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1. Introduction

Let K ⊂ Rn be a bounded, closed and convex subset. For z ∈ K denote by TK(z)
the tangent cone to K at point z. This paper deals with the nonlocal problem of
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projected differential inclusion of the form:{
x′(t) ∈ PTK(x(t))

(
F (x(t))

)
, for a.e. t ∈ I := [0, T ],

x(0) ∈M(x),
(1.1)

where x : I → K is a unknown function, F : K ( Rn and M : C(I,K) ( K are
given multivalued maps, PTK(x(t))

(
F (x(t))

)
is the projection of the set F (x(t)) onto

the cone TK(x(t)).
Projected differential inclusions in finite dimensional spaces were studied first by
Henry [12] for the case when Mx = x0 (the Cauchy problem). Then, Cornet [9]
introduced the notion of slow solutions of projected differential inclusions. Further,
Nagurney [17] proved the existence and uniqueness of solution of (1.1) for the case
when F is single-valued map and Mx = x0. This result was extended to Hilbert
infinite dimensional spaces by Cojocaru and Jonker [8]. The existence of periodic
solutions of projected differential equations was given in [7]. The stability problem
for projected dynamical systems was investigated in [19, 21]. For other results in this
direction see [18] and the references therein.

In the present paper, we focus on the nonlocal problem for projected differential
equations and inclusions. Let us mention that the differential equations with nonlocal
conditions were studied first by Byszewski [6]. The paper is organized in the following
way. In the next section we recall some notions and results from the convex analysis
and the theory of multivalued maps. In Section 3, the existence of a solution to
problem (1.1) is given. For a particular case of a projected differential inclusion and a
single-valued linear operator M the uniqueness result is presented. For the same case,
the Ulam-Hyers stability for (1.1) is considered in Section 4. In the last section, the
abstract results are applied for the study of a market model with price intervention
in the form of price floors and ceilings. An example with exponential demand and
supply functions is given for the illustration of the results.

2. Preliminaries

2.1. Notation and general properties. For simplicity, we will use the same no-
tation | · | [

〈
·, ·
〉
] to denote the norm [resp., the inner product] in finite-dimensional

spaces. By C(I,Rn) [Lp(I,Rn) (p ≥ 1)] we denote the spaces of all continuous [re-
spectively, p−summable] functions u : I → Rn with usual norms:

‖u‖C = max
t∈I
|u(t)| and ‖u‖p =

(∫ T

0

|u(t)|pdt

) 1
p

.

Denote by AC(I,Rn) the space of all absolutely continuous functions u : I → Rn.
Consider the space of all functions u ∈ AC(I,Rn) whose derivatives belong to
Lp(I,Rn). It is known (see, e.g., [3]) that this space can be identified with the
Sobolev space W 1,p(I,Rn) with the norm

‖u‖W =
(
‖u‖pp + ‖u′‖pp

) 1
p

.

Recall that (see, e.g., [3]) the embedding W 1,2(I,Rn) ↪→ C(I,Rn) is compact.
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Now, let H be a Hilbert space with the inner product
〈
·, ·
〉
H

and the norm ‖ · ‖H .
Let K ⊂ H be a nonempty, closed and convex subset. It is known that for any z ∈ H,
there exists a unique element w ∈ K such that

‖w − z‖H = inf
y∈K
‖y − z‖H .

The element w is called the projection of z onto K and is denoted by PK(z).
The set

TK(x) =
⋃
h>0

1

h
(K − x)

is called the tangent cone to K at the point x ∈ K. The normal cone to the set K at
the point x is given by

NK(x) :=
{
p ∈ H :

〈
p, x− w

〉
H
≥ 0, ∀w ∈ K

}
.

Notice that TK(x) and NK(x) are closed, convex cones.
From the definition of NK(x) one can easily deduce that

Lemma 2.1. The multimap x( NK(x) is monotone, i.e., for any x, y ∈ K and any
nx ∈ NK(x) and ny ∈ NK(y), we have〈

x− y, nx − ny
〉
H
≥ 0.

The following result can be found in [13, Theorem 2.23].

Theorem 2.2. (J.J. Moreau). If C ⊂ H is a closed convex cone, C− its polar cone
and x, y, z ∈ H, then the following properties are equivalent:

(a) z = x+ y, x ∈ C, y ∈ C− and
〈
x, y
〉
H

= 0;

(b) x = PC(z) and y = PC−(z).

