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1. PRELIMINARIES

Definition 1.1. ([22]) A triangular norm (shortly, t-norm) is a binary operation
on the unit interval [0, 1], i.e., a function = : [0,1] x [0,1] — [0, 1] such that, for all
a,b, c € 0, 1], the following four axioms are satisfied:

(T1) axb=0bxa (commutativity);

(T2) ax(bxc)=(axb)xc (associativity);

(T3) ax1=a (boundary condition);

(T4) a*xb<a+*cwhenever b <c¢ (monotonicity).

We say the t-norm * has ¥ property and write * € 3 whenever, for any A € (0, 1),
there exists v € (0,1) (which does not depend on n) such that

I=y)x-x(l=7)>1-A (1.1)

n

for each n > 1.

The theory of fuzzy space has much progressed as developing the theory of random-
ness. Some mathematicians have defined fuzzy norms on a vector space from various
points of view [3, 9, 14]. Following Cheng and Mordeson [7], Naddban and Dzitac [18]
and Saadati and Vaezpour [21] gave an idea of fuzzy norm in such a manner that the
corresponding fuzzy metric is of Kramosil and Michalek type [15] and investigated
some properties of fuzzy normed spaces [3, 18, 20].
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Definition 1.2. Let X be a real vector space. A function N : X xR — [0, 1] is called
a fuzzy norm on X if for all z,y € X and all s,t € R,
(N1) N(z,t) =0 for t <0;
(N2) z =0 if and only if N(x,t) =1 for all ¢ > 0;
(Ng) N(ca,t) = Nz, ) if ¢ £ 0
(Ni) N(z +y,s+1t) 2 N(z,s) =« N(y,1);
(N5) tlim N(z,t) =1,
— 00
(Ng) for x # 0, N(x,-) is left continuous on R.
The pair (X, N, %) is called a fuzzy normed vector space.

Definition 1.3. [4] (1) Let (X, N, x) be a fuzzy normed vector space. A sequence
{z,} in X is said to be convergent or converge if there exists an x € X such that

lim N(x, —z,t) =1 for all t > 0. In this case, x is called the limit of the sequence
n—oo

{z,} and we denote it by lim z, = z.
n—oo
(2) Let (X, N, ) be a fuzzy normed vector space. A sequence {z,} in X is called
Cauchy if for each € > 0 and each ¢t > 0 there exists an ng € N such that for all
n > ng and all p > 0, we have N (Zpqp — Tn,t) > 1 —¢.

It is well-known that every convergent sequence in a fuzzy normed vector space
is Cauchy. If each Cauchy sequence is convergent, then the fuzzy norm is said to
be complete and the fuzzy normed vector space is called a fuzzy Banach space. We
say that a mapping f : X — Y between fuzzy normed vector spaces X and Y is
continuous at a point xg € X if for each sequence {z,} converging to o in X, then
the sequence {f(x,)} converges to f(xzg). If f: X — Y is continuous at each x € X,
then f: X — Y is said to be continuous on X (see [4]).

Definition 1.4. [16] A fuzzy normed algebra (X, N,*,¢) is a random normed space
(X, N, x) with algebraic structure such that

(N7) N(zy,ts) > N(z,t) o N(y,s) for all z,y € X and all ¢t,s > 0. in which ¢ is a
continuous t-norm.

Every normed algebra (X, || - ||) defines a fuzzy normed algebra (X, N, min, -), where
N(z,t) = _
t =+ [|]|

for all ¢ > 0 if and only if
eyl < [lzllllyll + sllyll + tlzl (z,y € X5 t,5>0).

This space is called the induced fuzzy normed algebra.
Note that the last example is hold with (X, N, -, ) (for details and more examples see
[6, 16]).
Definition 1.5. Let (X, N,x*) be a fuzzy normed space. We define the open ball
B, (r,t) and the closed ball B,[r,t] with center x € X and radius 0 < r < 1 for any
t > 0 as follows:

B,(r,it)={ye X : N(x—y,t)>1-r},

B;[rtj]={ye X : N(x—y,t) >1—r}
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Theorem 1.6. ([1]) Let (X, N,x*) be a fuzzy normed space. Every open ball By (r,t)
is an open set.

