COMMON SOLUTION TO A SPLIT EQUALITY MONOTONE VARIATIONAL INCLUSION PROBLEM, A SPLIT EQUALITY GENERALIZED GENERAL VARIATIONAL-LIKE INEQUALITY PROBLEM AND A SPLIT EQUALITY FIXED POINT PROBLEM

K.R. KAZMI, REHAN ALI AND MOHD FURKAN
Department of Mathematics, Aligarh Muslim University, Aligarh 202002, India
E-mail: krkazmi@gmail.com, rehan08amu@gmail.com, mohdfurkan786@gmail.com

Abstract

This paper deals with a strong convergence theorem for an iterative method for approximating a common solution to a split equality monotone variational inclusion problem, a split equality generalized general variational-like inequality problem and a split equality fixed point problem for quasi-nonexpansive mappings in real Hilbert spaces. Some consequences are derived from the main result. Finally, we give a numerical example to justify the main result. The main result extends and unifies some recent known results in the literature. Key Words and Phrases:Split equality monotone variational inclusion problem, split equality generalized general variational-like inequality problem, split equality fixed point problem, iterative method. 2010 Mathematics Subject Classification: 47H09, 47J05, 47J25, 49J40.

1. Introduction

Let H_{1}, H_{2} and H_{3} be real Hilbert spaces, let $C \subseteq H_{1}$ and $Q \subseteq H_{2}$ be nonempty closed convex sets. We denote the inner product and norm of H_{1}, H_{2} and H_{3} by notations $\langle\cdot, \cdot\rangle$ and $\|\cdot\|$. The split feasibility problem (in short, $\mathrm{S}_{\mathrm{p}} \mathrm{FP}$) is to find a point

$$
\begin{equation*}
\bar{x} \in C \text { such that } A \bar{x} \in Q, \tag{1.1}
\end{equation*}
$$

where $A: H_{1} \rightarrow H_{2}$ is a bounded linear operator. The $\mathrm{S}_{\mathrm{p}} \mathrm{FP}(1.1)$ in finite dimensional Hilbert space was introduced by Censor and Elfving [7] for modeling inverse problem which arise from retrievals and in medical image reconstruction [5]. Since then various iterative methods have been proposed to solve $\mathrm{S}_{\mathrm{p}} \mathrm{FP}(1.1)$; see for instance [1, 4, 10, 27].
Recently, Moudafi [20] introduced and studied the following split equality problem which is a natural generalization of $S_{p} \mathrm{FP}(1.1)$: find

$$
\begin{equation*}
\bar{x} \in C, \bar{y} \in Q \text { such that } A \bar{x}=B \bar{y} \tag{1.2}
\end{equation*}
$$

where $A: H_{1} \rightarrow H_{3}, B: H_{2} \rightarrow H_{3}$ are two bounded linear operators. For related work, see $[21,16]$. Note that the problem (1.2) reduces to problem (1.1) if $H_{2}=H_{3}$ and $B=I$, where I stands for the identity operator on H_{2}, in (1.2).

Further, Moudafi [22] introduced and studied the following split equality fixed point problem (in short, $\mathrm{S}_{\mathrm{p}} \mathrm{EFPP}$): find $(\bar{x}, \bar{y}) \in C \times Q$ such that

$$
\begin{equation*}
\bar{x} \in \operatorname{Fix}(S), \bar{y} \in \operatorname{Fix}(T) \text { and } A \bar{x}=B \bar{y} \tag{1.3}
\end{equation*}
$$

where $S: C \rightarrow C$ and $T: Q \rightarrow Q$ be nonlinear mappings and $\operatorname{Fix}(S):=\{x \in$ $C: S x=x\}$. The solution set of $S_{\mathrm{p}} \operatorname{EFPP}(1.3)$ is denoted by Θ. We note as given in Zhao et al. [30] (see also Dong et al. [11], Moudafi [22]) that $\operatorname{S}_{\mathrm{p}} \operatorname{EFPP}(1.3)$ and related problems allow asymmetric and partial relations between the variables x and y. The interest is to cover many situations, for instance in decomposition methods for partial differential equations, applications in game theory and in intensity-modulated radiation therapy (in short, IMRT). In decision sciences, this allows consideration of agents that interplay only via some components of their decision variables (see, [2]). In (IMRT), this amounts to envisage a weak coupling between the vector of doses absorbed in all voxels and that of the radiation intensity (see, [8]).

Recently, Zhao [29] introduced and studied a simultaneous iterative method and proved a weak convergence theorem for $\mathrm{S}_{\mathrm{p}} \mathrm{EFPP}$ (1.3) for quasi-nonexpansive operators. For further related work, see Zhao et al. [30] and Dong et al. [11].

It is well known that the theory of variational inequalities plays an important role in optimization, economics and engineering sciences. Because of its vast range applicability, various extensions and generalizations of variational inequality problems have been made and analyzed in various directions for past several years. One of the important generalizations is variational-like inequality problem introduced by Parida et al. [25] which has applications in optimization.