Let us mention the following corollary of this result.

Lemma 2.3. For each x ∈ K there exists n ∈ NK(x) such that PTK(x)(v) = v − n.

2.2. Multivalued maps. We will recall some notions from the theory of multivalued
maps (see, e.g., [1, 4, 11, 15, 20]).

Let X,Y be metric spaces. Denote by P (Y ) [K(Y )] the collection of all nonempty
[respectively, nonempty compact] subsets of Y . For a Banach space E by symbol
Kv(E) we denote the collection of all nonempty convex compact subsets of E.

Definition 2.4. A multivalued map (multimap) F : X → P (Y ) is said to be upper
semicontinuous (u.s.c.) if for every open subset V ⊂ Y the set

F−1+ (V ) = {x ∈ X : F (x) ⊂ V }

is open in X. An u.s.c. multimap F is said to be compact, if the set F (X) is compact
in Y .

We will need the following property of u.s.c. multimaps.

Lemma 2.5. If a multimap F : X → K(Y ) is u.s.c. and a set A ⊂ X is compact in
X then its image F (A) is compact in Y.
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Definition 2.6. A set M ∈ K(Y ) is said to be aspheric (or UV∞, or ∞-proximally
connected) (see, e.g., [11, 16]), if for every ε > 0 there exists δ > 0 such that each
continuous map σ : Sn → Oδ(M), n = 0, 1, 2, · · · , can be extended to a continuous
map σ̃ : Bn+1 → Oε(M), where

Sn = {x ∈ Rn+1 : |x| = 1}, Bn+1 = {x ∈ Rn+1 : |x| ≤ 1},
and Oδ(M) [Oε(M)] denotes the δ-neighborhood [resp. ε-neighborhood] of the set M.

Definition 2.7. (see [14]). A nonempty compact space A is said to be an Rδ-
set if it can be represented as the intersection of a decreasing sequence of compact,
contractible spaces.

Definition 2.8. (see [11]). A u.s.c. multimap Σ : X → K (Y ) is said to be a
J-multimap (Σ ∈ J (X,Y )) if every value Σ (x), x ∈ X, is an aspheric set.

Now let us recall (see, e.g., [5, 11]) that a metric space X is called the absolute
retract (the AR-space) [resp., the absolute neighborhood retract (the ANR-space)] pro-
vided for each homeomorphism h taking it onto a closed subset of a metric space X ′,
the set h(X) is the retract of X ′ [resp., of its open neighborhood in X ′]. Notice that
the class of ANR-spaces is broad enough: in particular, a finite-dimensional compact
set is the ANR-space if and only if it is locally contractible. In turn, it means that
compact polyhedrons and compact finite-dimensional manifolds are the ANR-spaces.
The union of a finite number of convex closed subsets in a normed space is also the
ANR-space.

Proposition 2.9. (see [11]). Let Z be an ANR-space. In each of the following cases
an u.s.c. multimap Σ : X → K (Z) is a J-multimap:
for each x ∈ X the value Σ (x) is
a) a convex set;
b) a contractible set;
c) an Rδ-set;
d) an AR-space.
In particular, every continuous map σ : X → Z is a J-multimap.

Definition 2.10. (cf. [2]) Let X,Y be normed spaces, X ′ ⊆ X, Y ′ ⊆ Y . By
Jc(X ′, Y ′) we will denote the collection of all multimaps F : X ′ → K(Y ′) that may
be represented in the form of composition F = Σk ◦ · · · ◦Σ1, where Σi ∈ J(Ui−1, Ui),
i = 1 · · · k, U0 = X ′, Uk = Y ′, and Ui (0 < i < k) are open subsets of normed spaces.

The next fixed point theorem is a direct consequence of the fixed point index theory
for Jc−multimaps (see [2]).

Theorem 2.11. Let X be a Banach space and V ⊂ X a convex closed set and
F : V → K(V ) a compact Jc−multimap. Then there exists x∗ ∈ V such that x∗ ∈
F(x∗).

Recall now a result on the structure of the solution set of differential inclusions and
on the dependence of this set on the initial condition.