Different kinds of topologies can be introduced in a fuzzy normed space [1, 22].
The (r,t)-topology is introduced by a family of neighborhoods

{Ba(r,t)}aex, t>0, re(0,1)-

In fact, every fuzzy norm N on X generates a topology ((r,t)-topology) on X which
has as a base the family of open sets of the form

{Be(r, t)}aceX, t>0, r€(0,1)-

Remark 1.7. Since {Bm (%,%) ‘n= 1,2,3,-~-} is a local base at x, the (r,t)-
topology is first countable.

Theorem 1.8. ([1]) Every fuzzy normed space (X, N,x*) is a Hausdorff space.

Definition 1.9. Let (X, N, ) be a fuzzy normed space. A subset A of X is said to
be fuzzy bounded if there exist t > 0 and r € (0, 1) such that N(x — y,t) > 1 — r for
all z,y € A.

Note that, A fuzzy normed space (X, N, x) is called compact if (X, N, x) is a com-
pact topological space.

Definition 1.10. The fuzzy normed space (X, N, x) is said to be fuzzy compact
(simply F-compact) if every sequence {pm,}m in X has a convergent subsequence
{Pm, }- A subset A of a fuzzy normed space (X, N, *) is said to be F-compact if every
sequence {p,,} in A has a subsequence {p,,, } convergent to a vector p € A.

By [10] a set is compact topological if and only if it is F-compact.

Theorem 1.11. ([1]) Every F-compact subset A of a fuzzy normed space (X, N, *) is
closed and fuzzy bounded.

Theorem 1.12. ([22]) If (X, N,x*) is a fuzzy normed space and {x,} is a sequence
such that x, — x, then lim N(x,,t) = N(z,t) almost everywhere.
n—oo

Theorem 1.13. ([1]) Let (X, N, ) be a fuzzy normed space such that every Cauchy
sequence in X has a convergent subsequence. Then (X, N, x) is complete.

Lemma 1.14. ([1]) If (X, N, ) is a fuzzy normed space, then
(1) The function (x,y) — x +y is continuous.
(2) The function (o, x) — ax is continuous.

Note that, in [2] the authors proved that every fuzzy normed space is topological
vector space (see also Theorem 2 of [13] and [23]).

Theorem 1.15. (The Schauder fixed point theorem) Let K be a conver subset
of a topological vector space X and A is a continuous mapping of K into itself so that
A(K) is contained in a F-compact subset of K, then A has a fized point.

Proof. The proof is depended to topological vector space properties, therefore we omit
it. O
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Lemma 1.16. Let (X, N,x*) be a fuzzy normed space, in which x € X. If we define
E)\’N X2 —R* U{O} by
Ey n(z) =1inf{t >0: N(z,t) >1— A}

for each A €]0,1[ and x € X, then we have the following:

(1) For any k €]0, 1], there exists A €]0, 1] such that

Eon(x1 —xp) < Exn(z1 —2z2) + Exn(z2 —23) + - + Ex N(®p—1 — Tk)

for any x1, ...,z € X;

(2) For any sequence {x,} in X, we have iy, —(t) — 1 if and only if

E/\’N({L‘n — :I?) — 0.

Also the sequence {x,} is Cauchy w.r.t. f if and only if it is Cauchy with Ex n.
Proof. The proof is the same as in Lemma 1.6 of [19]. O

Note that, A in Lemma 1.16 (1) does not depend on k (see [19]).

Definition 1.17. A linear operator A : (X, N,*) — (Y, N’ o) is said to be fuzzy
bounded if there exists a constant h € R — {0} such that

N'(Az,t) > N(ha,t) (1.2)
for all z € X and ¢t > 0.
Theorem 1.18. ([1]) Every linear operator A : (X,N,x) — (Y, N,o) is fuzzy
bounded if and only if it is continuous.
Definition 1.19. (F-Compact linear operator). Let (X, N,x) and (Y, N, *) be
fuzzy normed spaces. An operator A : X — Y is called a F-compact linear operator

if A is linear and if for every fuzzy bounded subset M of X, the closure A(M) is
F-compact.

Definition 1.20. Let (X, N, x) be fuzzy normed space and A C X. We say A is
totally bounded if for each 0 < r < 1 and t > 0 there exists a finite subset S of X such
that

AC | Balrt).
€S
Lemma 1.21. Let (X, N,x*) be fuzzy normed space and A C X. Then
(a) If A is F-compact, A is totally bounded.
(b) If A is totally bounded and X is complete, A is F-compact.