In 2006, Preda et al. [26] introduced and studied the general variational-like inequality problem (in, short GVLIP) of finding $\bar{x} \in C$ such that

$$
\begin{equation*}
F(x, \bar{x} ; \bar{x}) \geq 0, \forall x \in C \tag{1.4}
\end{equation*}
$$

which has applications in mathematical and equilibrium programming, see for example [28].
Very recently, Kazmi and Ali [15] introduced the generalized general variational-like inequality problem (in, short GGVLIP) which is to find $\bar{x} \in C$ such that

$$
\begin{equation*}
F(x, \bar{x} ; \bar{x})+\phi(x, \bar{x})-\phi(\bar{x}, \bar{x}) \geq 0, \forall x \in C \tag{1.5}
\end{equation*}
$$

They proved an existence theorem for GGVLIP(1.5) and proved strong convergence theorem for an iterative method for approximating a common solution to a system of GGVLIPs and a common fixed point problem in Banach space.

If we set $F(x, \bar{x} ; \bar{x})=\left\langle f \bar{x}+g \bar{x}, \eta_{1}(x, \bar{x})\right\rangle$ where $f, g: C \rightarrow H_{1}$ and $\eta_{1}: C \times C \rightarrow H_{1}$ then GGVLIP(1.5) is reduced to the mixed variational-like inequality problem introduced and studied by Noor [23].

Further, if we set $F(x, \bar{x} ; \bar{x})=\left\langle f \bar{x}, \eta_{1}(x, \bar{x})\right\rangle$ where $f: C \rightarrow H_{1}$ and $\eta_{1}: C \times C \rightarrow H_{1}$ and $\phi=0$, then $\operatorname{GGVLIP}(1.5)$ is reduced to the variational-like inequality problem of finding $\bar{x} \in C$ such that

$$
\left\langle f \bar{x}, \eta_{1}(x, \bar{x})\right\rangle \geq 0, \quad \forall x \in C
$$

introduced and studied by Parida et al. [25], which has applications in mathematical programming problems.

Moreover if $\eta_{1}(x, \bar{x})=x-\bar{x}$ for all $x, \bar{x} \in C$, then variational-like inequality problem is reduced to the classical variational inequality problem of finding $\bar{x} \in C$ such that

$$
\langle f \bar{x}, x-\bar{x}\rangle \geq 0, \forall x \in C
$$

introduced and studied by Hartman and Stampacchia [12].
In this paper, we introduce the following split equality generalized general variational-like inequality problem (in short, S_{p} EGGVLIP) which is an extension of $\operatorname{GGVLIP}(1.5):$ find $\bar{x} \in C$ and $\bar{y} \in Q$ such that

$$
\begin{array}{r}
F(x, \bar{x} ; \bar{x})+\phi(x, \bar{x})-\phi(\bar{x}, \bar{x}) \geq 0, \forall x \in C \\
G(y, \bar{y} ; \bar{y})+\psi(y, \bar{y})-\psi(\bar{y}, \bar{y}) \geq 0, \forall y \in Q \tag{1.7}\\
\text { and } A \bar{x}=B \bar{y}
\end{array}
$$

where $F: C \times C \times C \rightarrow \mathbb{R}$ and $G: Q \times Q \times Q \rightarrow \mathbb{R}$ are trifunctions. When looked separately, (1.6) is GGVLIP and its solution set is denoted by $\operatorname{Sol}(\operatorname{GGVLIP}(1.6))$. Solution set of $\mathrm{S}_{\mathrm{p}} \operatorname{EGGVLIP}(1.6)-(1.7)$ is denoted by $\operatorname{Sol}\left(\mathrm{S}_{\mathrm{p}} \operatorname{EGGVLIP}(1.6)-(1.7)\right)=\{(\bar{x}, \bar{y}) \in$ $C \times Q: \bar{x} \in \operatorname{Sol}(\operatorname{GGVLIP}(1.6)), \bar{y} \in \operatorname{Sol}(\operatorname{GGVLIP}(1.7))$
and $A \bar{x}=B \bar{y}\}$.
If we set $\phi, \psi=0 ; H_{1}=\mathbb{R}^{n}, H_{2}=\mathbb{R}^{m}, H_{3}=\mathbb{R}^{k} ; F(x, \bar{x} ; \bar{x})=\left\langle\nabla f \bar{x}, \eta_{1}(x, \bar{x})\right\rangle$ and $G(y, \bar{y} ; \bar{y})=\left\langle\nabla g \bar{y}, \eta_{2}(y, \bar{y})\right\rangle$ where $\eta_{1}: C \times C \rightarrow \mathbb{R}^{n}, \eta_{2}: Q \times Q \rightarrow \mathbb{R}^{m}$ are continuous, and $f: C \rightarrow \mathbb{R}^{n}$ and $g: Q \rightarrow \mathbb{R}^{m}$ are differentiable and respectively, $\eta_{1^{-}}$and η_{2}-convex [25], then $\mathrm{S}_{\mathrm{p}} \operatorname{EGGVLIP}(1.6)$-(1.7) is reduced to the following new mathematical programming problem:

$$
\begin{array}{r}
\min _{\bar{x} \in C} f(\bar{x}), \\
\min _{\bar{y} \in Q} g(\bar{y}), \tag{1.8}\\
\text { and } A \bar{x}=B \bar{y} .
\end{array}
$$

