+}\left(T_{F}^{n}(Y), T_{F}^{n}(V)\right) \leq k^{n} \mathcal{D}_{+}(Y, V) \\
& \Rightarrow \mathcal{D}_{+}\left(Y, T_{F}^{n}(V)\right) \leq k^{n} \mathcal{D}(\widetilde{x}, \widetilde{w}) \\
& \Rightarrow \mathcal{D}_{+}\left(Y, T_{F}^{n}(V)\right)=0 \tag{2.9}
\end{align*}
$$

as $n \rightarrow \infty$ and $\mathcal{D}(\widetilde{x}, \widetilde{w})<\infty$. This implies that the sequence $\left(T_{F}^{n}(V)\right)$ converges to Y. Again, since U and V are comparable, then using the contraction principle 2.3, we yield

$$
\begin{align*}
& \mathcal{D}_{+}\left(T_{F}^{n}(U), T_{F}^{n}(V)\right) \leq k^{n} \mathcal{D}_{+}(U, V) \\
& \Rightarrow \mathcal{D}_{+}\left(T_{F}^{n}(U), T_{F}^{n}(V)\right) \leq k^{n}\{\mathcal{D}(\widetilde{x}, \widetilde{y})+\mathcal{D}(\widetilde{w}, \widetilde{w})\} \\
& \Rightarrow \mathcal{D}_{+}\left(T_{F}^{n}(U), T_{F}^{n}(V)\right)=0 \tag{2.10}
\end{align*}
$$

as $n \rightarrow \infty$ and $\mathcal{D}(\widetilde{x}, \widetilde{y})<\infty, \mathcal{D}(\widetilde{w}, \widetilde{w})<\infty$. By the axioms of \mathcal{D}_{+}-JS-metric space along with (2.8), (2.9) and (2.10), there exists $c>0$ such that

$$
\begin{aligned}
& \mathcal{D}_{+}(X, Y) \leq c \lim \sup \mathcal{D}_{+}\left(T_{F}^{n}(U), T_{F}^{n}(V)\right)=0 \\
& \Rightarrow X=Y \\
& \Rightarrow(\widetilde{x}, \widetilde{y})=(\widetilde{y}, \widetilde{x}) \\
& \Rightarrow \widetilde{x}=\widetilde{y}
\end{aligned}
$$

Alternatively, one can find the equality of components of a couple fixed point by taking $\widetilde{w} \in X$ as a lower bound of \widetilde{x} and \widetilde{y} with $\mathcal{D}(\widetilde{x}, \widetilde{w})<\infty, \mathcal{D}(\widetilde{y}, \widetilde{w})<\infty, \mathcal{D}(\widetilde{x}, \widetilde{y})<\infty$ and $\mathcal{D}(\widetilde{w}, \widetilde{w})<\infty$.
Step III. Suppose the condition (C3) is satisfied along with the hypotheses of Theorem 2.1.2. Due to mixed monotone property of F, for each $n \geq 1, x_{n}=F\left(x_{n-1}, y_{n-1}\right)$ and $y_{n}=F\left(y_{n-1}, x_{n-1}\right)$ are also comparable and $x_{n} \rightarrow \widetilde{x}$ and $y_{n} \rightarrow \widetilde{y}$ as $n \rightarrow \infty$. By the axioms of JS-metric spaces, we obtain

$$
\begin{equation*}
\mathcal{D}(\widetilde{x}, \widetilde{y}) \leq c \lim \sup \mathcal{D}\left(x_{n}, y_{n}\right) \tag{2.11}
\end{equation*}
$$

Again, by taking $X=\left(x_{n}, y_{n}\right)$ and $U=\left(y_{n}, x_{n}\right)$ in the contraction condition of Theorem 2.1.2, for all $n \geq 0$, we get

$$
\begin{align*}
& \mathcal{D}\left(F\left(x_{n}, y_{n}\right), F\left(y_{n}, x_{n}\right)\right) \leq k \mathcal{D}\left(x_{n}, y_{n}\right) \\
& \Rightarrow \mathcal{D}\left(x_{n+1}, y_{n+1}\right) \leq k \mathcal{D}\left(x_{n}, y_{n}\right) \tag{2.12}
\end{align*}
$$

