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1. Introduction

Let G be a connected linear algebraic group, V a finite dimensional vector space
(dimV ≥ 1), and ρ : G → GL(V ) a rational linear representation of G on V , all
defined over the complex number field C. If V has a Zariski-dense G-orbit, the
triplet (G, ρ, V ) is called a prehomogeneous vector space (abbrev. PV). A point v
in the Zariski-dense G−orbit is called a generic point, and the isotropy subgroup
Gv = {g ∈ G| ρ(g) · v = v} at a generic point v is called a generic isotropy subgroup.
When G is reductive, a PV (G, ρ, V ) is called a reductive PV. Many types of reductive
PVs are classified in [3], [4], [6], [7], [8], [9], [10], [11], etc. However, to classify all
reductive PVs where each ρ is non-irreducible is terribly difficult. This is pointed
out in the abstract of [7]. The main reason for difficulty under investigation is that
we have to determine the prehomogeneity for a great many triplets composed of non-
reductive groups. It is too complicated. On behalf of the classification of all reductive
PVs, it is indispensable to investigate the structure for any triplet (G, ρ, V ) where G
is a connected linear algebraic group. Note that non-reductive linear algebraic groups
and their rational linear representations are not classified.

In this note, we give a structure theorem for all PVs defined over C. Also it means
a necessary and sufficient condition for a triplet (G, ρ, V ) defined over C to be a PV.

In section 2, as preliminaries, we give a structural correspondence between an
arbitrary group and an arbitrary non-empty set on which a group acts (Theorem 2.15).
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Although in this paper, the result is applied only to rational linear representations of
algebraic groups, we give it in a general form, since the general result will be needed
in a forthcoming paper.

In section 3, we give some structural facts for all triplets, a structure theorem
for all PVs (Theorem 3.11), and some examples. In general, when a PV (G, ρ, V )
satisfies dimG = dimV , then such a PV is called a cuspidal PV (or an etàle PV ).
In Proposition 3.18, we show that we can attach a cuspidal PV to any PV.

In section 4, as appendices, some facts are given.

Notation

As usual, C stands for the field of complex numbers. For a positive integer n,
we denote by Cn the totality of column vectors with n components, also denote by

e
(n)
i = t(0, · · · , 1, · · · , 0) ∈ Cn (i = 1, · · · , n) the canonical base of Cn. For positive

integers m,n, we denote by M(m,n) the totality of m×n matrices over C. If m = n,
we simply write M(n) instead of M(n, n). We denote by GL(n) (resp. SL(n))
the general linear group {X ∈ M(n)| detX 6= 0} (resp. the special linear group
{X ∈ M(n)| detX = 1}), also denote by Λ1 (resp. Λ∗1) the standard representation
of GL(n) on Cn (resp. the dual representation of Λ1). Let G be a group, ρ a
representation of G, and H a subset of G. Then the restriction ρ|H is denoted by ρ
for simplicity. Let G be a group, N a subgroup of G, and G/N the residue class of G
by N . Then we denote by g an element gN ∈ G/N . For a triplet (G, ρ, V ), we denote
by IG the identity element in G, denote by 0V the zero element in V , and denote by
IV the identity transformation on V .

2. Preliminaries

We shall begin to consider a general situation. Let G be a group, X a non-empty
set, P (G) the power set of G, P (X) the power set of X, S(X) the permutation group
of X, and ρ : G → S(X), g 7→ ρ(g) a representation of G on X with ρ(g) : X → X,
x 7→ ρ(g) · x.

Definition 2.1. (1) For H ∈ P (G), let Xρ(H) = {x ∈ X| ρ(h) · x = x for all h ∈ H}.
Then we call H a generator for Xρ(H) in P (G). In particular, when H is the empty
set φ, then Xρ(φ) is defined as X.
(2) For W ∈ P (X), let GW = {g ∈ G| ρ(g) · x = x for all x ∈ W}, which is clearly a
subgroup of G. Then we call W a generator for GW in P (X). In particular, when W
is the empty set φ, then Gφ is defined as G.

Remark 2.2. When there is no confusion, for {g} ∈ P (G) and for {x} ∈ P (X), we
write Xρ(g) instead of Xρ({g}), also Gx instead of G{x}.

Proposition 2.3. Let g ∈ G and x ∈ X. Then the following assertions are equivalent.
(1) g ∈ Gx. (2) ρ(g) · x = x. (3) x ∈ Xρ(g).

Proposition 2.4. (1) For any H ∈ P (G), we have Xρ(H) = {x ∈ X| H ⊂ Gx}.
(2) For any W ∈ P (X), we have GW = {g ∈ G| W ⊂ Xρ(g)}.
(3) For any Hi ∈ P (G)(i = 1, 2) satisfying H1 ⊂ H2, we have Xρ(H1) ⊃ Xρ(H2).
(4) For any Wi ∈ P (X)(i = 1, 2) satisfying W1 ⊂W2, we have GW1 ⊃ GW2 .
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Proof. For (1), if H = φ, then it is clear by (1) of Definition 2.1. When H 6= φ, by
(1) of Definition 2.1, then x ∈ Xρ(H) if and only if x ∈ Xρ(h) for all h ∈ H. Hence by
Proposition 2.3, it is equivalent to h ∈ Gx for all h ∈ H, which means H ⊂ Gx.
For (2), if W = φ, then it is clear by (2) of Definition 2.1. When W 6= φ, by (2) of
Definition 2.1, then g ∈ GW if and only if g ∈ Gx for all x ∈W . Hence by Proposition
2.3, it is equivalent to x ∈ Xρ(g) for all x ∈W , which means W ⊂ Xρ(g).
For (3) (resp. for (4)), it is clear by (1) (resp. by (2)). �

Lemma 2.5. (1) For any H ∈ P (G), we have H ⊂ GXρ(H) .

(2) For any H ∈ P (G), we have Xρ(H) = Xρ(G
Xρ(H) ).

(3) For H ∈ P (G), the following statements are equivalent.
(i) H = GXρ(H) .
(ii) For any K ∈ P (G) satisfying Xρ(H) = Xρ(K), we have K ⊂ H.

Proof. To prove (1), let h be any element in H. Then we have Xρ(h) ⊃ Xρ(H) by (3)
of Proposition 2.4. It is equivalent to h ∈ GXρ(H) by (2) of Proposition 2.4, hence we
have H ⊂ GXρ(H) .

For (2), we have H ⊂ GXρ(H) by (1). Then Xρ(H) ⊃ Xρ(G
Xρ(H) ) by (3) of Proposition

2.4. On the other hand, for any x ∈ Xρ(H), we haveGx ⊃ GXρ(H) by (4) of Proposition

2.4. It is equivalent to x ∈ Xρ(G
Xρ(H) ) by (1) of Proposition 2.4.

Hence Xρ(H) ⊂ Xρ(G
Xρ(H) ), and we have our assertion.