Lemma 2.12. (see Theorem 70.6 and Proposition 70.9 of [11]). Let F : I × Rn →
Kv(Rn) be such that
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(F1) for every z ∈ Rn multifunction F(·, z) : I → Kv(Rn) is measurable;
(F2) for a.e. t ∈ I multimap F(t, ·) : Rn → Kv(Rn) is u.s.c.;
(F3) there exists a ∈ L1(I;R+) such that

‖F(t, z)‖ := max{|y| : y ∈ F(t, z)} ≤ a(t)(1 + |z|),

for all z ∈ Rn and a.e. t ∈ I.

Then for every z ∈ Rn the solution set Σ(z) of the Cauchy problem{
x′(t) ∈ F(t, x(t)), for a.e. t ∈ I,
x(0) = z,

is an Rδ−set in C(I,Rn). Moreover, the multimap z( Σ(z) is u.s.c..

3. Existence and uniqueness

Assume that

(A1) F : K → Kv(Rn) is u.s.c.;
(A2) M ∈ Jc

(
C(I,K);K

)
.

Remark 3.1. The class of boundary value problems with the operator M satisfying
condition (A2) is sufficiently large. In particular, it includes the following problems:

(i) Mx = x0 ∈ K (Cauchy condition);
(ii) Mx = x(T ) (periodic problem);

(iii) Mx = 1
T

∫ T
0
x(t)dt (mean value problem);

(iv) Mx =
∑k0
i=1 αix(ti) with αi ≥ 0 and

∑k0
i=1 αi = 1, where

0 ≤ t1 < · · · < tk0 ≤ T (multi-point problem). For the case when K contains

0, we can take αi ≥ 0 and
∑k0
i=1 αi ≤ 1.

(v) Mx = Mrx := {y ∈ K : ‖y − x(T )‖ ≤ r}, where r > 0 is a given number
(problem of finding a solution going not far away from the beginning).

Definition 3.2. By a solution to (1.1) we mean a function x ∈ AC(I,K) that satisfies
(1.1).

For z ∈ Rn let z be the projection of z onto K. Define the map H : Rn → P (Rn),

H(z) = PTK(z)

(
F (z)

)
.

and consider the problem{
x′(t) ∈ H(x(t)), for a.e. t ∈ I,
x(0) ∈M(x).

(3.1)

It is clear that every absolutely continuous function x : I → K that satisfies problem
(3.1) will be a solution of problem (1.1). Now, let G : Rn → Kv(Rn) be a multimap
defined as

G(z) =
⋂
ε>0

coH
(
z + εB

)
,
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where co denotes the closure of the convex hull of a set and B is the unit closed ball
in Rn.
Applying Lemma 2.5 we conclude that there exists α > 0 such that

‖F (z)‖ := sup{|y‖ : y ∈ F (z)} ≤ α, ∀z ∈ K.

Then, it is easy to verify (cf., for example, Theorem 3.2.15 of [15]) that G is u.s.c.
and, moreover,

‖G(z)‖ ≤ α (3.2)

for all z ∈ Rn.

Lemma 3.3. (see [12, Lemmas 1 and 2]). Let x ∈ AC(I,Rn), x(0) = x0 ∈ K be such
that x′(t) ∈ G(x(t)) for a.e. t ∈ I. Then x(t) ∈ K for all t ∈ I and x′(t) ∈ H(x(t))
for a.e. t ∈ I.

Theorem 3.4. Let conditions (A1)− (A2) hold. Then problem (1.1) has a solution.

Proof. Set Q = C(I,K) and for every y ∈ Q and arbitrary x0 ∈ M(y) consider the
Cauchy problem {

x′(t) ∈ G(x(t)), for a.e. t ∈ I,
x(0) = x0 ∈M(y).

(3.3)

From Lemma 2.12 it follows that the solution set Σ(x0) of (3.3) is an Rδ−set in
C(I,Rn) and the multimap Σ: M(y)→ K

(
C(I,Rn)

)
,

x0 ∈M(y)( Σ(x0)

is a J−multimap.

Define the multimap Σ̃ : Q → K
(
C(I,Rn)

)
, Σ̃ = Σ ◦ M. It is clear that Σ̃ ∈

Jc
(
Q,C(I,Rn)

)
.