Using Inequalities 2.11 and 2.12, we must have

$$
\mathcal{D}(\widetilde{x}, \widetilde{y}) \leq c \lim \sup \mathcal{D}\left(x_{n}, y_{n}\right) \leq \limsup k^{n} c \mathcal{D}\left(x_{0}, y_{0}\right)=0
$$

as $n \rightarrow \infty$. This implies that $\mathcal{D}(\widetilde{x}, \widetilde{y})=0$. Hence, we obtain $\widetilde{x}=\widetilde{y}$.
As Berinde's theorems are extended versions of the main results of Bhaskar and Lakshmikantham [2], we can deduce immediate consequences of the above results which are the sharpened versions of the main results given in Bhaskar and Lakshmikantham [2].

The improved version of Theorem 2.1 in Bhaskar and Lakshmikantham [2] is given as follows:

Corollary 2.1.6. Let $F: X^{2} \rightarrow X$ be a mapping with mixed monotone property on X. Assume that there exists $k \in[0,1) \cap\left[0, \frac{1}{c_{0}}\right)$ such that

$$
\mathcal{D}(F(x, y), F(u, v)) \leq \frac{k}{2} \mathcal{D}_{+}((x, y),(u, v))
$$

for $x \geq u ; y \leq v$. If there exist $x_{0}, y_{0} \in X$ such that
(A) $x_{0} \leq F\left(x_{0}, y_{0}\right) ; y_{0} \geq F\left(y_{0}, x_{0}\right)$;
(B) $\delta_{F}\left(\mathcal{D},\left(x_{0}, y_{0}\right)\right)<\infty$ and $\delta_{F}\left(\mathcal{D},\left(y_{0}, x_{0}\right)\right)<\infty$,
then there exist $x, y \in X$ such that $x=F(x, y) ; y=F(y, x)$.
Remark 2.1.7. The authors of [2] considered two alternative hypotheses to establish the existence of coupled fixed points. These are: either the function F is continuous or if $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are non-decreasing and non-increasing sequences respectively with $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$, then $x_{n} \leq x ; y_{n} \geq y$ for all $n \in \mathbb{N}$. But the Corollary 2.1.6 ensures the existence of coupled fixed points without assuming any of the above mentioned hypotheses.
Remark 2.1.8. As every b-metric space is a JS-metric space with $c=s \geq 1$ in Definition 1.1, so one can obtain the coupled fixed point results in partially ordered b-metric space from our obtained results. In particular, one can deduce the coupled fixed point result due to Bota et al. [3] (Theorem 2.2 in [3]) from Corollary 2.1.6 directly.
Remark 2.1.9. The uniqueness of a coupled fixed point and the equality of the component of a coupled fixed point of F in Corollary 2.1.6 are guaranteed by the Theorem 2.1.3, 2.1.4 and 2.1.5 respectively.

If we replace the distance function ' \mathcal{D}_{+}' on X^{2} by \mathcal{D}_{m} ', then we can also prove the existence of coupled fixed point. In this direction, we present the following theorem. Theorem 2.1.10. Let $F: X^{2} \rightarrow X$ be a mapping with mixed monotone property on X. Assume that there exists $k \in[0,1)$ such that

$$
\mathcal{D}_{m}\left((F(x, y), F(y, x)),(F(u, v), F(v, u)) \leq k \mathcal{D}_{m}((x, y),(u, v))\right.
$$

for $x \geq u ; y \leq v$. If there exist $x_{0}, y_{0} \in X$ with
(A) $x_{0} \leq F\left(x_{0}, y_{0}\right) ; y_{0} \geq F\left(y_{0}, x_{0}\right)$;
(B) $\delta_{F}\left(\mathcal{D},\left(x_{0}, y_{0}\right)\right)<\infty$ and $\delta_{F}\left(\mathcal{D},\left(y_{0}, x_{0}\right)\right)<\infty$,
then F has a coupled fixed point $(x, y) \in X^{2}$, that is, $x=F(x, y)$ and $y=F(y, x)$.
Proof. Proof is almost similar to the proof of Theorem 2.1.2. Hence, we skip the proof.