Further, we consider the following split equality monotone variational inclusion problem (in short, S_{p} EMVIP): find $\bar{x} \in H_{1}, \bar{y} \in H_{2}$ such that

$$
\begin{align*}
& 0 \in U(\bar{x})+M(\bar{x}), \tag{1.9}\\
& 0 \in V(\bar{y})+N(\bar{y}), \tag{1.10}\\
& \quad \text { and } A \bar{x}=B \bar{y},
\end{align*}
$$

where $M: H_{1} \rightarrow 2^{H_{1}}$ and $N: H_{2} \rightarrow 2^{H_{2}}$ are multi-valued maximal monotone mappings. When looked separately, (1.9) is called monotone variational inclusion
problem (in short, MVIP) and its solution set is denoted by $\operatorname{Sol}(M V I P(1.9))$. Solution set of $\mathrm{S}_{\mathrm{p}} \operatorname{EMVIP}(1.9)-(1.10)$ is denoted by $\operatorname{Sol}\left(\mathrm{S}_{\mathrm{p}} \operatorname{EMVIP}(1.9)-(1.10)\right)$.

If we set $U=0$ and $V=0$, then $\mathrm{S}_{\mathrm{p}} \operatorname{EMVIP}(1.9)-(1.10)$ is reduced to the following problem: find $\bar{x} \in H_{1}$ and $\bar{y} \in H_{2}$ such that

$$
\begin{array}{r}
0 \in M(\bar{x}), \\
0 \in N(\bar{y}), \tag{1.12}\\
\text { and } A \bar{x}=B \bar{y} .
\end{array}
$$

Problem (1.11)-(1.12) is called the split equality null point problem (in short, $\left.\mathrm{S}_{\mathrm{p}} \mathrm{ENPP}\right)$. Solution set of $\mathrm{S}_{\mathrm{p}} \operatorname{ENPP}(1.11)-(1.12)$ is denoted by $\operatorname{Sol}\left(\mathrm{S}_{\mathrm{p}} \operatorname{ENPP}(1.11)\right.$ (1.12)). $\mathrm{S}_{\mathrm{p}} \operatorname{ENPP}(1.11)-(1.12)$ generalizes split null point problem (in short, $\mathrm{S}_{\mathrm{p}} \mathrm{NPP}$) studied by $[6,14]$.

Also, $\mathrm{S}_{\mathrm{p}} \operatorname{EMVIP}(1.9)$-(1.10) is a natural generalization of split monotone variational inclusion problem (in short, S_{p} MVIP) given by Moudafi [19]. Moudafi [19] proved a weak convergence theorem for solving S_{p} MVIP. It is worth to mention that the weak and strong convergence are different in setting of general Hilbert spaces and in the most cases, strong convergence is more desirable than weak convergence. However, there is a very little progress in strong convergence results for iterative methods for solving S_{p} MVIP. Therefore, to prove a strong convergence theorem for finding a common solution to $S_{p} \operatorname{EMVIP}(1.9)$-(1.10) (a more general problem than S_{p} MVIP), $\mathrm{S}_{\mathrm{p}} \operatorname{EGGVLIP}(1.6)-(1.7)$ and $\mathrm{S}_{\mathrm{p}} \operatorname{EFPP}(1.3)$ is the main interest of this paper.

Motivated by the ongoing work in this direction, we propose and analyze an iterative method for solving $\mathrm{S}_{\mathrm{p}} \operatorname{EMVIP}(1.9)-(1.10), \mathrm{S}_{\mathrm{p}} \operatorname{EGGVLIP}(1.6)-(1.7)$ and $\mathrm{S}_{\mathrm{p}} \operatorname{EFPP}(1.3)$ and prove a strong convergence theorem for the proposed iterative algorithm to approximate a common solution to $S_{p} \operatorname{EMVIP}(1.9)-(1.10), S_{p} \operatorname{EGGVLIP}(1.6)-(1.7)$ and $\mathrm{S}_{\mathrm{p}} \operatorname{EFPP}(1.3)$. Further, we derive some consequences from the main result. Finally, we give a numerical example to justify the main result. The result presented here extends and unifies some known results in the literature, see for instance, [29].