For (3), first assume (i). For any K ∈ P (G) satisfying Xρ(H) = Xρ(K), we have
GXρ(H) = GXρ(K) . Here H = GXρ(H) and K ⊂ GXρ(K) by (1), so we have K ⊂ H.
Next assume (ii). Here put K = GXρ(H) .

Then we obtain Xρ(K) = Xρ(G
Xρ(H) ) = Xρ(H) by (2). So we have K = GXρ(H) ⊂ H.

Moreover H ⊂ GXρ(H) = K by (1). Hence we have H = K = GXρ(H) . �

Remark 2.6. By (2) and (3) of Lemma 2.5, the group GXρ(H) is the maximal gen-
erator for Xρ(H) in P (G), which is called the isotropy subgroup of G for Xρ(H).

Lemma 2.7. (1) For any W ∈ P (X), we have W ⊂ Xρ(GW ).
(2) For any W ∈ P (X), we have GW = GXρ(GW ) .
(3) For W ∈ P (X), the following assertions are equivalent.

(i) W = Xρ(GW ).
(ii) For any Z ∈ P (X) satisfying GW = GZ , we have Z ⊂W .

Proof. To prove (1), let x be any element in W . Then we have Gx ⊃ GW by (4)
of Proposition 2.4. It is equivalent to x ∈ Xρ(GW ) by (1) of Proposition 2.4, hence
W ⊂ Xρ(GW ).
For (2), we have W ⊂ Xρ(GW ) by (1). Then GW ⊃ GXρ(GW ) by (4) of Proposition 2.4.

On the other hand, for any g ∈ GW , we have Xρ(g) ⊃ Xρ(GW ) by (3) of Proposition
2.4. It is equivalent to g ∈ GXρ(GW ) by (2) of Proposition 2.4. Hence GW ⊂ GXρ(GW ) .
We have our assertion.
For (3), first assume (i). For any Z ∈ P (X) satisfying GW = GZ , we have Xρ(GW ) =
Xρ(GZ). Here W = Xρ(GW ) and Z ⊂ Xρ(GZ) by (1), we have Z ⊂ W . Next assume
(ii). Here put Z = Xρ(GW ). Then we obtain GZ = GXρ(GW ) = GW by (2). So
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we have Z = Xρ(GW ) ⊂ W . Moreover, by (1), W ⊂ Xρ(GW ) = Z. Hence we have
W = Xρ(GW ). �

Remark 2.8. By (2) and (3) of Lemma 2.7, the set Xρ(GW ) is the maximal generator
for GW in P (X), which is usually called the fixed subset of X under GW .

Proposition 2.9. Let Hi ∈ P (G) (i = 1, 2) and Wj ∈ P (X) (j = 1, 2). Then the
following assertions hold.
(1) Xρ(H1) ⊂ Xρ(H2) if and only if GXρ(H1) ⊃ GXρ(H2) .
(2) Xρ(H1) = Xρ(H2) if and only if GXρ(H1) = GXρ(H2) .
(3) GW1

⊂ GW2
if and only if Xρ(GW1

) ⊃ Xρ(GW2
).

(4) GW1
= GW2

if and only if Xρ(GW1
) = Xρ(GW2

).

Proof. Clearly, we have (1) (resp. (3)) by Proposition 2.4 and (2) of Lemma 2.5 (resp.
by Proposition 2.4 and (2) of Lemma 2.7). Moreover we obtain (2) (resp. (4)) by (1)
(resp. by (3)). �

Definition 2.10. (1) For g ∈ G, let σ(g) : P (G) → P (G) be the map defined as
H 7→ σ(g) ·H = gHg−1. In particular, σ(g) · φ is defined as φ.
(2) For g ∈ G, let τ(g) : P (X)→ P (X) be the map defined as

W 7→ τ(g) ·W = ρ(g)(W ).

In particular, τ(g) · φ is defined as φ.

Here, let S(P (G)) be the permutation group of P (G), and S(P (X)) the permutation
group of P (X). Then σ(g) is an element in S(P (G)), also τ(g) is an element in
S(P (X)).

Definition 2.11. (1) Let σ : G → S(P (G)) be the map defined as g 7→ σ(g) by (1)
of Definition 2.10. Obviously σ is a representation of G on P (G).
(2) Let τ : G → S(P (X)) be the map defined as g 7→ τ(g) by (2) of Definition 2.10.
Also τ is a representation of G on P (X).

Definition 2.12. (1) Let Φ : P (G)→ P (X) be the map defined as

H 7→ Φ(H) = Xρ(H).

(2) Let Ψ : P (X)→ P (G) be the map defined as W 7→ Ψ(W ) = GW .

Proposition 2.13. Let σ, τ be as in Definition 2.11, and Ψ, Φ as in Definition 2.12.
Then the following assertions hold, namely Ψ and Φ are G−compatible maps.

(1) Φ(σ(g) ·H) = τ(g) · Φ(H) (i.e.,Xρ(gHg−1) = ρ(g)(Xρ(H))) for any g ∈ G and for
any H ∈ P (G).
(2) Ψ(τ(g) ·W ) = σ(g) ·Ψ(W ) (i.e., Gρ(g)(W ) = gGW g

−1) for any g ∈ G and for any
W ∈ P (X).

Proof. For (1), by (1) of Proposition 2.4, x ∈ Xρ(gHg−1) is equivalent to gHg−1 ⊂ Gx.
It is transformed to H ⊂ g−1Gxg = Gρ(g−1)·x. By (1) of Proposition 2.4 again,

H ⊂ Gρ(g−1)·x is equivalent to ρ(g−1) · x ∈ Xρ(H), which is transformed to

x ∈ ρ(g)(Xρ(H)).
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For (2), by (2) of Proposition 2.4, h ∈ Gρ(g)(W ) is equivalent to ρ(g)(W ) ⊂ Xρ(h).

It is equivalent to W ⊂ ρ(g)−1(Xρ(h)) = ρ(g−1)(Xρ(h)). Here by (1), we have

ρ(g−1)(Xρ(h)) = Xρ(g−1hg). Therefore, by (2) of Proposition 2.4 again, W ⊂
Xρ(g−1hg) is equivalent to g−1hg ∈ GW , it is transformed to h ∈ gGW g−1. �

Here the isotropy subgroup of G at an element H ∈ P (G) by the representation σ is
the normalizer of H in G, which is denoted by

NG(H) = {g ∈ G| σ(g) ·H = gHg−1 = H}.

Also the isotropy subgroup of G at an element W ∈ P (X) by the representation τ
acts admissibly on W , and we denote it by

InvG(W ) = {g ∈ G| τ(g) ·W = ρ(g)(W ) = W}.

Corollary 2.14. (1) For any H ∈ P (G), the set Xρ(H) is a NG(H)−invariant subset
of X by the representation τ (i.e., NG(H) ⊂ InvG(Xρ(H))).
(2) For any W ∈ P (X), the group GW is an InvG(W )−invariant subgroup of G by
the representation σ (i.e., InvG(W ) ⊂ NG(GW )).
(3) Let H = Ψ(W ) = GW and W = Φ(H) = Xρ(H). Then NG(H) = InvG(W ). In
particular, NG(H) = G = InvG(W ) means that H is a normal subgroup of G if and
only if W is a G−invariant subset of X.