Finally, we furnish some examples which substantiate our obtained results.
Example 2.1.11. Let $X=[0,1]$ and we define the distance function as

$$
\mathcal{D}(x, y)=|x|+|y|
$$

At first, we prove that (X, \mathcal{D}) is a JS-metric space. In order to prove this, we check the axioms of JS-metric spaces.
(1) $\mathcal{D}(x, y)=0 \Rightarrow|x|+|y|=0 \Rightarrow|x|=|y|=0$, i.e., $x=y=0$.
(2) Clearly, $\mathcal{D}(x, y)=\mathcal{D}(y, x)$.
(3) Let $\left(x_{n}\right)$ be a sequence converging to some x in X. Then for any $y \in X$, we have $\mathcal{D}(x, y)=|x|+|y|$. Again, $\mathcal{D}\left(x_{n}, y\right)=\left|x_{n}\right|+|y|$ and

$$
\lim \sup \mathcal{D}\left(x_{n}, y\right)=\lim \sup \left(\left|x_{n}\right|+|y|\right)=|x|+|y| .
$$

So, we can always find some $c \geq 1$ such that $\mathcal{D}(x, y) \leq c \lim \sup \mathcal{D}\left(x_{n}, y\right)$.
All the axioms are satisfied. Hence, (X, \mathcal{D}) is a JS-metric space. Now, we consider the metric space $\left(X^{2}, \mathcal{D}_{+}\right)$, where,

$$
\mathcal{D}_{+}((x, y),(u, v))=\mathcal{D}(x, u)+\mathcal{D}(y, v) .
$$

It is clear that $\left(X^{2}, \mathcal{D}_{+}\right)$is a $\mathcal{D}_{+-} \mathrm{JS}$ metric space. Next, we consider a function $F: X^{2} \rightarrow X$ defined by

$$
F(x, y)= \begin{cases}0, & \text { whenever } x=0 \\ \frac{\left(2 x-y^{2}\right)}{5}, & \text { otherwise }\end{cases}
$$

Then we check the axioms of Theorem (2.1.2)
(1) Let $x_{1} \leq x_{2}$. Then for all $y \in X$, we have $2 x_{1}-y^{3} \leq 2 x_{2}-y^{3}$ which implies that $F\left(x_{1}, y\right) \leq F\left(x_{2}, y\right)$, i.e., F is monotonic non-decreasing in its 1st component. Again, for all $x \in X$ with $x \neq 0$, whenever $y_{1} \leq y_{2}$, we get $2 x-y_{1}^{3} \geq 2 x-y_{2}^{3}$ which shows that $F\left(x, y_{1}\right) \geq F\left(x, y_{2}\right)$ and for $x=0$, $F\left(x, y_{1}\right)=F\left(x, y_{2}\right)=0$ for all $y_{1}, y_{2} \in X$. So for all $x \in X, F\left(x, y_{1}\right) \geq$ $F\left(x, y_{2}\right)$ with $y_{1} \leq y_{2}$, i.e., F is monotonic non-increasing function in its 2 nd component. Thus F has mixed monotone property.
(2) Let $\left(x_{0}, y_{0}\right)=(1,0)$. Then,