2. Preliminaries

Throughout the paper, we denote the strong and weak convergence of a sequence $\left\{x_{n}\right\}$ to a point $x \in X$ by $x_{n} \rightarrow x$ and $x_{n} \rightharpoonup x$, respectively. For every point $x \in H_{1}$, there exists a unique nearest point of C, denoted by $P_{C} x$, such that $\left\|x-P_{C} x\right\| \leq$ $\|x-y\|, \forall y \in C$. The mapping P_{C} is called the metric projection from H_{1} onto C. It is well known that P_{C} is a firmly nonexpansive mapping from H_{1} to C, i.e.,

$$
\left\|P_{C} x-P_{C} y\right\|^{2} \leq\left\langle P_{C} x-P_{C} y, x-y\right\rangle, \forall x, y \in H_{1}
$$

Further, for any $x \in H_{1}$ and $z \in C, z=P_{C} x$ if and only if

$$
\begin{equation*}
\langle x-z, z-y\rangle \geq 0, \forall y \in C \tag{2.1}
\end{equation*}
$$

Definition 2.1. A mapping $S: H_{1} \rightarrow H_{1}$ is said to be
(i) nonexpansive, if

$$
\|S x-S y\| \leq\|x-y\|, \forall x \in H_{1}, y \in H_{1}
$$

(ii) quasi-nonexpansive, if

$$
\|S x-S q\| \leq\|x-q\|, \forall x \in H_{1}, \quad q \in \operatorname{Fix}(S)
$$

(iii) firmly quasi-nonexpansive, if

$$
\left.\|S x-q\|^{2} \leq\|x-q\|^{2}-\|x-S x\|^{2}, \forall x \in H_{1}, q \in \operatorname{Fix}(S)\right)
$$

Lemma 2.1. [Corollary 4.15 [3]] Let $C \subset H_{1}$ be a nonempty, closed and convex set and let $S: C \rightarrow H_{1}$ be a nonexpansive mapping. Then $\operatorname{Fix}(S)$ is closed and convex.

Lemma 2.2. [18] Let $S: H_{1} \rightarrow H_{1}$ be quasi-nonexpansive mapping. Set $S_{\beta}=$ $\beta I+(1-\beta) S$, for $\beta \in[0,1)$. Then the following properties are reached for all $x \in$ $H_{1}, q \in \operatorname{Fix}(S):$
(i) $\langle x-S x, x-q\rangle \geq \frac{1}{2}\|x-S x\|^{2}$ and $\langle x-S x, q-S x\rangle \leq \frac{1}{2}\|x-S x\|^{2}$;
(ii) $\left\|S_{\beta} x-q\right\|^{2} \leq\|x-q\|^{2}-\beta(1-\beta)\|S x-x\|^{2}$;
(iii) $\left\langle x-S_{\beta} x, x-q\right\rangle \geq \frac{1-\beta}{2}\|x-S x\|^{2}$.

Remark 2.1. [18] Let $S_{\beta}=\beta I+(1-\beta) S$, where $S: H_{1} \rightarrow H_{1}$ is a quasi-nonexpansive mapping and $\beta \in[0,1)$. We have $\operatorname{Fix}\left(S_{\beta}\right)=\operatorname{Fix}(S)$ and

$$
\left\|S_{\beta} x-x\right\|^{2}=(1-\beta)^{2}\|S x-x\|^{2}
$$

It follows from (ii) of Lemma 2.2 that

$$
\left\|S_{\beta} x-q\right\|^{2}=\|x-q\|^{2}-\frac{\beta}{1-\beta}\left\|S_{\beta} x-x\right\|^{2}
$$

which implies that S_{β} is firmly nonexpansive when $\beta=\frac{1}{2}$. On the other hand, if \widehat{S} is a firmly quasi-nonexpansive mapping, we can easily obtain $\widehat{S}=\frac{1}{2} I+\frac{1}{2} S$, where S is quasi-nonexpansive.

Definition 2.2. A mapping $U: H_{1} \rightarrow H_{1}$ is said to be
(i) monotone, if $\langle U x-U y, x-y\rangle \geq 0, \forall x, y \in H_{1}$;
(ii) strongly monotone, if there exists a constant $\beta>0$ such that

$$
\langle U x-U y, x-y\rangle \geq \beta\|x-y\|^{2}, \forall x, y \in H_{1}
$$

(iii) β-inverse strongly monotone, if there exists a constant $\beta>0$ such that

$$
\langle U x-U y, x-y\rangle \geq \beta\|U x-U y\|^{2}, \forall x, y \in H_{1}
$$

Definition 2.3. A multi-valued mapping $M: H_{1} \rightarrow 2^{H_{1}}$ is called monotone if for all $x, y \in H_{1}, u \in M x$ and $v \in M y$ such that

$$
\langle x-y, u-v\rangle \geq 0
$$

Definition 2.4. A monotone mapping $M: H_{1} \rightarrow 2^{H_{1}}$ is maximal if the

$$
\operatorname{Graph}(M):=\left\{(x, y): x \in H_{1}, y \in M(x)\right\}
$$

is not properly contained in the graph of any other monotone mapping.

It is known that a monotone mapping M is maximal if and only if for $(x, u) \in$ $H_{1} \times H_{1},\langle x-y, u-v\rangle \geq 0$, for every $(y, v) \in \operatorname{Graph}(M)$ implies that $u \in M x$.