Proof. (a) We assume that A is compact and show that, any fixed 0 < 79 < 1 and
to > 0 being given, there exists a finite subset S of X such that

AC | Be(ro,t).
€S
If A= 0, then S =0. If A # () we pick any x1 € A. If N(x1 — z,t9) > 1 — 1 for all
z € A, then {21} = S. Otherwise, let 25 € A be such that N(z1 — x2,t9) <1—1rg. If
for all z € A,

N(z; —z,tp) >1—ry for j =1 or 2. (1.3)
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Then {x1,22} = S. Otherwise let z = x3 € A be a point not satisfying (1.3). If for
all z € A,
N(x; —z,tg) >1—r¢ for j =1,2 or 3,

then {z1, 22,23} = S. Otherwise we continue by selecting an x4 € A, etc. We assert
the existence of a positive integer n such that the set {x1,zs,...,2,} = S obtained
after n such steps. In fact, if there were no such n, our construction would yield a
sequence {z;} satisfying
N(zj —xp,to) <1—1rg for j # k.

Obviously, {«;} could not have a subsequence which is Cauchy. Hence {x;} could not
have a subsequence which converges in X. But this contradicts the compactness of
A because {x;} lies in A, by the construction. Hence there must be a finite set S for

A. Since 0 < rg < 1 and tg were arbitrary, we conclude that A is totally bounded.
(b) see [10]. O

Further, the operator A is called completely continuous if it is continuous and
totally bounded.
2. FIXED POINT THEOREM

In this section, we assume that (X, N, *) is fuzzy Banach space. Let ® be the set
of all non-decreasing functions

¢ :]0,00) — [0, 00).

Here, ¢™(t) denotes the n-th iterative function of ¢(¢). Our results extend and improve
some results of [8, 5].

Lemma 2.1. ([11, 12]) If ¢ € ® and satisfy ZW(t) < oo fort >0 then ¢(t) <t
j=1
fort>0.

The concept of fuzzy Lipschitzian mapping was introduced in [17]. A mapping
A: X — X is called fuzzy D-Lipschitzian if

N(A(z) — A(y), ¢(t)) =2 N(z —y,1) (2.1)

for z,y € X and t > 0, where ¢ € ®.
We call the function ¢ a D-function of A on X.

Lemma 2.2. Let (X, N, x) be fuzzy normed space, t >0 and 0 < a < 1. Then there
exists k > 1 such that

t
N(x,t)*a:N(sc,k>,
forxz e X.

Proof. Let x € X, t > 0 and 0 < a < 1 be fixed. Then N(x,t)*a € (0,1). By the
intermediate value theorem there exists an ¢ > 0 such that N(z,t) xa = N(x,{). Put
{ = % in which k = k(a). O
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Theorem 2.3. Let (X, N,x*) be a complete fuzzy normed space, in which x € ¥, and
let A: X — X such that

N(Azxy — Azs, ¢(t)) > N(x1 — 22,1) * a,

for all z1,29 € X, t > 0, D-function ¢ and some a € (0,1) such that Z ki (a)¢’ (t) <
j=1
o0. Then A has a unique fized point.

Proof. Choose o € X and let ¢ > 0. Choose 1 € X with Azg = z1. In general
choose x,,+1 such that Az, = z,4+1. Now,

,U/A:ran:cn+1 (¢n+1 (t)) 2 N(xn — Tn+1, ¢n(t)) *a = N(Axnfl - vam d)n(t)) *a
9" () t

= N(Az,_1 — Az, P )>...> N(x _xl’W)'
Note for each A € (0,1) that (see Lemma 1.9. of [19])
Exn(Az, — Azpy1) = inf{¢"TH(t) > 0: N(Az, — Axpyr, ") > 1 - N}
t
< inf{¢" () > 0: N(wg — 21, ——) > 1 — \}

kn-i—l

. t
< ¢n+1 (1Hf{t>0N($0—$1,kn+l>>l—A}>

= kK" "B\ N (20 — 11)),

in which & > 1. Now, by the proof of Lemma 1.9 of [19], the sequence {Az,} is
Cauchy and so is convergent since X is complete. By Theorem 2.3 of [19], A has a
unique fixed point. O

