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1. Preliminaries

Definition 1.1. ([22]) A triangular norm (shortly, t-norm) is a binary operation
on the unit interval [0, 1], i.e., a function ∗ : [0, 1] × [0, 1] → [0, 1] such that, for all
a, b, c ∈ [0, 1], the following four axioms are satisfied:

(T1) a ∗ b = b ∗ a (commutativity);
(T2) a ∗ (b ∗ c) = (a ∗ b) ∗ c (associativity);
(T3) a ∗ 1 = a (boundary condition);
(T4) a ∗ b ≤ a ∗ c whenever b ≤ c (monotonicity).

We say the t-norm ∗ has Σ property and write ∗ ∈ Σ whenever, for any λ ∈ (0, 1),
there exists γ ∈ (0, 1) (which does not depend on n) such that

(1− γ) ∗ · · · ∗ (1− γ)︸ ︷︷ ︸
n

> 1− λ (1.1)

for each n ≥ 1.
The theory of fuzzy space has much progressed as developing the theory of random-

ness. Some mathematicians have defined fuzzy norms on a vector space from various
points of view [3, 9, 14]. Following Cheng and Mordeson [7], Nădăban and Dzitac [18]
and Saadati and Vaezpour [21] gave an idea of fuzzy norm in such a manner that the
corresponding fuzzy metric is of Kramosil and Michalek type [15] and investigated
some properties of fuzzy normed spaces [3, 18, 20].
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Definition 1.2. Let X be a real vector space. A function N : X×R→ [0, 1] is called
a fuzzy norm on X if for all x, y ∈ X and all s, t ∈ R,

(N1) N(x, t) = 0 for t ≤ 0;
(N2) x = 0 if and only if N(x, t) = 1 for all t > 0;
(N3) N(cx, t) = N(x, t

|c| ) if c 6= 0;

(N4) N(x+ y, s+ t) ≥ N(x, s) ∗N(y, t);
(N5) lim

t→∞
N(x, t) = 1;

(N6) for x 6= 0, N(x, ·) is left continuous on R.

The pair (X,N, ∗) is called a fuzzy normed vector space.

Definition 1.3. [4] (1) Let (X,N, ∗) be a fuzzy normed vector space. A sequence
{xn} in X is said to be convergent or converge if there exists an x ∈ X such that
lim
n→∞

N(xn − x, t) = 1 for all t > 0. In this case, x is called the limit of the sequence

{xn} and we denote it by lim
n→∞

xn = x.

(2) Let (X,N, ∗) be a fuzzy normed vector space. A sequence {xn} in X is called
Cauchy if for each ε > 0 and each t > 0 there exists an n0 ∈ N such that for all
n ≥ n0 and all p > 0, we have N(xn+p − xn, t) > 1− ε.

It is well-known that every convergent sequence in a fuzzy normed vector space
is Cauchy. If each Cauchy sequence is convergent, then the fuzzy norm is said to
be complete and the fuzzy normed vector space is called a fuzzy Banach space. We
say that a mapping f : X → Y between fuzzy normed vector spaces X and Y is
continuous at a point x0 ∈ X if for each sequence {xn} converging to x0 in X, then
the sequence {f(xn)} converges to f(x0). If f : X → Y is continuous at each x ∈ X,
then f : X → Y is said to be continuous on X (see [4]).

Definition 1.4. [16] A fuzzy normed algebra (X,N, ∗, �) is a random normed space
(X,N, ∗) with algebraic structure such that

(N7) N(xy, ts) ≥ N(x, t) �N(y, s) for all x, y ∈ X and all t, s > 0. in which � is a
continuous t-norm.

Every normed algebra (X, ‖ · ‖) defines a fuzzy normed algebra (X,N,min, ·), where

N(x, t) =
t

t+ ‖x‖
for all t > 0 if and only if

‖xy‖ ≤ ‖x‖‖y‖+ s‖y‖+ t‖x‖ (x, y ∈ X; t, s > 0).