On the other hand, from (A2) it follows that M(y) ⊂ K. Hence, by applying Lemma

2.1 we get that x(t) ∈ K, ∀t ∈ I for all x ∈ Σ̃(Q), i.e., Σ̃(Q) ⊆ Q. Now, let us

show that Σ̃(Q) is compact in C(I,Rn). In fact, for arbitrary x ∈ Σ̃(Q), we have
x ∈ Q and hence there exists L > 0 such that ‖x‖2 < L. From the other side, x is a

solution of (3.3) for some y ∈ Q and hence, by virtue of (3.2) we have ‖x′‖2 < α
√
T .

Consequently, the set Σ̃(Q) is bounded in W 1,2(I,Rn). From the compactness of the

embedding W 1,2(I,Rn) ↪→ C(I,Rn) we obtain the compactness of the set Σ̃(Q) in
C(I,Rn).

Thus, from Theorem 2.11 it follows that there exists x ∈ Q such that x ∈ Σ̃(x), i.e.,
the function x is a solution to the problem{

x′(t) ∈ G(x(t)), for a.e. t ∈ I,
x(0) ∈M(x)

and hence, by Lemma 2.1 it is a solution for (1.1). �

Consider now the uniqueness problem. Assume that
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(A1)′ F : K → Rn is a single-valued map satisfying the Lipschitz condition

|F (x)− F (y)| ≤ L|x− y|,

for all x, y ∈ K for some L > 0;
(A2)′ M : C(I,Rn) → Rn is a linear continuous operator such that M

(
C(I,K)

)
⊆

K.

It means that problem (1.1) turns into{
x′(t) = PTK(x(t))

(
F (x(t))

)
, for a.e. t ∈ I := [0, T ],

x(0) = M(x).
(3.4)

Theorem 3.5. Let conditions (A1)′ − (A2)′ hold. If

‖M‖eLT < 1, (3.5)

then problem (3.4) has a unique solution,

Proof. The existence of a solution to (1.1) clearly follows from Theorem 3.4. Let us
show that this solution is unique. To the contrary, assume that x1(·) and x2(·) are
two different solutions to problem (1.1). For a.e. t ∈ (0, T ] we have

d

dt

(
|x1(t)− x2(t)|2

)
= 2
〈
x1(t)− x2(t), x′1(t)− x′2(t)

〉
= 2
〈
x1(t)− x2(t), PTK(x1(t))

(
F (x1(t))

)
− PTK(x2(t))

(
F (x2(t))

)〉
= 2
〈
x1(t)− x2(t), F (x1(t))− n1 −

(
F (x2(t))− n2

)〉
≤ 2
〈
x1(t)− x2(t), F (x1(t))− F (x2(t))

〉
≤ 2L|x1(t)− x2(t)|2,

where n1 ∈ NK(x1(t)) and n2 ∈ NK(x2(t)).
Applying the theorem on differential inequalities to the function t→ |x1(t)− x2(t)|2
we obtain

|x1(t)− x2(t)|2 ≤ |x1(0)− x2(0)|2e2Lt ≤ |Mx1 −Mx2|2e2LT ,

for all t ∈ I.
Hence, by applying (3.5) we have

‖x1 − x2‖C = max
t∈I
|x1(t)− x2(t)| ≤ ‖M‖eLT ‖x1 − x2‖C < ‖x1 − x2‖C ,

giving the contradiction. �

4. The Ulam-Hyers stability of solutions
to projected differential equations

Consider now the problem of Ulam-Hyers stability of solutions to problem (3.4).
Toward this goal, let us first introduce its definition.
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Definition 4.1. Problem (3.4) is said to be Ulam-Hyers stable if there exists c > 0
such that for each ε > 0 and each solution y(·) ∈ AC(I,Rn) of the problem{∣∣y′(t)− PTK(y(t))

(
F (y(t))

)∣∣ ≤ ε, for a.e. t ∈ I,
y(0) = My,

(4.1)

there exists a solution x(·) of (3.4) with

|x(t)− y(t)| ≤ cε, ∀t ∈ I.

In sequel we need the following result which is a generalized version of the Gronwall
lemma.

Lemma 4.2. (see, e.g., [10, Theorem 21]). Let u(t) be a nonnegative function that
satisfies the integral inequality

u(t) ≤ c+

∫ t

t0

(
a(s)u(s) + b(s)uα(s)

)
ds, c ≥ 0, α ∈ [0, 1),

where a(t) and b(t) are continuous nonnegative functions for t ≥ t0. Then

u(t) ≤
(
c1−α e

(1−α)
∫ t
t0
a(s)ds

+ (1− α)

∫ t

t0

b(s) e(1−α)
∫ t
s
a(τ)dτds

) 1
1−α

.