$$
x_{1}=F\left(x_{0}, y_{0}\right)=F(1,0)=\frac{2}{5} \leq x_{0}=1
$$

and

$$
y_{1}=F\left(y_{0}, x_{0}\right)=F(0,1)=0 \geq y_{0}=0 .
$$

It is clear that for all $n \in \mathbb{N},\left(F^{n}\left(x_{0}, y_{0}\right)\right)$ is a decreasing sequence converging to 0 and $\left(F^{n}\left(y_{0}, x_{0}\right)\right)$ is a constant sequence. Hence, $\delta_{F}\left(\mathcal{D},\left(x_{0}, y_{0}\right)\right)<\infty$ and $\delta_{F}\left(\mathcal{D},\left(y_{0}, x_{0}\right)\right)<\infty$.
(3) Now we prove that F satisfies the contraction condition 2.1. Let $(x, y),(u, v) \in X^{2}$ with $x \geq u$ and $y \leq v$.
(a) Suppose, $x=u=0$, then for all $y, v \in X, \mathcal{D}(F(x, y), F(u, v))=0$.

Hence,

$$
\begin{aligned}
\mathcal{D}(F(x, y), F(u, v))+\mathcal{D}(F(y, x), F(v, u)) & =\mathcal{D}(F(y, x), F(v, u)) \\
& \leq \frac{|2 y|+|2 v|}{5} \\
& \leq \frac{2}{5} D_{+}((x, y),(u, v)) .
\end{aligned}
$$

(b) For $y=v=0$,

$$
\mathcal{D}(F(x, y), F(u, v))+\mathcal{D}(F(y, x), F(v, u)) \leq \frac{2}{5} \mathcal{D}_{+}((x, y),(u, v)) .
$$

(c) Analogously, for $u=0, x \neq 0$ and $y=0, v \neq 0$,

$$
\mathcal{D}(F(x, y), F(u, v))+\mathcal{D}(F(y, x), F(v, u)) \leq \frac{2}{5} \mathcal{D}_{+}((x, y),(u, v))
$$

(d) Let $(x, y),(u, v) \in X^{2}$ with $x \geq u$ and $y \leq v$ and $u \neq 0, y \neq 0$. Then

$$
\begin{aligned}
\mathcal{D}(F(x, y), F(u, v))+\mathcal{D}(F(y, x), F(v, u))= & \frac{\left|2 x-y^{3}\right|}{5}+\frac{\left|2 u-v^{3}\right|}{5} \\
& +\frac{\left|2 y-x^{3}\right|}{5}+\frac{\left|2 v-u^{3}\right|}{5} \\
\leq & \frac{3}{5}(|x|+|y|+|u|+|v|) \\
\leq & \frac{3}{5} \mathcal{D}_{+}((x, y),(u, v))
\end{aligned}
$$

From the above illustrations, it is clear that F satisfies the contraction condition 2.1.

Thus F satisfies all the conditions of Theorem 2.1.2. Hence, F has a coupled fixed point. Note that $(0,0)$ is the unique coupled fixed point of F.
Next, we construct another example in support of Corollary 2.1.6.
Example 2.1.12. Let us consider $X=\mathbb{R} \cup\{\infty,-\infty\}$ and we define the distance function \mathcal{D} on X as $\mathcal{D}(x, y)=|x|+|y|$ for all $x, y \in X$. From previous example, it is clear that (X, \mathcal{D}) is a JS-metric space and so $\left(X^{2}, \mathcal{D}_{+}\right)$is a \mathcal{D}_{+}-JS metric space. Let us define a function $F: X^{2} \rightarrow X$ by

$$
F(x, y)=\frac{x-y}{3}, \forall x, y \in X
$$

Then,
(i) Let $x_{1} \leq x_{2}$. Then for all $y \in X$, we have $x_{1}-y \leq x_{2}-y$ which implies that $F\left(x_{1}, y\right) \leq F\left(x_{2}, y\right)$, i.e., F is monotonic non-decreasing in its 1 st component. Again, for all $x \in X$, whenever $y_{1} \leq y_{2}$, we get $x-y_{1} \geq x-y_{2}$ which shows that $F\left(x, y_{1}\right) \geq F\left(x, y_{2}\right)$. So F is monotonic non-increasing function in its 2nd component. Thus F has mixed monotone property.
(ii) Let $(x, y),(u, v) \in X^{2}$. Then,

$$
\begin{aligned}
\mathcal{D}(F(x, y), F(u, v)) & =\frac{|x-y|}{3}+\frac{|u-v|}{3} \\
& \leq \frac{1}{3}(|x|+|u|)+\frac{1}{3}(|y|+|v|) \\
& \leq \frac{2}{3} \frac{\mathcal{D}_{+}((x, y),(u, v))}{2}
\end{aligned}
$$