This space is called the induced fuzzy normed algebra.
Note that the last example is hold with (X,N, ·, ·) (for details and more examples see
[6, 16]).

Definition 1.5. Let (X,N, ∗) be a fuzzy normed space. We define the open ball
Bx(r, t) and the closed ball Bx[r, t] with center x ∈ X and radius 0 < r < 1 for any
t > 0 as follows:

Bx(r, t) = {y ∈ X : N(x− y, t) > 1− r},
Bx[r, t] = {y ∈ X : N(x− y, t) ≥ 1− r}.
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Theorem 1.6. ([1]) Let (X,N, ∗) be a fuzzy normed space. Every open ball Bx(r, t)
is an open set.

Different kinds of topologies can be introduced in a fuzzy normed space [1, 22].
The (r, t)-topology is introduced by a family of neighborhoods

{Bx(r, t)}x∈X, t>0, r∈(0,1).

In fact, every fuzzy norm N on X generates a topology ((r, t)-topology) on X which
has as a base the family of open sets of the form

{Bx(r, t)}x∈X, t>0, r∈(0,1).

Remark 1.7. Since
{
Bx
(
1
n ,

1
n

)
: n = 1, 2, 3, · · ·

}
is a local base at x, the (r, t)-

topology is first countable.

Theorem 1.8. ([1]) Every fuzzy normed space (X,N, ∗) is a Hausdorff space.

Definition 1.9. Let (X,N, ∗) be a fuzzy normed space. A subset A of X is said to
be fuzzy bounded if there exist t > 0 and r ∈ (0, 1) such that N(x− y, t) > 1− r for
all x, y ∈ A.

Note that, A fuzzy normed space (X,N, ∗) is called compact if (X,N, ∗) is a com-
pact topological space.

Definition 1.10. The fuzzy normed space (X,N, ∗) is said to be fuzzy compact
(simply F-compact) if every sequence {pm}m in X has a convergent subsequence
{pmk

}. A subset A of a fuzzy normed space (X,N, ∗) is said to be F-compact if every
sequence {pm} in A has a subsequence {pmk

} convergent to a vector p ∈ A.

By [10] a set is compact topological if and only if it is F-compact.

Theorem 1.11. ([1]) Every F-compact subset A of a fuzzy normed space (X,N, ∗) is
closed and fuzzy bounded.

Theorem 1.12. ([22]) If (X,N, ∗) is a fuzzy normed space and {xn} is a sequence
such that xn → x, then lim

n→∞
N(xn, t) = N(x, t) almost everywhere.

Theorem 1.13. ([1]) Let (X,N, ∗) be a fuzzy normed space such that every Cauchy
sequence in X has a convergent subsequence. Then (X,N, ∗) is complete.

Lemma 1.14. ([1]) If (X,N, ∗) is a fuzzy normed space, then
(1) The function (x, y) −→ x+ y is continuous.
(2) The function (α, x) −→ αx is continuous.

Note that, in [2] the authors proved that every fuzzy normed space is topological
vector space (see also Theorem 2 of [13] and [23]).

Theorem 1.15. (The Schauder fixed point theorem) Let K be a convex subset
of a topological vector space X and A is a continuous mapping of K into itself so that
A(K) is contained in a F-compact subset of K, then A has a fixed point.

Proof. The proof is depended to topological vector space properties, therefore we omit
it. �
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Lemma 1.16. Let (X,N, ∗) be a fuzzy normed space, in which ∗ ∈ Σ. If we define
Eλ,N : X2 −→ R+ ∪ {0} by

Eλ,N (x) = inf{t > 0 : N(x, t) > 1− λ}
for each λ ∈]0, 1[ and x ∈ X, then we have the following:

(1) For any κ ∈]0, 1[, there exists λ ∈]0, 1[ such that

Eκ,N (x1 − xk) ≤ Eλ,N (x1 − x2) + Eλ,N (x2 − x3) + · · ·+ Eλ,N (xk−1 − xk)

for any x1, ..., xk ∈ X;
(2) For any sequence {xn} in X, we have µxn−x(t) −→ 1 if and only if

Eλ,N (xn − x)→ 0.