Let A be a monotone mapping of C into H_{1} and $N_{C} v$ the normal cone to C at $v \in C$, i.e.,

$$
N_{C} v=\left\{w \in H_{1}:\langle v-u, w\rangle \geq 0, \forall u \in C\right\}
$$

and define a mapping M on C by

$$
M v= \begin{cases}A v+N_{C} v, & v \in C \\ \emptyset, & v \notin C\end{cases}
$$

then M is maximal monotone and $0 \in M v$ if and only if $\langle A v, u-v\rangle \geq 0$ for all $u \in C$.
Definition 2.5. Let $M: H_{1} \rightarrow 2^{H_{1}}$ be a multi-valued maximal monotone mapping. Then, the resolvent mapping $J_{\lambda}^{M}: H_{1} \rightarrow H_{1}$ associated with M, is defined by

$$
J_{\lambda}^{M}(x):=(I+\lambda M)^{-1}(x), \forall x \in H_{1}
$$

Remark 2.2. (i) For all $\lambda>0$, the resolvent operator J_{λ}^{M} is single-valued and firmly nonexpansive.
(ii) If we take $M=\partial I_{C}$, the subdifferential of the indicator function I_{C} of C, where I_{C} is defined by

$$
I_{C}(x)= \begin{cases}0, & x \in C \\ +\infty, & x \notin C\end{cases}
$$

then

$$
y=J_{\lambda}^{\partial I_{C}}(x)=\left(I+\lambda \partial I_{C}\right)^{-1} x \Leftrightarrow y=P_{C} x
$$

(iii) It is easy to see that I_{C} is a proper and lower semicontinuous convex function on H_{1} and the subdifferential ∂I_{C} of the indicator function I_{C} is maximal monotone.

Assumption 2.1. Let F and ϕ satisfy the following conditions:
(i) $F(x, y ; z)=0$ if $x=y$ for any $x, y, z \in C$;
(ii) F is generalized relaxed α-monotone, i.e., for any $x, y \in C$ and $t \in(0,1]$, we have

$$
F(y, x ; y)-F(y, x ; x) \geq \alpha(x, y)
$$

where $\alpha: H_{1} \times H_{1} \rightarrow \mathbb{R}$ such that

$$
\lim _{t \rightarrow 0} \frac{\alpha(x, t y+(1-t) x)}{t}=0
$$

(iii) $F(y, x ; \cdot)$ is hemicontinuous for any fixed $x, y \in C$;
(iv) $F(\cdot, x ; z)$ is convex and lower semicontinuous for any fixed $x, y \in C$;
(v) $F(x, y ; z)+F(y, x ; z)=0$ for any $x, y, z \in C$;
(vi) $\phi(\cdot, \cdot)$ is weakly continuous and $\phi(\cdot, y)$ is convex for any fixed $y \in C$;
(vii) ϕ is skew-symmetric, i.e., $\phi(x, x)-\phi(x, y)+\phi(y, y)-\phi(y, x) \geq 0, \forall x, y \in C$.

For a given $r \geq 0$, define a mapping $T_{r}^{F}: H_{1} \rightarrow C$ as follows:

$$
\begin{gather*}
T_{r}^{F}(x)=\left\{z \in C: F(y, z ; z)+\frac{1}{r}\langle y-z, z-x\rangle+\phi(z, y)-\phi(z, z) \geq 0, \forall y \in C\right\} \\
\forall x \in H_{1} \tag{2.2}
\end{gather*}
$$

The following lemma is a special case of Lemma 3.1-3.3 due to [15] in real Hilbert space.
Lemma 2.3. [15] Assume that $F: C \times C \times C \rightarrow \mathbb{R}$ and $\phi: C \times C \rightarrow \mathbb{R}$ satisfy Assumption 2.1. Suppose the mapping $T_{r}^{F}: H_{1} \rightarrow C$ be defined as in (2.2). Then the following holds:
(i) $T_{r}^{F}(x) \neq \emptyset$ for each $x \in H_{1}$;
(ii) T_{r}^{F} is single valued;
(iii) T_{r}^{F} is firmly nonexpansive, i.e.,

$$
\left\|T_{r}^{F} x-T_{r}^{F} y\right\|^{2} \leq\left\langle T_{r}^{F} x-T_{r}^{F} y, x-y\right\rangle, \forall x, y \in H_{1}
$$

(iv) $\operatorname{Fix}\left(T_{r}^{F}\right)=\operatorname{Sol}(\operatorname{GGVLIP}(1.6))$;
(v) $\operatorname{Sol}(\operatorname{GGVLIP}(1.6))$ is closed and convex.