Theorem 2.15. Let Φ, Ψ be as in Definition 2.12, and put

Im Φ = {Φ(H)| H ∈ P (G)} and Im Ψ = {Ψ(W )| W ∈ P (X)}.

Then there exists a G−compatible one-to-one correspondence between Im Φ and Im Ψ,
which keeps relation of inclusion reversely in the sense of Proposition 2.9.

Proof. For any H ∈ Im Ψ, there exists W ∈ P (X) satisfying H = GW . By (2) of
Lemma 2.7, we have Ψ ◦ Φ(H) = Ψ(Xρ(H)) = GXρ(H) = GXρ(GW ) = GW = H.

Similarly, for any W ∈ Im Φ, there exists H ∈ P (G) satisfying W = Xρ(H). By (2)

of Lemma 2.5, we have Φ ◦Ψ(W ) = Φ(GW ) = Xρ(GW ) = Xρ(G
Xρ(H) ) = Xρ(H) = W .

Hence Φ|Im Ψ and Ψ|Im Φ are bijections and they are inverse maps of each other.
Clearly, by Proposition 2.13, Φ|Im Ψ and Ψ|Im Φ are G−compatible maps, also they
keep relation of inclusion reversely in the sense of Proposition 2.9. Hence we have our
assertion. �

Remark 2.16. In particular, Im Ψ is composed of all isotropy subgroups, and Im Φ
is composed of all fixed points sets when a group G acts on a non-empty set X by
a representation ρ. Hence by Theorem 2.15, we have a one-to-one correspondence
between the conjugacy classes of the isotropy subgroups and the isomorphism classes
of the fixed point sets.

Corollary 2.17. (1) For H ∈ P (G), we have H = GXρ(H) if and only if H ∈ Im Ψ.
In particular, G ∈ Im Ψ.
(2) For W ∈ P (X), we have W = Xρ(GW ) if and only if W ∈ Im Φ. In particular,
X ∈ Im Φ.
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Proof. For (1), if H = GXρ(H) , then we have H ∈ Im Ψ. On the other hand, if
H ∈ Im Ψ, then by Theorem 2.15, we have Ψ ◦ Φ(H) = H (i.e., GXρ(H) = H).
Especially, G ⊂ GXρ(G)(= G) by (1) of Lemma 2.5, hence G ∈ Im Ψ.
For (2), if W = Xρ(GW ), then we have W ∈ Im Φ. On the other hand, if W ∈ Im Φ,
then Φ ◦Ψ(W ) = W (i.e.,Xρ(GW ) = W ) by Theorem 2.15.
Moreover X ⊂ Xρ(GX)(= X) by (1) of Lemma 2.7, hence X ∈ Im Φ. �

Remark 2.18. By Remark 2.6 and (1) of Corollary 2.17, Im Ψ is composed of all
maximal generators in P (G). Similarly, by Remark 2.8 and (2) of Corollary 2.17,
Im Φ is composed of all maximal generators in P (X).

3. A structure theorem for PVs

Firstly, we shall give some structural facts for all triplets. We consider everything
over C. Let G be a connected linear algebraic group, V a finite dimensional vector
space (dimV ≥ 1), and ρ : G→ GL(V ) a rational linear representation of G on V . In
addition, P (G), P (V ), S(P (G)), S(P (V )), σ, τ,Φ, and Ψ are similarly defined by the
assumptions and the definitions in section 2.

Proposition 3.1. Let (G, ρ, V ) be a triplet, H ∈ P (G), and W ∈ P (X). Then V ρ(H)

is a subspace of V , and GW is a closed subgroup of G. In particular, V ρ(φ) = V and
Gφ = G by Definition 2.1.

Proof. Clearly, the set V ρ(H) is a subspace of V by (1) of Definition 2.1. For all
w ∈ W , the map φw : ρ(G) → V defined as ρ(g) 7→ ρ(g) · w is a morphism. Since ρ
and φw are continuous, the map φw ◦ ρ is continuous. Hence (φw ◦ ρ)−1({w}) = Gw

is a closed subgroup of G. Hence by (2) of Definition 2.1, GW =
⋂

w∈W
Gw is a closed

subgroup of G. �

Lemma 3.2. Let (G, ρ, V ) be a triplet. For g ∈ G and v ∈ V , the following assertions
hold.
(1) V ρ(Gv) ⊃ V ρ(Gρ(g)·v) if and only if V ρ(Gv) = V ρ(Gρ(g)·v).
(2) Gρ(g)·v ⊃ Gv if and only if Gρ(g)·v = Gv.

Proof. To prove (1), let V ρ(Gv) ⊃ V ρ(Gρ(g)·v). Then we have V ρ(Gv) ⊃ ρ(g)(V ρ(Gv))
by Proposition 2.13. Since ρ(g) : V → V is a linear automorphism on V , we have
dimV ρ(Gv) = dim ρ(g)(V ρ(Gv)). Hence we have V ρ(Gv) = ρ(g)(V ρ(Gv)), which is
equivalent to V ρ(Gv) = V ρ(Gρ(g)·v) by Proposition 2.13. On the other hand, let
V ρ(Gv) = V ρ(Gρ(g)·v). Then V ρ(Gv) ⊃ V ρ(Gρ(g)·v) is obvious, so we have our asser-
tion.
For (2), by (3) of Proposition 2.9, Gρ(g)·v ⊃ Gv if and only if V ρ(Gρ(g)·v) ⊂ V ρ(Gv).

Therefore, by (1), it is equivalent to V ρ(Gρ(g)·v) = V ρ(Gv). By (4) of Proposition 2.9,
it is equivalent to Gρ(g)·v = Gv. We have our assertion. �

Proposition 3.3. Let (G, ρ, V ) be a triplet, v ∈ V , N = NG(Gv) the normalizer of
Gv in G, and G/N the residue class group of G by N . Then the following assertions
hold.
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(1) NG(Gv) is a linear algebraic subgroup of G.
(2) Let gi ∈ G (i = 1, 2) and wi = ρ(gi) · v. Then Gw1 = Gw2 if and only if g1 = g2.
(3) Let gi ∈ G/N (i = 1, 2). Then g1 = g2 if and only if ρ(g1N) · v = ρ(g2N) · v.
Moreover, ρ(g1N) · v 6= ρ(g2N) · v if and only if ρ(g1N) · v ∩ ρ(g2N) · v = φ.
(4) For any g ∈ G/N , we have ρ(gN) · v ⊂ ρ(g)(V ρ(Gv)).

(5) ρ(G) · v =
⊔

g∈G/N
ρ(gN) · v ⊂

⋃
g∈G/N

ρ(g)(V ρ(Gv)) =
⋃
g∈G

ρ(g)(V ρ(Gv))

=
⋃
g∈G

V ρ(Gρ(g)·v).