Theorem 4.3. Let conditions (A1)′, (A2)′ and (3.5) hold. Then problem (3.4) is
Ulam-Hyers stable.

Proof. From Theorem 3.5 it follows that problem (3.4) has a unique solution x∗(·).
Now, let y(·) ∈ AC(I,Rn) be an arbitrary solution of (4.1). Then for a.e. t ∈ (0, T ]
we have

d

dt

(
|x∗(t)− y(t)|2

)
= 2
〈
x∗(t)− y(t), x′∗(t)− y′(t)

〉
= 2
〈
x∗(t)− y(t), PTK(x∗(t))

(
F (x∗(t))

)
− PTK(y(t))

(
F (y(t))

)〉
−2
〈
x∗(t)− y(t), y′(t)− PTK(y(t))

(
F (y(t))

)〉
= 2
〈
x∗(t)− y(t), F (x∗(t))− n1 −

(
F (y(t))− n2

)〉
−2
〈
x∗(t)− y(t), y′(t)− PTK(y(t))

(
F (y(t))

)〉
≤ 2
〈
x∗(t)− y(t), F (x∗(t))− F (y(t))

〉
+2|x∗(t)− y(t)|

∣∣y′(t)− PTK(y(t))

(
F (y(t))

)∣∣
≤ 2L|x∗(t)− y(t)|2 + 2ε|x∗(t)− y(t)|,

where n1 ∈ NK(x∗(t)) and n2 ∈ NK(y(t)).
Therefore, for any fixed t ∈ I:∫ t

0

d

ds

(
|x∗(s)− y(s)|2

)
≤
∫ t

0

(
2L|x∗(s)− y(s)|2 + 2ε|x∗(s)− y(s)|

)
ds,
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or equivalently,

|x∗(t)− y(t)|2 ≤ |x∗(0)− y(0)|2 +

∫ t

0

(
2L|x∗(s)− y(s)|2 + 2ε|x∗(s)− y(s)|

)
ds

≤ ‖M‖2‖x∗ − y‖2C +

∫ t

0

(
2L|x∗(s)− y(s)|2 + 2ε|x∗(s)− y(s)|

)
ds.

Taking u(t) = |x∗(t)− y(t)|2, we can rewrite the above inequality as

u(t) ≤ ‖M‖2‖x∗ − y‖2C +

∫ t

0

(
2Lu(s) + 2εu

1
2 (s)

)
ds.

Applying Lemma 4.2 we obtain

u(t) ≤
(
‖M‖‖x∗ − y‖C e

1
2

∫ t
0
2Lds +

1

2

∫ t

0

2ε e
1
2

∫ t
s
2Ldτds

)2
≤
(
‖M‖‖x∗ − y‖C e

LT +
ε

L
(eLT − 1)

)2
,

for all t ∈ I.
Therefore,

‖x∗ − y‖2C = max
t∈I

u(t) ≤
(
‖M‖‖x∗ − y‖C e

LT +
ε

L
(eLT − 1)

)2
,

or equivalently,

‖x∗ − y‖C ≤
eLT − 1

L(1− ‖M‖ eLT )
ε.

Thus, problem (3.4) is Ulam-Hyers stable. �

5. Application to a market model

Consider a market model of with the price intervention in the form of price floors
and ceilings. In this model there are n commodities. Let pCi and pFi (0 ≤ pFi < pCi )
denote the imposed price ceiling and price floor on the price of commodity i (i =
1 · · ·n), respectively. For this problem, the adjustment process for each commodity i
is defined as:

p′i(t) =


di(p(t))− si(p(t)), if pFi < pi(t) < pCi ,

max{0, di(p(t))− si(p(t))}, if pi(t) = pFi ,

min{0, di(p(t))− si(p(t))}, if pi(t) = pCi ,

(5.1)

for a.e. t ∈ [0, T ], where p(t) =
(
p1(t), · · · , pn(t)