Also the sequence {xn} is Cauchy w.r.t. f if and only if it is Cauchy with Eλ,N .

Proof. The proof is the same as in Lemma 1.6 of [19]. �

Note that, λ in Lemma 1.16 (1) does not depend on k (see [19]).

Definition 1.17. A linear operator Λ : (X,N, ∗) −→ (Y,N ′, �) is said to be fuzzy
bounded if there exists a constant h ∈ R− {0} such that

N ′(Λx, t) ≥ N(hx, t) (1.2)

for all x ∈ X and t > 0.

Theorem 1.18. ([1]) Every linear operator Λ : (X,N, ∗) −→ (Y,N, �) is fuzzy
bounded if and only if it is continuous.

Definition 1.19. (F-Compact linear operator). Let (X,N, ∗) and (Y,N, ∗) be
fuzzy normed spaces. An operator Λ : X −→ Y is called a F-compact linear operator
if Λ is linear and if for every fuzzy bounded subset M of X, the closure Λ(M) is
F-compact.

Definition 1.20. Let (X,N, ∗) be fuzzy normed space and A ⊂ X. We say A is
totally bounded if for each 0 < r < 1 and t > 0 there exists a finite subset S of X such
that

A ⊆
⋃
x∈S

Bx(r, t).

Lemma 1.21. Let (X,N, ∗) be fuzzy normed space and A ⊂ X. Then

(a) If A is F-compact, A is totally bounded.

(b) If A is totally bounded and X is complete, A is F-compact.

Proof. (a) We assume that A is compact and show that, any fixed 0 < r0 < 1 and
t0 > 0 being given, there exists a finite subset S of X such that

A ⊆
⋃
x∈S

Bx(r0, t).

If A = ∅, then S = ∅. If A 6= ∅ we pick any x1 ∈ A. If N(x1 − z, t0) > 1 − r0 for all
z ∈ A, then {x1} = S. Otherwise, let x2 ∈ A be such that N(x1 − x2, t0) ≤ 1− r0. If
for all z ∈ A,

N(xj − z, t0) > 1− r0 for j = 1 or 2. (1.3)
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Then {x1, x2} = S. Otherwise let z = x3 ∈ A be a point not satisfying (1.3). If for
all z ∈ A,

N(xj − z, t0) > 1− r0 for j = 1, 2 or 3,

then {x1, x2, x3} = S. Otherwise we continue by selecting an x4 ∈ A, etc. We assert
the existence of a positive integer n such that the set {x1, x2, ..., xn} = S obtained
after n such steps. In fact, if there were no such n, our construction would yield a
sequence {xj} satisfying

N(xj − xk, t0) ≤ 1− r0 for j 6= k.

Obviously, {xj} could not have a subsequence which is Cauchy. Hence {xj} could not
have a subsequence which converges in X. But this contradicts the compactness of
A because {xj} lies in A, by the construction. Hence there must be a finite set S for
A. Since 0 < r0 < 1 and t0 were arbitrary, we conclude that A is totally bounded.
(b) see [10]. �

Further, the operator Λ is called completely continuous if it is continuous and
totally bounded.

2. Fixed point theorem

In this section, we assume that (X,N, ∗) is fuzzy Banach space. Let Φ be the set
of all non-decreasing functions

φ : [0,∞) −→ [0,∞).

Here, φn(t) denotes the n-th iterative function of φ(t). Our results extend and improve
some results of [8, 5].

Lemma 2.1. ([11, 12]) If φ ∈ Φ and satisfy

∞∑
j=1

φj(t) < ∞ for t > 0 then φ(t) < t

for t > 0.