(6) For any g ∈ G/N , we have ρ(g)(V ρ(Gv)) is a gNg−1−invariant subspace of V .
In particular, if g = IG, then V ρ(Gv) is an N -invariant subspace of V .
(7) For any g ∈ G/N , we have ρ(gN) · v = ρ(G) · v ∩ ρ(g)(V ρ(Gv)).
(8) Gv = Nv.
(9) dimG− dim ρ(G) · v = dimGv = dimNv = dimN − dim ρ(N) · v.

Proof. For (1), it is a well-known fact (see [1, 1.7 in Section 1]).
For (2), by the assumption wi = ρ(gi)·v (i = 1, 2) and (2) of Proposition 2.13, we have
Gwi = Gρ(gi)·v = giGvg

−1
i . Then Gw1

= Gw2
is equivalent to g1Gvg

−1
1 = g2Gvg

−1
2 ,

which is transformed to (g−1
2 g1)Gv(g

−1
2 g1)−1 = Gv. This means g−1

2 g1 ∈ N , so we
have our assertion.
For (3), we shall show the former assertion. Let g1 = g2. Then we have ρ(g1N) · v =
ρ(g2N) · v. On the other hand, if ρ(g1N) · v = ρ(g2N) · v, then there exist n1, n2 ∈ N
satisfying ρ(g1n1) · v = ρ(g2n2) · v. Hence we have ρ(n1

−1g1
−1g2n2) · v = v, which

is equivalent to n−1
1 g−1

1 g2n2 ∈ Gv. It is transformed to g−1
1 g2 ∈ n1Gvn

−1
2 . Here

n1, n2 ∈ N and Gv ⊂ N . Hence g−1
1 g2 ∈ N , which means g1 = g2. For the latter

assertion, let ρ(g1N) · v 6= ρ(g2N) · v. If ρ(g1N) · v ∩ ρ(g2N) · v 6= φ, then there exist
n1, n2 ∈ N satisfying ρ(g1n1) · v = ρ(g2n2) · v. By the same argument above, we
have g1 = g2, which is a contradiction. The remaining part of the latter assertion is
obvious.
To prove (4), let w be an arbitrary element in ρ(gN) · v. Then there exists n ∈ N
satisfying w = ρ(gn) · v. Here Gw = Gρ(gn)·v = (gn)Gv(gn)−1 = gGvg

−1. By

(1) of Proposition 2.4 and (1) of Proposition 2.13, gGvg
−1 ⊂ Gw if and only if

w ∈ V ρ(gGvg−1) = ρ(g)(V ρ(Gv)). So we have ρ(gN) · v ⊂ ρ(g)(V ρ(Gv)).

For (5), first, G is decomposed into the disjoint union
⊔

g∈G/N
gN . Then by (3),

ρ(G) · v = ρ

 ⊔
g∈G/N

gN

 · v =
⊔

g∈G/N

ρ(gN) · v.

By (4) and Proposition 2.13,

⊔
g∈G/N

ρ(gN) · v ⊂
⋃

g∈G/N

ρ(g)(V ρ(Gv)) =
⋃
g∈G

ρ(g)(V ρ(Gv)) =
⋃
g∈G

V ρ(Gρ(g)·v).
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To prove (6), let n be an arbitrary element in N . By (1) of Proposition 2.13, we have

ρ(gng−1)(ρ(g)(V ρ(Gv))) = ρ(gn)(V ρ(Gv)) = V ρ((gn)Gv(gn)−1)

= V ρ(gGvg
−1) = ρ(g)(V ρ(Gv)).

Hence ρ(g)(V ρ(Gv)) is gNg−1−invariant. Clearly, ρ(g)(V ρ(Gv)) is a subspace of V .
The latter assertion is obvious, so we have our result.
For (7), we have ρ(gN) · v ⊂ ρ(g)(V ρ(Gv)) by (4). Also clearly, ρ(gN) · v ⊂ ρ(G) · v.
Therefore, we have ρ(gN) · v ⊂ ρ(G) · v ∩ ρ(g)(V ρ(Gv)). On the other hand, for any
w ∈ ρ(G) · v ∩ ρ(g)(V ρ(Gv)), there exists h ∈ G satisfying w = ρ(h) · v ∈ ρ(g)(V ρ(Gv)),

which is equivalent to w = ρ(h) · v ∈ V ρ(gGvg−1) by (1) of Proposition 2.13. Hence
by (1) of Proposition 2.4, we have gGvg

−1 ⊂ Gρ(h)·v. It is transformed to Gv ⊂
g−1Gρ(h)·vg, which is equivalent to Gv ⊂ Gρ(g−1h)·v by (2) of Proposition 2.13. Then

by (2) of Lemma 3.2, we have Gv = Gρ(g−1h)·v. Since Gv = (g−1h)Gv(g
−1h)−1 by

(2) of Proposition 2.13, we obtain g−1h ∈ N . Therefore w = ρ(h) · v ∈ ρ(gN) · v, we
have our result.
For (8), since N ⊂ G, we have Nv ⊂ Gv. On the other hand, since N = NG(Gv) ⊃ Gv,
we have Nv ⊃ Gv. Hence Nv = Gv.
For (9), in general, dim ρ(G) · v = dimG/Gv = dimG − dimGv. Hence we have the
first equality. Similarly, the third equality is clear by (1). Finally, by (8), we have the
second equality. �

Definition 3.4. For a triplet (G, ρ, V ) and for W ∈ P (V ), let BG(W ) be the set⋃
g∈G

ρ(g)(W ). We call BG(W ) the G − bundle for W . In particular, if W = {w},

then BG(W ) is the G−orbit ρ(G) · w.

Lemma 3.5. Let (G, ρ, V ) be a triplet. For v, w ∈ V , the following assertions hold.
(1) BG(V ρ(Gv)) ⊂ BG(V ρ(Gw)) if and only if there exists g ∈ G satisfying

Gv ⊃ Gρ(g)·w.

(2) BG(V ρ(Gv)) = BG(V ρ(Gw)) if and only if there exists g ∈ G satisfying

Gv = Gρ(g)·w.