Theorem 2.4. Let S be a closed, convex and fuzzy bounded subset of a Banach algebra
(X, N,x, %) in which x € X and let A: X — X, B: S — X be two operators such
that

(a) A is D-Lipschitzian with a D-function ¢,
(b) B is completely continuous, and

(c)z=AzBy= =z €S, forally € S.
Then the operator equation

AzBr =x (2.2)

has a solution, whenever Z K (a)¢? (£) < oo, for £ >0 in which
j=1
a= N(B(S),1)x N(ATy,1),
T:5 — X is a mapping defined by
Ty =z,

where z € X is the unique solution of the equation

z=AzBy, y € S.
Also N(B(S),1) = inf,cs N(By, 1).
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Proof. Let y € S. Now, define a mapping A4, : X — X by
Ay (z) = AzBy, z € X.
Since, for z; € X (i =1,2) and ¢ > 0,
N(Ayz, — Ayzo, ¢(t)) = N(Az1B, — AzsBy, ¢(1))
N(Azy — Az, ¢(t)) * N(By, 1)
N(zy — x9,t) * N(B(S),1)
Then, A, is a nonlinear contraction on X with a D-function ¢ and N(B(S),1) € (0,1).

Now an application of a fixed point Theorem 2.3 yields that there is a unique point
x* € X such that

IV 1V

Ay(z™) ==z
or, equivalently,
x* = Ax* By.
Since hypothesis (c) holds, we have that * € S. Now we show that T is continuous.
Let {y,} be a sequence in S converging to a point y. Since S is closed, y € S. Now,

N(Ty, — Ty, ¢(t) + ¢) = N(ATy, By, — ATyBy, ¢(t) + ¢)
> N(ATy, By, — ATyBy,, ¢(t)) *x N(ATyBy,, — ATyBy,¢)
> N(ATy, — ATy, ¢(t)) * N(Byn, 1) * N(ATy, 1) * N(By,, — By, ¢€)
> N(Ty, — Ty,t) * N(Byn,1) * N(ATy, 1) * N(By, — By, ¢),
for t > 0 and € € (0,1). For great n € N and by continuity of B we have
N(Ty, — Ty, d(t) + €) > N(Ty, — Ty, t) * N(Byp,1) * N(ATy,1).
Take infimum on € € (0,1) we get
N(Tyn —Ty,¢(t)) = N(Tyn—Ty,t) = N(B(S),1) » N(ATy,1)
> N(Ty, —Ty,t) *a
in which a = N(B(S),1) * N(ATy,1) € (0,1). Now, by proof of Theorem 2.3,
N(Ty, — Ty, ¢(t) tend to 1 for each ¢t > 0, whenever n — oo and consequently T is

continuous on S. Next we show that 7" is a compact operator on S.
Let n > 0 and t > 0 be given. For any z € S we have

¥(20 () = (ano () o (4o ()
(o (L))ew (s )

> c

< (o) (s 5)

for some fixed a € S. Then we can find r =, ; such that

where

N(S,;) *x N(B(S),)xcx(1—71)>1—n.
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Since B is completely continuous, B(S) is totally bounded. Then there is a set
Y ={y1,...,yn} in S such that

B(S) Lnj By, (r, V1),

where w; = B(y;). Therefore for any y € S we have a y, € Y such that
N(By — By, Vt) >1—r.

Also we have

20 2) 202
>N (Asz — Az, By, ¢ (;) +2Vig (f))
>N (Asz — A%By, o <;)) N (Aszy — Az By, 2Vt (\f))

> N (Az — Az, b (;)) « N(By,1) « N <Azk,2¢ (‘f)) * N(By, — By, V1)

ZN(zzk,;> £ N(B(S),1) % c# (1 1)

ZN(S,;)*N(B(S)J)*c*(l—r)Zl—n.

This is true for every y € S and hence
T(S) C B;(n,1),
where z; = T'(y;). As a result T'(S) is totally bounded. Since T is continuous, it is a

compact operator on S. Now an application of Schauder’s fixed point yields that T’
has a fixed point in S. Then, by the definition of T’

x=Tx = A(Tz)Bx = Az Bz,
and so the operator equation x = Az Bx has a solution in S. O
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