)
, pi(t) denotes the price of commod-

ity i at the time t, di(·) : Rn → R and si(·) : Rn → R are the demand and supply
functions for commodity i, respectively.
In other words, the model can be explained as following. We study the adjustment
process on a given time interval I = [0, T ]. The price of a commodity i will increase
(decrease) if the demand for that commodity exceeds (respectively, is less that) the
supply of that commodity. If the price of an commodity is equal to the price floor
(price ceiling), and the supply of that commodity exceeds (respectively, is less than)
the demand, then the price will not change.
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Set K = {z ∈ Rn : pF ≤ z ≤ pC}, where pF and pC denote the n−dimensional
vectors of imposed price floors and ceilings, respectively. Then problem (5.1) can be
substituted with the following projected differential equation

p′(t) = PTK(p(t))

(
d(p(t))− s(p(t))

)
, for a.e. t ∈ I, (5.2)

where d(·) : Rn → Rn and s(·) : Rn → Rn are the n−dimensional vectors of demand
and supply functions, respectively.
Let us note that projected differential equation (5.2) was considered in [17] for the
finding of market equilibrium, i.e. the point p∗ ∈ K such that

PTK(p∗)

(
d(p∗ − s(p∗)

)
= 0,

or equivalently, for each commodity i (i = 1, · · · , n):

di(p∗)− si(p∗)


≥ 0, if p∗i = pCi ,

= 0, if pFi < p∗i < pCi ,

≤ 0, if p∗i = pFi .

Here, by applying Theorems 3.4, 3.5 and 4.3 we obtain

Theorem 5.1. Let the demand function d(·) and the supply function s(·) be contin-
uous and a multimap M satisfy condition (A2). Then the price regulation problem{

p′(t) = PTK(p(t))

(
d(p(t))− s(p(t))

)
, for a.e. t ∈ I,

p(0) ∈Mp,
(5.3)

has a solution.

Notice that if we will take, in particular, for a given r > 0 the multimap Mr defined
as in Remark 3.1(v), we obtain the existence of a price trajectory p(t), t ∈ I such that

‖p(T )− p(0)‖ ≤ r.

Theorem 5.2. Let the demand function d(·) and the supply function s(·) be Lips-
chitz continuous with constants ld and ls respectively and a linear operator M satisfy
conditions (A2)′ and (3.5) with L = ld + ls. Then problem (5.3) with the boundary
condition

p(0) = Mp

has a unique solution. Moreover, this problem is Ulam-Hyers stable.

Example 5.3. Consider a market model with one commodity. Assume pL = 0 and
pC = 3 are price floor and ceiling for this commodity, respectively. In addition, assume
that d(p(t)) = e−p(t) + 2 and s(p(t)) = ep(t) are the demand and supply functions
with respect to the price p(t), t ∈ I. Then there exists a periodic price trajectory
(i.e., p(0) = p(T )) for the adjustment process

p′(t) = PTK(p(t))

(
e−p(t) + 2− ep(t)

)
=


e−p(t) + 2− ep(t), if 0 < p(t) < 3,

max{0, e−p(t) + 2− ep(t)} = 2, if p(t) = 0,

min{0, e−p(t) + 2− ep(t)} = e−3 + 2− e3, if p(t) = 3,

(5.4)
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where K = [0, 3].
It is clear (see Figure 11) that in this case the periodic price trajectories are the market
equilibriums of (5.4). Moreover, we can replace the periodic condition p(0) = p(T )
by other nonlocal conditions (see Remark 3.1) to obtain new existence theorems for
problem (5.4).

Figure 1. Direction field of p′(t) = e−p(t) + 2− ep(t).

Further, put F : [0, 3]→ R, F (z) = e−z + 2− ez = 2(1− sinh z). Since

max
z∈[0,3]

∣∣∣∣ ddzF (z)

∣∣∣∣ = max
z∈[0,3]

(ez + e−z) = e3 + e−3,

we have

|F (z)− F (w)| ≤ (e3 + e−3)|z − w|, ∀z, w ∈ [0, 3].

Consider again problem (5.4) with the multi-point condition

p(0) =

n∑
i=1

c1p(ti), (5.5)

where 0 ≤ t1 < t2 < · · · < tn ≤ 3 and ci ≥ 0 such that

n∑
i=1

ci <
1

eT (e3+e−3)
.

By applying Theorem 5.2 we obtain that problem (5.4)-(5.5) is Ulam-Hyers stable
and has a unique price function solution p : I → [0, 3].

1Figure was done with Maple 17
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