Proof. For (1), first assume BG(V ρ(Gv)) ⊂ BG(V ρ(Gw)). Since

v ∈ V ρ(Gv) ⊂ BG(V ρ(Gv)) ⊂ BG(V ρ(Gw)),

there exists g ∈ G satisfying v ∈ ρ(g)(V ρ(Gw)). By (1) of Proposition 2.13 and (1) of

Proposition 2.4, v ∈ ρ(g)(V ρ(Gw)) = V ρ(gGwg
−1) is equivalent to gGwg

−1 ⊂ Gv. It is
also equivalent to Gρ(g)·w ⊂ Gv by (2) of Proposition 2.13. On the other hand, if there
exists g ∈ G satisfying Gρ(g)·w ⊂ Gv, then by (3) of Proposition 2.9 and Proposition

2.13, we have V ρ(Gv) ⊂ V ρ(Gρ(g)·v) = ρ(g)(V ρ(Gw)). Hence

BG(V ρ(Gv)) ⊂ BG(ρ(g)(V ρ(Gw))) = BG(V ρ(Gw)),

we have our assertion.
For (2), first assume BG(V ρ(Gv)) = BG(V ρ(Gw)). By (1), there exist g1, g2 ∈ G
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satisfying Gv ⊃ Gρ(g1)·w and Gw ⊃ Gρ(g2)·v. Hence by (2) of Proposition 2.13, we

have Gv ⊃ Gρ(g1)·w = g1Gwg
−1
1 ⊃ g1Gρ(g2)·vg

−1
1 = Gρ(g1g2)·v. Here we transform

Gv ⊃ Gρ(g1g2)·v to Gρ((g1g2)−1)·v ⊃ Gv by (2) of Proposition 2.13. Therefore, by (2) of
Lemma 3.2, we have Gρ((g1g2)−1)·v = Gv, which is also equivalent to Gρ(g1g2)·v = Gv,
and hence we have Gv = Gρ(g1)·w. On the other hand, if there exists g ∈ G satisfying
Gv = Gρ(g)·w, then

BG(V ρ(Gv)) = BG(V ρ(Gρ(g)·w)) = BG(ρ(g)(V ρ(Gw)) = BG(V ρ(Gw)).

Therefore, we have our assertion. �

Definition 3.6. Let (G, ρ, V ) be a triplet and v ∈ V .
(1) We say that Gv satisfies the minimal condition if Gv = Gw holds for any w ∈ V
satisfying Gv ⊃ Gw.
(2) We say that V ρ(Gv) satisfies the maximal condition if V ρ(Gv) = V ρ(Gw) holds for
any w ∈ V satisfying V ρ(Gv) ⊂ V ρ(Gw).
(3) We say that BG(V ρ(Gv)) satisfies the maximal condition if

BG(V ρ(Gv)) = BG(V ρ(Gw))

holds for any w ∈ V satisfying BG(V ρ(Gv)) ⊂ BG(V ρ(Gw)).

Proposition 3.7. Let (G, ρ, V ) be a triplet and v ∈ V . Then the following statements
are equivalent.
(1) Gv satisfies the minimal condition.
(2) For any g ∈ G, Gρ(g)·v satisfies the minimal condition.

(3) V ρ(Gv) satisfies the maximal condition.
(4) For any g ∈ G, V ρ(Gρ(g)·v) satisfies the maximal condition.
(5) BG(V ρ(Gv)) satisfies the maximal condition.

Proof. Since Gρ(g)·v(= gGvg
−1) ⊃ Gw (resp. Gρ(g)·v = Gw) is equivalent to

Gv ⊃ Gρ(g−1)·w(= g−1Gwg),

(resp. Gv = Gρ(g−1)·w), we obtain the equivalence of (1) and (2). By Proposition 2.9,
we have the equivalence of (1) (resp. (2)) and (3) (resp. (4)). By Lemma 3.5, we
have the equivalence of (1) and (5). �

Proposition 3.8. Let (G, ρ, V ) be a triplet and V =
⊔
λ∈Λ

ρ(G) · vλ the G−orbital

decomposition of V (vλ ∈ V ). Then the following assertions hold.

(1) Let Λ̃ = {λ ∈ Λ| Gvλ satisfies the minimal condition}. Then we have

V =
⋃
λ∈Λ̃

BG(V ρ(Gvλ )).

(2) Let Λ′ ⊂ Λ, V =
⋃
λ∈Λ′

BG(V ρ(Gvλ )), and no relation of inclusion between

BG(V ρ(Gvλ )) and BG(V ρ(Gvµ )) for any λ ∈ Λ′ and for any µ ∈ Λ′(λ 6= µ). Then

Λ′ ⊂ Λ̃.
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Proof. For (1), first, (V =)
⊔
λ∈Λ

ρ(G) · vλ ⊃
⋃
λ∈Λ̃

BG(V ρ(Gvλ )) is clear. On the other

hand, let v be an arbitrary element in V . Then there exist λ0 ∈ Λ, g0 ∈ G satisfying
v = ρ(g0) · vλ0

∈ ρ(G) · vλ0
. If Gv satisfies the minimal condition, then Gvλ0 satisfies

the minimal condition by Proposition 3.7. Hence we have λ0 ∈ Λ̃, and

v ∈ V ρ(Gv) = ρ(g0)(V
ρ(Gvλ0

)
) ⊂ BG(V

ρ(Gvλ0
)
) ⊂

⋃
λ∈Λ̃

BG(V ρ(Gvλ ))

by Proposition 2.13. If Gv does not satisfy the minimal condition, then there exists
v1 ∈ V satisfying Gv ) Gv1 . Similarly there exist λ1 ∈ Λ, g1 ∈ G satisfying

v1 = ρ(g1) · vλ1
∈ ρ(G) · vλ1

(λ1 6= λ0).

By repeating this procedure, if there exists an infinite descending chain Gv ) Gv1 )
· · · , then by (3) of Proposition 2.9, there exists an infinite ascending chain V ρ(Gv) (
V ρ(Gv1 ) ( · · · . It is clearly a contradiction because V is a finite dimensional vector
space. Hence there exists vk ∈ V stabilizing the infinite descending chain as Gv )
Gv1 ) · · · ) Gvk , which means that Gvk satisfies the minimal condition. Hence there

exist λk ∈ Λ̃, gk ∈ G satisfying vk = ρ(gk) ·vλk ∈ ρ(G) ·vλk by Proposition 3.7. Hence
we have

v ∈ V ρ(Gv) ( V ρ(Gv1 ) ( · · · ( V ρ(Gvk ) = ρ(gk)(V
ρ(Gvλk

)
) ⊂

⋃
λ∈Λ̃

BG(V ρ(Gvλ ))

by (3) of Proposition 2.9 and Proposition 2.13.
To prove (2), let λ be an arbitrary element in Λ′. By Proposition 3.7, it is enough

to show that BG(V ρ(Gvλ )) satisfies the maximal condition. For any w ∈ V satisfying

BG(V ρ(Gvλ )) ⊂ BG(V ρ(Gw)), there exist µ ∈ Λ′, g ∈ G satisfying

w = ρ(g) · vµ ∈ ρ(G) · vµ
by the assumption in (2). Obviously, since Gw = Gρ(g)·vµ , we have

BG(V ρ(Gvλ )) ⊂ BG(V ρ(Gw)) = BG(V ρ(Gρ(g)·vµ )) = BG(V ρ(Gvµ ))

by Proposition 2.13. Hence we have λ = µ by the assumption in (2), which means

BG(V ρ(Gvλ )) = BG(V ρ(Gvµ )) = BG(V ρ(Gw)).