The concept of fuzzy Lipschitzian mapping was introduced in [17]. A mapping
A : X −→ X is called fuzzy D-Lipschitzian if

N(A(x)−A(y), φ(t)) ≥ N(x− y, t) (2.1)

for x, y ∈ X and t > 0, where φ ∈ Φ.
We call the function φ a D-function of A on X.

Lemma 2.2. Let (X,N, ∗) be fuzzy normed space, t > 0 and 0 < a < 1. Then there
exists k ≥ 1 such that

N(x, t) ∗ a = N

(
x,
t

k

)
,

for x ∈ X.

Proof. Let x ∈ X, t > 0 and 0 < a < 1 be fixed. Then N(x, t) ∗ a ∈ (0, 1). By the
intermediate value theorem there exists an ` > 0 such that N(x, t) ∗ a = N(x, `). Put
` = t

k in which k = k(a). �
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Theorem 2.3. Let (X,N, ∗) be a complete fuzzy normed space, in which ∗ ∈ Σ, and
let A : X −→ X such that

N(Ax1 −Ax2, φ(t)) ≥ N(x1 − x2, t) ∗ a,

for all x1, x2 ∈ X, t > 0, D-function φ and some a ∈ (0, 1) such that

∞∑
j=1

kj(a)φj(t) <

∞. Then A has a unique fixed point.

Proof. Choose x0 ∈ X and let t > 0. Choose x1 ∈ X with Ax0 = x1. In general
choose xn+1 such that Axn = xn+1. Now,

µAxn−Axn+1
(φn+1(t)) ≥ N(xn − xn+1, φ

n(t)) ∗ a = N(Axn−1 −Axn, φn(t)) ∗ a

= N(Axn−1 −Axn,
φn(t)

k
) ≥ . . . ≥ N(x0 − x1,

t

kn+1
).

Note for each λ ∈ (0, 1) that (see Lemma 1.9. of [19])

Eλ,N (Axn −Axn+1) = inf{φn+1(t) > 0 : N(Axn −Axn+1, φ
n+1(t)) > 1− λ}

≤ inf{φn+1(t) > 0 : N(x0 − x1,
t

kn+1
) > 1− λ}

≤ φn+1

(
inf

{
t > 0 : N

(
x0 − x1,

t

kn+1

)
> 1− λ

})
= kn+1φn+1(Eλ,N (x0 − x1)),

in which k ≥ 1. Now, by the proof of Lemma 1.9 of [19], the sequence {Axn} is
Cauchy and so is convergent since X is complete. By Theorem 2.3 of [19], A has a
unique fixed point. �

Theorem 2.4. Let S be a closed, convex and fuzzy bounded subset of a Banach algebra
(X,N, ∗, ∗) in which ∗ ∈ Σ and let A : X −→ X, B : S −→ X be two operators such
that

(a) A is D-Lipschitzian with a D-function φ,

(b) B is completely continuous, and

(c) x = AxBy =⇒ x ∈ S, for all y ∈ S.
Then the operator equation

AxBx = x (2.2)

has a solution, whenever

∞∑
j=1

kj(a)φj(`) <∞, for ` > 0 in which

a = N(B(S), 1) ∗N(ATy, 1),

T : S → X is a mapping defined by

Ty = z,

where z ∈ X is the unique solution of the equation

z = AzBy, y ∈ S.
Also N(B(S), 1) = infy∈S N(By, 1).
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Proof. Let y ∈ S. Now, define a mapping Ay : X → X by

Ay(x) = AxBy, x ∈ X.
Since, for xi ∈ X (i = 1, 2) and t > 0,

N(Ayx1 −Ayx2, φ(t)) = N(Ax1By −Ax2By, φ(t))

≥ N(Ax1 −Ax2, φ(t)) ∗N(By, 1)

≥ N(x1 − x2, t) ∗N(B(S), 1)

Then, Ay is a nonlinear contraction on X with a D-function φ and N(B(S), 1) ∈ (0, 1).
Now an application of a fixed point Theorem 2.3 yields that there is a unique point
x∗ ∈ X such that

Ay(x∗) = x

or, equivalently,
x∗ = Ax∗By.