Assume that $G: Q \times Q \times Q \rightarrow \mathbb{R}, \psi: Q \times Q \rightarrow \mathbb{R}$ satisfy Assumption 2.1. For $s \geq 0$ and $u \in H_{2}$, define a mapping $T_{s}^{G}: H_{2} \rightarrow Q$ as follows

$$
\begin{equation*}
T_{s}^{G} u=\left\{v \in Q: G(w, v ; v)+\psi(w, v)-\psi(v, v)+\frac{1}{s}\langle w-v, v-u\rangle \geq 0, \forall w \in Q\right\} \tag{2.3}
\end{equation*}
$$

Then it follows from Lemma 2.3 that T_{s}^{G} satisfies (i)-(v) of Lemma 2.3, and

$$
\operatorname{Fix}\left(T_{s}^{G}\right)=\operatorname{Sol}(\operatorname{GGVLIP}(1.7))
$$

Definition 2.6. Let H_{1} be a real Hilbert space. A mapping $S: H_{1} \rightarrow H_{1}$ is said to be:
(i) demiclosed at origin if, for any sequence $\left\{x_{n}\right\} \subset H_{1}$ with $x_{n} \rightharpoonup \bar{x}$ and if the sequence $\left\{S x_{n}\right\}$ strongly converges to x^{*}, we have $S \bar{x}=x^{*}$;
(ii) semi-compact if, for any bounded sequence $\left\{x_{n}\right\} \subset H_{1}$ with $\left\|x_{n}-S x_{n}\right\| \rightarrow 0$, there exists a subsequence $\left\{x_{n_{i}}\right\} \subset\left\{x_{n}\right\}$ such that $\left\{x_{n_{i}}\right\}$ converges strongly to a point $\bar{x} \in H_{1}$;
(iii) weakly continuous at x if for any sequence $\left\{x_{n}\right\}$ which converges weakly to x, the sequence $\left\{S x_{n}\right\}$ converges weakly to $S x$.

Lemma 2.4. [17]
(i) For all $x, y \in H_{1}$, we have

$$
\begin{equation*}
\|x-y\|^{2}=\|x\|^{2}-\|y\|^{2}-2\langle x-y, y\rangle \tag{2.4}
\end{equation*}
$$

(ii) For any $x, y \in H_{1}$, we have

$$
\begin{equation*}
2\langle x, y\rangle=\|x\|^{2}+\|y\|^{2}-\|x-y\|^{2}=\|x+y\|^{2}-\|x\|^{2}-\|y\|^{2}, \forall x, y \in H_{1} \tag{2.5}
\end{equation*}
$$

Lemma 2.5. [24] (Opial's lemma) Let H_{1} be a Hilbert space and $\left\{\mu_{n}\right\}$ be a sequence in H_{1} such that there exists a nonempty set $W \subset H_{1}$ satisfying:
(i) For every $\mu^{*} \in W, \lim _{n \rightarrow \infty}\left\|\mu_{n}-\mu^{*}\right\|$ exists.
(ii) Any weak-cluster point of the sequence $\left\{\mu_{n}\right\}$ belongs to W;

Then there exists $\mu^{*} \in W$ such that $\left\{\mu_{n}\right\}$ weakly converges to μ^{*}.

3. Main Results

We prove a strong convergence theorem to approximate a common solution to $\mathrm{S}_{\mathrm{p}} \operatorname{EMVIP}(1.9)-(1.10), \mathrm{S}_{\mathrm{p}} \operatorname{EGGVLIP}(1.6)-(1.7)$ and $\mathrm{S}_{\mathrm{p}} \operatorname{EFPP}(1.3)$ for quasinonexpansive mappings by selecting the step size in such a way that the implementation of the algorithm does not require the calculation or estimation of the operator norms.

Theorem 3.1. Let H_{1}, H_{2} and H_{3} be real Hilbert spaces, $C \subseteq H_{1}$ and $Q \subseteq H_{2}$ be nonempty closed and convex sets. Assume that $F: C \times C \times C \rightarrow \mathbb{R}, G: Q \times Q \times Q \rightarrow \mathbb{R}$ are trifunctions and $\phi: C \times C \rightarrow \mathbb{R}, \psi: Q \times Q \rightarrow \mathbb{R}$ are bifunctions satisfying Assumption 2.1 with $F(x, \cdot ; x)$ and $G(y, \cdot ; y)$ are weakly continuous, and let $A: H_{1} \rightarrow$ $H_{3}, B: H_{2} \rightarrow H_{3}$ be two bounded linear operators. Let $U: C \rightarrow H_{1}$ be an σ-inverse strongly monotone mapping and let $M: H_{1} \rightarrow 2^{H_{1}}$ be a maximal monotone mapping. Let $V: Q \rightarrow H_{2}$ be an β-inverse strongly monotone mapping and let $N: H_{2} \rightarrow 2^{H_{2}}$ be a maximal monotone mapping. Let $\left(x_{1}, y_{1}\right) \in C \times Q$ be given and the iteration sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ be generated by the scheme:

$$
\left\{\begin{align*}
& F\left(u, u_{n} ; u_{n}\right)+\phi\left(u, u_{n}\right)-\phi\left(u_{n}, u_{n}\right) \tag{3.1}\\
&+\frac{1}{s_{n}}\left\langle u-u_{n}, u_{n}-J_{r_{n}}^{M}\left(x_{n}-r_{n} U x_{n}\right)\right\rangle \geq 0, \forall u \in C \\
& G\left(v, v_{n} ; v_{n}\right)+\psi\left(v, v_{n}\right)-\psi\left(v_{n}, v_{n}\right) \\
&+\frac{1}{s_{n}}\left\langle v-v_{n}, v_{n}-J_{r_{n}}^{N}\left(y_{n}-r_{n} V y_{n}\right)\right\rangle \geq 0, \forall v \in Q \\
& z_{n}=P_{C}\left(u_{n}-\gamma_{n} A^{*}\left(A u_{n}-B v_{n}\right)\right) \\
& x_{n+1}=\alpha_{n} z_{n}+\left(1-\alpha_{n}\right) S z_{n} \\
& w_{n}=P_{Q}\left(v_{n}+\gamma_{n} B^{*}\left(A u_{n}-B v_{n}\right)\right) \\
& y_{n+1}=\alpha_{n} w_{n}+\left(1-\alpha_{n}\right) T w_{n}
\end{align*}\right.
$$

where $S: C \rightarrow C$ and $T: Q \rightarrow Q$ be quasi-nonexpansive mappings and the step size γ_{n} is chosen in such a way that for some $\epsilon>0$,

$$
\begin{equation*}
\gamma_{n} \in\left(\epsilon, \frac{2\left\|A u_{n}-B v_{n}\right\|^{2}}{\left\|A^{*}\left(A u_{n}-B v_{n}\right)\right\|^{2}+\left\|B^{*}\left(A u_{n}-B v_{n}\right)\right\|^{2}}-\epsilon\right), n \in \Lambda \tag{3.2}
\end{equation*}
$$

otherwise $\gamma_{n}=\gamma(\gamma \geq 0)$, where the index set $\Lambda=\left\{n: A u_{n}-B v_{n} \neq 0\right\}, \alpha_{n} \subset(\delta, 1-\delta)$ for some small enough $\delta>0$ and $\left\{r_{n}\right\},\left\{s_{n}\right\} \subset(0, \infty)$. Assume that the control sequences $\left\{r_{n}\right\}$ and $\left\{s_{n}\right\}$ satisfy the following conditions:
(i) $0<r \leq r_{n} \leq r^{\prime}<2 \min \{\sigma, \beta\}$;
(ii) $\liminf _{n \rightarrow \infty} s_{n}>0$;
(iii) $S-I$ and $T-I$ are demiclosed at 0 .

If $\Gamma:=\operatorname{Sol}\left(\mathrm{S}_{\mathrm{p}} \operatorname{EMVIP}(1.9)-(1.10)\right) \cap \operatorname{Sol}\left(\mathrm{S}_{\mathrm{p}} \operatorname{EGGVLIP}(1.6)-(1.7)\right) \cap \Theta \neq \emptyset$, then the sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ converges weakly to a point (\bar{x}, \bar{y}) of Γ. In addition if S and T are semi-compact, then $\left\{\left(x_{n}, y_{n}\right)\right\}$ converges strongly to the point (\bar{x}, \bar{y}) of Γ.

Proof. Since the mappings $U: C \rightarrow H_{1}$ and $V: Q \rightarrow H_{2}$ are σ-inverse strongly monotone and β-inverse strongly monotone mapping, respectively, and $r_{n} \leq r^{\prime}<$ $2 \min \{\sigma, \beta\}$, then we can easily show that $\left(I-r_{n} U\right)$ and $\left(I-r_{n} V\right)$ are nonexpansive. Hence $J_{r_{n}}^{M}\left(I-r_{n} U\right)$ and $J_{r_{n}}^{N}\left(I-r_{n} V\right)$ are nonexpansive. Since $\Gamma \neq \emptyset$, it follows from Lemma 2.1 that $\operatorname{Fix}\left(J_{r_{n}}^{M}\left(I-r_{n} U\right)\right)=(U+M)^{-1}(0)$ and $\operatorname{Fix}\left(J_{r_{n}}^{N}\left(I-r_{n} V\right)\right)=$ $(V+N)^{-1}(0)$ are closed and convex sets. Further, it follows from Lemma 2.3 that $T_{s_{n}}^{F}$ and $T_{s_{n}}^{G}$ are nonexpansive and hence $\operatorname{Fix}\left(T_{s_{n}}^{F}\right)$ and $\operatorname{Fix}\left(T_{s_{n}}^{G}\right)$ are closed and convex sets. Thus Γ is nonempty closed and convex. Let $(x, y) \in \Gamma$, it follows from Lemma 2.3 that $x=T_{s_{n}}^{F} x$ and $y=T_{s_{n}}^{G} y$. Also, we observe that $x=J_{r_{n}}^{M}\left(I-r_{n} U\right) x$ and $y=J_{r_{n}}^{N}\left(I-r_{n} V\right) y$. Since $T_{s_{n}}^{F} t_{n}$, where $t_{n}=J_{r_{n}}^{M}\left(I-r_{n} U\right)$, is nonexpansive, we have

$$
\begin{align*}
\left\|u_{n}-x\right\| & =\left\|T_{s_{n}}^{F} J_{r_{n}}^{M}\left(x_{n}-r_{n} U x_{n}\right)-T_{s_{n}}^{F} J_{r_{n}}^{M}\left(I-r_{n} U\right) x\right\| \\
& \leq\left\|x_{n}-x\right\| \tag{3.3}
\end{align*}
$$