Hence we have λ ∈ Λ̃. �

Remark 3.9. Clearly by Proposition 3.8, we have Λ′ ⊂ Λ̃ ⊂ Λ. In general, there
appear the two cases ]Λ′ < ∞ or ]Λ′ = ∞. For example of the former case, a
triplet (G, ρ, V ) with finitely many orbits (which is always a PV) has ]Λ <∞, hence
]Λ′ <∞. Additionally, for example of the latter case, let

G =


1 a b

0 c 0
0 0 c

 | a, b ∈ C, c ∈ C×
 ,

ρ = Λ1, and V = C3. Here we identify v[x,y,z] with t(x, y, z)(∈ C3). Then by the
direct calculation, we have Λ = {[0, y0, z0]| y0, z0 ∈ C satisfying y0 6= 0 or z0 6= 0,
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except [0, ty0, tz0] with t ∈ C − {1}} t {[x0, 0, 0]| x0 ∈ C×} t {[0, 0, 0]}. Here put
Λ′ = Λ− ({[x0, 0, 0]| x0 ∈ C×} t {[0, 0, 0]}). For [0, y0, z0] ∈ Λ′, we have

Gv[0,y0,z0]
=


1 a b

0 1 0
0 0 1

 ∈ G| ay0 + bz0 = 0


and

V
ρ(Gv[0,y0,z0]

)
= {t(x y z) ∈ C3| yz0 − zy0 = 0} = BG(V

ρ(Gv[0,y0,z0]
)
)

of which dimension is 2. Clearly, C3 =
⋃

[0,y0,z0]∈Λ′
BG(V

ρ(Gv[0,y0,z0]
)
), also there

is no relation of inclusion between BG(V
ρ(Gv[0,y0,z0]

)
) and BG(V

ρ(Gv
[0,y0

′,z0′]
)
) for

[0, y0, z0], [0, y0
′, z0

′] ∈ Λ′ ([0, y0, z0] 6= [0, y0
′, z0

′]). Hence Λ′ satisfies the assump-
tions in (2) of Proposition 3.8. So we have ]Λ′ =∞.

Proposition 3.10. Let (G, ρ, V ) be a PV with a generic point v ∈ V . Then the
generic isotropy subgroup Gv (resp. V ρ(Gv) and BG(V ρ(Gv))) satisfies the minimal
condition (resp. satisfy the maximal condition).

Proof. By Proposition 3.7, it is enough to show that Gv satisfies the minimal condi-
tion. In general, for a PV (G, ρ, V ), a point v ∈ V satisfies dimGv = dimG− dimV
if and only if v is a generic point (see [11, Proposition 2 in section 2]). Let w be an
arbitrary element in V satisfying Gv ⊃ Gw. Then by (1), dimG− dimV = dimGv ≥
dimGw = dimG− dim ρ(G) ·w ≥ dimG− dimV . Hence we have dimGv = dimGw,

which means ρ(G) · v = ρ(G) · w = V . Here ρ(G) ·v and ρ(G) ·w are open G−orbits in
V , and V is an irreducible set on Zariski-topology, so we have ρ(G) · v ∩ ρ(G) ·w 6= φ,
which means ρ(G) · v = ρ(G) · w. Clearly there exists g ∈ G satisfying v = ρ(g) · w.
By (2) of Lemma 3.2, Gρ(g)·w ⊃ Gw if and only if Gv = Gρ(g)·w = Gw. �

Theorem 3.11. Let (G, ρ, V ) be a triplet. Then the following assertions are equiva-
lent.
(1) (G, ρ, V ) is a PV with a generic point v ∈ V .
(2) There exists a point v ∈ V satisfying (i) and (ii).

(i) BG(V ρ(Gv)) is Zariski-dense in V .
(ii) (NG(Gv), ρ, V

ρ(Gv)) is a PV with a generic point v ∈ V .

Proof. First assume (1). For (2)-(i), by (5) of Proposition 3.3, we have ρ(G) · v ⊂
BG(V ρ(Gv)). Then by (1), clearly V = ρ(G) · v ⊂ BG(V ρ(Gv)) = V . Thus we have
(2)-(i). Here for simplicity, we put N = NG(Gv). For (2)-(ii), by (7) of Proposition
3.3, we have ρ(N) · v = ρ(G) · v ∩ V ρ(Gv). Since ρ(G) · v is an open set in V by (1),
hence ρ(N) · v is a non-empty open set in V ρ(Gv). Here V ρ(Gv) is an irreducible set,
hence ρ(N) · v is Zariski-dense in V ρ(Gv). Next assume (2). For any g ∈ G, the map
ρ(g) : V → V which is defined as v 7→ ρ(g) · v is a morphism. By (2)-(ii) and the
continuity of ρ(g), we have

ρ(g)(V ρ(Gv)) = ρ(g)(ρ(N) · v) ⊂ ρ(g)(ρ(N) · v) = ρ(gN) · v.
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Since N ⊂ G, we have ρ(gN) · v ⊂ ρ(G) · v. Here by (2)-(i), we have

V = BG(V ρ(Gv)) =
⋃
g∈G

ρ(g)(V ρ(Gv)) ⊂ ρ(G) · v = V.

We have our result. �

Remark 3.12. In general, for non PVs, the various cases appear with respect to (2)
of Theorem 3.11. For example, let

G =


1 a b

0 c 0
0 0 c

 | a, b ∈ C, c ∈ C×
 ,

ρ = Λ1, and V = C3 (these are in Remark 3.9). Then (G, ρ, V ) is a non PV. For a
point v = t(0, y0, z0) ∈ C3 (y0 6= 0 or z0 6= 0), we have

Gv =


1 a b

0 1 0
0 0 1

 | a, b ∈ C, ay0 + bz0 = 0

 , NG(Gv) = G,

and ρ(NG(Gv)) · v = V ρ(Gv) = BG(V ρ(Gv)) = {t(x, ty0, tz0) ∈ C3| x, t ∈ C} ( C3.
Hence v satisfies (2)-(ii) of Theorem 3.11, however, does not satisfy (2)-(i) of Theorem
3.11. Additionally, for a point w = t(1, 0, 0) ∈ C3, we have Gw = G,NG(Gw) = G,

and ρ(NG(Gw)) · w = {w} ( V ρ(Gw) = BG(V ρ(Gw)) = {t(x, 0, 0) ∈ C3| x ∈ C} ( C3.
Therefore, w does not satisfy either (2)-(i) of Theorem 3.11 or (2)-(ii) of Theorem
3.11.

Corollary 3.13. Let (G, ρ, V ) be a PV with a generic point v ∈ V . Then we have
dimG− dimV = dimGv = dim(NG(Gv))v = dimNG(Gv)− dimV ρ(Gv).

Proof. By (9) of Proposition 3.3 and Theorem 3.11, it is clear. �

Example 3.14. Let (G, ρ, V ) = (GL(2), 3Λ1,C4). Then it is an irreducible reductive
PV with a generic point v = t(1, 0, 0, 1) ∈ V (see [5, Example 2.4]). Let(

a b
c d

)
∈ GL(2).