This shows that F satisfies the contraction condition.
(iii) Let us set $x_{0}=-3$ and $y_{0}=2$. Then,

$$
x_{1}=F\left(x_{0}, y_{0}\right)=F(-3,2)=\frac{-5}{3}>x_{0}=-3
$$

and

$$
y_{1}=F\left(y_{0}, x_{0}\right)=F(2,-3)=\frac{5}{3}<y_{0}=2
$$

Again, it is easy to show that for all $i, j \in \mathbb{N}, \delta_{F}\left(\mathcal{D},\left(x_{0}, y_{0}\right)\right)<\infty$ and $\delta_{F}\left(\mathcal{D},\left(y_{0}, x_{0}\right)\right)<\infty$.
Thus all the conditions of the Corollary 2.1.6 are satisfied. Therefore F has a coupled fixed point. Here, $(0,0)$ is a coupled fixed point of F. Notice that this is not unique since $(\infty,-\infty)$ is also a coupled fixed point of F.

Acknowledgements. Both the authors awe a debt gratitude to the anonymous referee for careful reading and helpful suggestions which considerably improve the first draft as well as the revised version. This work is funded by DST-INSPIRE, New Delhi, India under INSPIRE fellowship scheme (No. DST/INSPIRE FELLOWSHIP/2013/636). The support is gratefully acknowledged.

References

[1] V. Berinde, Generalized coupled fixed point theorems for mixed monotone mappings in partially ordered metric spaces, Nonlinear Anal., 74(18)(2011), 7347-7355.
[2] T.G. Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal., 65(2006), 1379-1393.
[3] M.F. Bota, A. Petruşel, G. Petruşel, B. Samet, Coupled fixed point theorems for single-valued operators in b-metric spaces, Fixed Point Theory Appl., 2015(2015), no. 231.
[4] H.S. Ding, L. Li, Coupled fixed point theorems in partially ordered cone metric spaces, Filomat, 25(2011), no. 2, 137-149.
[5] D. Guo, V. Lakshmikantham, Coupled fixed points of nonlinear operators with applications, Nonlinear Anal., 11(5)(1987), 623-632.
[6] H. Isik, D. Turkoglu, Coupled fixed point theorems for new contractive mixed monotone mappings and applications to integral equations, Filomat, 28(6)(2014), 1253-1264.
[7] H. Isik, S. Radenović, A new version of coupled fixed point results in ordered metric spaces with applications, U.P.B. Sci. Bull., Series A, 79(2017), no. 2, 131-138.
[8] M. Jleli, B. Samet, A generalized metric space and related fixed point theorems, Fixed Point Theory Appl., 2015(2015), no. 61.
[9] V. Lakshmikantham, L.B. Ćirić, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal., 70(12)(2009), 4341-4349.
[10] A. Petruşel, G. Petruşel, B. Samet, J.C. Yao, Coupled fixed point theorems for symmetric contractions in b-metric spaces with applications to operator equation systems, Fixed Point Theory, $\mathbf{1 7}(2)(2016), 459-476$.
[11] S. Radenović, Remarks on some coupled coincidence point results in partially ordered metric spaces, Arab J. Math. Sci., 20(1)(2014), 29-39.
[12] S. Radenović, Coupled fixed point theorems for monotone mappings in partially ordered metric spaces, Kragujevac J. Math., 38(2)(2014), 249-257.
[13] T. Senapati, L.K. Dey, D. Dolićanin-Dekić, Extension of Ćirić and Wardowski type fixed point theorems in D-generalized metric spaces, Fixed Point Theory Appl., 2016(2016), no. 33.

Received: July 6, 2016; Accepted: June 19, 2017.