Since hypothesis (c) holds, we have that x∗ ∈ S. Now we show that T is continuous.
Let {yn} be a sequence in S converging to a point y. Since S is closed, y ∈ S. Now,

N(Tyn − Ty, φ(t) + ε) = N(ATynByn −ATyBy, φ(t) + ε)

≥ N(ATynByn −ATyByn, φ(t)) ∗N(ATyByn −ATyBy, ε)
≥ N(ATyn −ATy, φ(t)) ∗N(Byn, 1) ∗N(ATy, 1) ∗N(Byn −By, ε)
≥ N(Tyn − Ty, t) ∗N(Byn, 1) ∗N(ATy, 1) ∗N(Byn −By, ε),

for t > 0 and ε ∈ (0, 1). For great n ∈ N and by continuity of B we have

N(Tyn − Ty, φ(t) + ε) ≥ N(Tyn − Ty, t) ∗N(Byn, 1) ∗N(ATy, 1).

Take infimum on ε ∈ (0, 1) we get

N(Tyn − Ty, φ(t)) ≥ N(Tyn − Ty, t) ∗N(B(S), 1) ∗N(ATy, 1)

≥ N(Tyn − Ty, t) ∗ a
in which a = N(B(S), 1) ∗ N(ATy, 1) ∈ (0, 1). Now, by proof of Theorem 2.3,
N(Tyn − Ty, φ(t) tend to 1 for each t > 0, whenever n → ∞ and consequently T is
continuous on S. Next we show that T is a compact operator on S.

Let η > 0 and t > 0 be given. For any z ∈ S we have

N

(
Az, 2φ

(√
t

3

))
≥ N

(
Aa, φ

(√
t

3

))
∗N

(
Az −Aa, φ

(√
t

3

))
≥ N

(
Aa, φ

(√
t

3

))
∗N

(
z − a,

√
t

3

)
≥ c

where

c = N

(
Aa, φ

(√
t

3

))
∗N

(
S,

√
t

3

)
for some fixed a ∈ S. Then we can find r = rη,t such that

N

(
S,
t

3

)
∗N(B(S), 1) ∗ c ∗ (1− r) > 1− η.
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Since B is completely continuous, B(S) is totally bounded. Then there is a set
Y = {y1, ..., yn} in S such that

B(S) ⊂
n⋃
j=1

Bwj (r,
√
t),

where wj = B(yj). Therefore for any y ∈ S we have a yk ∈ Y such that

N(By −Byk,
√
t) > 1− r.

Also we have

N(Nyn −Ny, t) ≥ N
(
Tyn − Ty, φ

(
t

3

)
+ 2
√
tφ

(√
t

3

))

≥ N
(
AzBy −AzkByk, φ

(
t

3

)
+ 2
√
tφ

(√
t

3

))
≥ N

(
AzBy −AzkBy, φ

(
t

3

))
∗N

(
AzkBy −AzkByk, 2

√
tφ

(√
t

3

))
≥ N

(
Az −Azk, φ

(
t

3

))
∗N(By, 1) ∗N

(
Azk, 2φ

(√
t

3

))
∗N(Byn −By,

√
t)

≥ N
(
z − zk,

t

3

)
∗N(B(S), 1) ∗ c ∗ (1− r)

≥ N
(
S,
t

3

)
∗N(B(S), 1) ∗ c ∗ (1− r) ≥ 1− η.

This is true for every y ∈ S and hence

T (S) ⊂ Bzi(η, t),

where zi = T (yi). As a result T (S) is totally bounded. Since T is continuous, it is a
compact operator on S. Now an application of Schauder’s fixed point yields that T
has a fixed point in S. Then, by the definition of T

x = Tx = A(Tx)Bx = AxBx,

and so the operator equation x = AxBx has a solution in S. �
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