Then

3Λ1

((
a b
c d

))
=


a3 a2b ab2 b3

3a2c a2d+ 2abc 2abd+ b2c 3b2d
3ac2 2acd+ bc2 ad2 + 2bcd 3bd2

c3 c2d cd2 d3


and the generic isotropy subgroup

Gv =

{(
a 0
0 d

)
| a3 = d3 = 1

}
t
{(

0 b
c 0

)
| b3 = c3 = 1

}
.

By the direct calculations, we have V ρ(Gv) = {t(x, 0, 0, x) ∈ V | x ∈ C}. Here put
H = {αI2| α ∈ C×}. Then we obtain H CG and

NG(Gv) = H t
(

1 0
0 ω

)
H t

(
1 0
0 ω2

)
H t

(
0 1
1 0

)
H t

(
0 1
ω 0

)
H t

(
0 1
ω2 0

)
H
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where ω ( 6= 1) is a cubic root of 1. Clearly, (NG(Gv), ρ, V
ρ(Gv)) is a PV with a

generic point v, and (NG(Gv))v = Gv. Since dimNG(Gv) = 1, dimV ρ(Gv) = 1, and
dimGv = 0, we have the equations in Corollary 3.13.

Example 3.15. Let m,n be positive integers with m > n ≥ 2, and

(G, ρ, V ) = (GL(m),

n︷ ︸︸ ︷
Λ1 ⊕ · · · ⊕ Λ1,

n︷ ︸︸ ︷
Cm ⊕ · · · ⊕ Cm).

Then it is a non-irreducible reductive PV with a generic point

v = (e
(m)
1 , · · · , e(m)

n ) (e
(m)
i ∈ Cm, i = 1, · · · , n)

(see [5, Proposition 7.1]). By the direct calculations, the generic isotropy subgroup

Gv = {
(
In B
0 C

)
| B ∈M(n,m− n), C ∈ GL(m− n)}.

Then we have

V ρ(Gv) =

{((
X1

0

)
, · · · ,

(
Xn

0

))
∈ V | Xi ∈M(n, 1), i = 1, · · · , n

}
,

and

NG(Gv) =

{(
A B
0 C

)
| A ∈ GL(n), B ∈M(n,m− n), C ∈ GL(m− n)

}
.

Hence (NG(Gv), ρ, V
ρ(Gv)) is a PV with a generic point v, and (NG(Gv))v = Gv.

Since dimNG(Gv) = m2 −mn + n2,dimV ρ(Gv) = n2, and dimGv = m2 −mn, we
have the equations in Corollary 3.13.

Example 3.16. Let

G =

{(
1 a
0 b

)
| a ∈ C, b ∈ C×

}
, ρ = Λ1, and V = C2.

Then (G, ρ, V ) is a non-reductive PV with a generic point v = t(0 1) ∈ V , and the
generic isotropy subgroup Gv = {I2}. Hence we have (G, ρ, V ) = (NG(Gv), ρ, V

ρ(Gv)),
which satisfies (1), (2), and (3) in Proposition 3.21.

Proposition 3.17. For a triplet (G, ρ, V ) and for v ∈ V , let NG(Gv)/Gv be the
residue class group of NG(Gv) by Gv, and ρ̃ : NG(Gv)/Gv → GL(V ρ(Gv)) a map
defined as g 7→ ρ̃(g) = ρ(g)|V ρ(Gv) . Then ρ̃ is a representation of NG(Gv)/Gv on
V ρ(Gv).

Proof. Let g ∈ NG(Gv)/Gv (g ∈ NG(Gv)). For simplicity, put N = NG(Gv). Since
V ρ(Gv) is an N−invariant subspace of V by (6) of Proposition 3.3, we have

ρ̃(g) = ρ(g)|V ρ(Gv) ∈ GL(V ρ(Gv))

by (1) of Proposition 2.13. Here let g1, g2 ∈ NG(Gv)/Gv. If g1 = g2, then there
exists h ∈ Gv satisfying g1 = g2h. For any w ∈ V ρ(Gv), we have

ρ̃(g1) · w = ρ(g1) · w = ρ(g2h) · w = ρ(g2) · w = ρ̃(g2) · w.
Hence ρ̃ is well-defined.
Clearly, ρ̃ is a group homomorphism and we have our result. �
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As well-known facts, an affine algebraic group is isomorphic to a linear algebraic
group (see [1, Proposition 1.10]). Also, when G is an affine algebraic group, and
H is a normal algebraic subgroup of G, then G/H is an affine algebraic group (see
[1, Theorem 6.8]). Hence G/H is isomorphic to a linear algebraic group. For a
triplet (G, ρ, V ) and v ∈ V , the group NG(Gv) is a linear algebraic group by (1) of
Proposition 3.3. Hence NG(Gv)/Gv is isomorphic to a linear algebraic group. For
simplicity, in this paper, we identify NG(Gv)/Gv with a linear algebraic group, and
ρ̃ with a rational linear representation of NG(Gv)/Gv on V ρ(Gv).

In general, when a PV(G, ρ, V ) satisfies dimG = dimV , then such a PV is called
a cuspidal PV.

Proposition 3.18. Let (G, ρ, V ) be a PV with a generic point v ∈ V . Then the
triplet (NG(Gv)/Gv, ρ̃, V

ρ(Gv)) is a cuspidal PV with a generic point v ∈ V ρ(Gv). Its
generic isotropy subgroup is the unit group {IG}.

Proof. For simplicity, put N = NG(Gv). By (2) of Theorem 3.11 and Corollary 3.13,
we have

ρ̃(N/Gv) · v = ρ(N) · v = V ρ(Gv),

and dimN/Gv = dimN − dimGv = dimN − dimNv = dimV ρ(Gv).
Hence (N/Gv, ρ̃, V

ρ(Gv)) is identified with a cuspidal PV. Moreover the generic
isotropy subgroup

(N/Gv)v = {g ∈ N/Gv| ρ̃(g) · v = v} = {g ∈ N/Gv| ρ(g) · v = v}

= {g ∈ N/Gv| g ∈ Gv} = {IG},
we have our results. �

Remark 3.19. For any reductive PV with a non-zero relative invariant at least, there
is a method of constructing a cuspidal PV ([2]). This method is called contraction,
which is different from our method in Proposition 3.18. For example, let (G, ρ, V ) be
an irreducible reductive PV (SL(2)×GL(2),Λ1⊗Λ∗1,M(2)) with a relative invariant
f(X) = detX (X ∈ M(2)) and a generic point I2 ∈ M(2). Then by the direct
calculations, contraction induces a cuspidal PV (GL(1)×GL(1),Λ∗1⊗1⊕1⊗Λ∗1,C⊕C),
while our method induces a cuspidal PV (GL(1),Λ∗1,C).

Lemma 3.20. Let (G, ρ, V ) be a triplet. Then the following assertions hold.
(1) Let g ∈ G. Then g ∈ Ker ρ if and only if V ρ(g) = V .
(2) GV = Ker ρ.
(3) If (G, ρ, V ) is a PV with a generic point v ∈ V , then Gρ(G)·v = Ker ρ.

Proof. To prove (1), let g ∈ Ker ρ. Then we have V ρ(g) = V . On the other hand, let
V ρ(g) = V . If g /∈ Ker ρ, then ρ(g)− IV : V → V is a non-zero linear transformation
on V . Clearly, we obtain Im(ρ(g) − IV ) ) {0V } and dim Im(ρ(g) − IV ) > 0. Since
V ρ(g) = {w ∈ V | ρ(g) · w = w} = {w ∈ V | (ρ(g)− IV ) · w = 0} = Ker(ρ(g)− IV ), we
have dimV ρ(g) = dimV − dim Im(ρ(g)− IV ) < dimV , which is a contradiction. We
have our result.
To prove (2), let g ∈ GV . Then we have V ⊂ V ρ(g) by (2) of Proposition 2.4. Hence
g ∈ Ker ρ by (1). On the other hand, GV ⊃ Ker ρ is clear.
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For (3), since ρ(G) · v ⊂ V , we have Gρ(G)·v ⊃ GV = Ker ρ by (4) of Proposition 2.4

and (2). On the other hand, for any h ∈ Gρ(G)·v, we obtain ρ(G) · v ⊂ V ρ(h) by (2)

of Proposition 2.4. Since (G, ρ, V ) is a PV, we have V = ρ(G) · v ⊂ V ρ(h) = V ρ(h).
Hence h ∈ Ker ρ by (1). �

Proposition 3.21. Let (G, ρ, V ) be a PV with a generic point v ∈ V . Then the
following assertions are equivalent.
(1) G = NG(Gv) (i.e., GBGv). (2) V = V ρ(Gv). (3) Gv = Ker ρ.

Proof. Firstly, we shall show the equivalence of (1) and (2). Assume (1). Clearly,
we have dimG = dimNG(Gv). By Corollary 3.13, we have dimV ρ(Gv) = dimV ,
hence V ρ(Gv) = V . On the other hand, assume (2). Since dimV = dimV ρ(Gv), we
have dimG = dimNG(Gv) by Corollary 3.13. In general, a connected linear algebraic

group is an irreducible set. Hence we have G = NG(Gv). By (1) of Proposition 3.3,
we have G = NG(Gv). Secondly, we shall show the equivalence of (2) and (3). Assume
(2). Then we have GV = GV ρ(Gv) = Gv by (2) of Lemma 2.7. Hence by (2) of Lemma
3.20, we have Gv = Ker ρ. Assume (3). Then (2) is clear.

�

4. Appendices

In this section, as appendices, we give some facts. The assumptions in this section
are the same as those in section 3.

Proposition 4.1. Let (G, ρ, V ) be a triplet. Then the following assertions are equiv-
alent.
(1) ρ is irreducible.
(2) Let W be an arbitrary non-zero G−invariant subspace of V . Then W ∈ Im Φ and
GW = Ker ρ.

Proof. First assume (1), let W be an arbitrary non-zero G−invariant subspace of V .
Then we obtain W = V . By (2) of Corollary 2.17, we have W = V ∈ Im Φ, and
GW = GV = Ker ρ by (2) of Lemma 3.20. Next assume (2), let W be an arbitrary
non-zero G−invariant subspace of V . Then W ∈ Im Φ if and only if W = V ρ(GW )

by (2) of Corollary 2.17. Here GW = Ker ρ, hence W = V ρ(GW ) = V , we have our
result. �

Proposition 4.2. Let (G, ρ, V ) be a triplet and ρ(G) 6= {IV }. If ρ is irreducible,
then V ρ(G) = {0V }.

Proof. For any g ∈ G, by (1) of Proposition 2.13, we have

ρ(g)(V ρ(G)) = V ρ(gGg
−1) = V ρ(G).

Hence V ρ(G) is a G−invariant subspace of V . Since ρ is irreducible, there are the two
cases V ρ(G) = {0V } or V ρ(G) = V . If the latter case appears , by (1) of Corollary 2.17
and (2) of Lemma 3.20, we have G = GV ρ(G) = GV = Ker ρ, which is a contradiction
with ρ(G) 6= {IV }. Hence V ρ(G) = {0V }. �
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Corollary 4.3. Let (G, ρ, V ) = (G, ρ1⊕· · ·⊕ρl, V1⊕· · ·⊕Vl) be a triplet where each
ρi (i = 1, · · · , l) is an indecomposable representation of G on Vi and ρi(G) 6= {IVi}.
If there exists ρi satisfying V

ρi(G)
i 6= {0Vi}, then ρi is non-irreducible and G is non-

reductive. However, the converse does not hold.

Proof. Clearly, ρi is non-irreducible by Proposition 4.2. If G is reductive, then each
ρi (i = 1, · · · , l) is an irreducible representation of G on Vi. By Proposition 4.2, we

have V
ρi(G)
i = {0Vi}, which is a contradiction. Hence we have the former assertion.

For example of the latter assertion, let (G, ρ, V ) be a triplet where

G =

{(
a b
0 c

)
| a, c ∈ C×, b ∈ C

}
, ρ = Λ1, and V = C2.

By the direct calculation, we have V ρ(G) = {0V }. �

Proposition 4.4. Let (G, ρ, V ) be a triplet. Then the following assertions hold.
(1) For any v ∈ V , the group Gρ(G)·v is a normal subgroup of G, and the set V ρ(Gρ(G)·v)

is a G−invariant subspace of V .
(2) Let v be any non-zero element in V . If ρ is irreducible, then Gρ(G)·v = Ker ρ.

Proof. To prove (1), let g be any element in G. Then we have

gGρ(G)·vg
−1 = Gρ(g)ρ(G)·v = Gρ(G)·v

by (2) of Proposition 2.13. Hence Gρ(G)·v is a normal subgroup of G.

Clearly, V ρ(Gρ(G)·v) is a G−invariant subspace of V by Proposition 2.13.
For (2), by (1), V ρ(Gρ(G)·v) is a G−invariant subspace of V . Since ρ is irreducible and
{0V } 6= ρ(G) · v ⊂ V ρ(Gρ(G)·v) by (1) of Lemma 2.7, we have V ρ(Gρ(G)·v) = V , which
is equivalent to V ρ(Gρ(G)·v) = V ρ(GV ) by (2) of Corollary 2.17. Since GV ∈ Im Ψ is
the maximal generator for V ρ(GV ) in P (G) and GV = Ker ρ by (2) of Lemma 3.20,
we have Gρ(G)·v ⊂ GV = Ker ρ. On the other hand, since ρ(G) · v ⊂ V , we obtain
Gρ(G)·v ⊃ GV = Ker ρ by (4) of Proposition 2.4 and (2) of Lemma 3.20. So we have
our results. �
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