Similarly, we obtain

$$
\begin{equation*}
\left\|v_{n}-y\right\| \leq\left\|y_{n}-y\right\| \tag{3.4}
\end{equation*}
$$

Since $(x, y) \in \Gamma$, then $x \in C$ and hence $P_{C} x=x$. Now, we estimate

$$
\begin{align*}
\left\|z_{n}-x\right\|^{2} & =\left\|P_{C}\left(u_{n}-\gamma_{n} A^{*}\left(A u_{n}-B v_{n}\right)\right)-P_{C} x\right\|^{2} \\
& \leq\left\|u_{n}-\gamma_{n} A^{*}\left(A u_{n}-B v_{n}\right)-x\right\|^{2} \\
& \leq\left\|u_{n}-x\right\|^{2}-2 \gamma_{n}\left\langle u_{n}-x, A^{*}\left(A u_{n}-B v_{n}\right)\right\rangle+\gamma_{n}^{2}\left\|A^{*}\left(A u_{n}-B v_{n}\right)\right\|^{2} \\
& \leq\left\|u_{n}-x\right\|^{2}-2 \gamma_{n}\left\langle A u_{n}-A x, A u_{n}-B v_{n}\right\rangle+\gamma_{n}^{2}\left\|A^{*}\left(A u_{n}-B v_{n}\right)\right\|^{2} \tag{3.5}\\
& \leq\left\|u_{n}-x\right\|^{2}+2 \gamma_{n}\left\|A u_{n}-A x\right\|\left\|A u_{n}-B v_{n}\right\|+\gamma_{n}^{2}\left\|A^{*}\left(A u_{n}-B v_{n}\right)\right\|^{2} \tag{3.6}
\end{align*}
$$

Now, using (2.5) in (3.5), we get

$$
\begin{align*}
\left\|z_{n}-x\right\|^{2} & \leq\left\|u_{n}-x\right\|^{2}-\gamma_{n}\left\|A u_{n}-A x\right\|^{2}-\gamma_{n}\left\|A u_{n}-B v_{n}\right\|^{2}+\gamma_{n}\left\|B v_{n}-A x\right\|^{2} \\
& +\gamma_{n}^{2}\left\|A^{*}\left(A u_{n}-B v_{n}\right)\right\|^{2} \tag{3.7}
\end{align*}
$$

By similar step as in (3.7), we obtain

$$
\begin{align*}
\left\|w_{n}-y\right\|^{2} \leq & \left\|v_{n}-y\right\|^{2}-\gamma_{n}\left\|B v_{n}-B y\right\|^{2}-\gamma_{n}\left\|A u_{n}-B v_{n}\right\|^{2}+\gamma_{n}\left\|A u_{n}-B y\right\|^{2} \\
& +\gamma_{n}^{2}\left\|B^{*}\left(A u_{n}-B v_{n}\right)\right\|^{2} \tag{3.8}
\end{align*}
$$

Adding (3.7) and (3.8), and using the fact that $A x=B y$, we get

$$
\begin{align*}
\left\|z_{n}-x\right\|^{2}+\left\|w_{n}-y\right\|^{2} & \leq\left\|u_{n}-x\right\|^{2}+\left\|v_{n}-y\right\|^{2}-\gamma_{n}\left[2\left\|A u_{n}-B v_{n}\right\|^{2}\right. \\
& \left.-\gamma_{n}\left(\left\|A^{*}\left(A u_{n}-B v_{n}\right)\right\|^{2}+\left\|B^{*}\left(A u_{n}-B v_{n}\right)\right\|^{2}\right)\right] \tag{3.9}
\end{align*}
$$

Now, from assumption on γ_{n}, we get

$$
\begin{equation*}
\left\|z_{n}-x\right\|^{2}+\left\|w_{n}-y\right\|^{2} \leq\left\|u_{n}-x\right\|^{2}+\left\|v_{n}-y\right\|^{2} \tag{3.10}
\end{equation*}
$$

Since S and T are quasi-nonexpansive mappings, it follows from Lemma 2.2(ii) that

$$
\begin{align*}
\left\|x_{n+1}-x\right\|^{2} & =\left\|\alpha_{n} z_{n}+\left(1-\alpha_{n}\right) S\left(z_{n}\right)-x\right\|^{2} \\
& \leq\left\|z_{n}-x\right\|^{2}-\alpha_{n}\left(1-\alpha_{n}\right)\left\|S\left(z_{n}\right)-z_{n}\right\|^{2} . \tag{3.11}
\end{align*}
$$

Similarly, we obtain

$$
\begin{equation*}
\left\|y_{n+1}-y\right\|^{2} \leq\left\|w_{n}-y\right\|^{2}-\alpha_{n}\left(1-\alpha_{n}\right)\left\|T\left(w_{n}\right)-w_{n}\right\|^{2} \tag{3.12}
\end{equation*}
$$

Adding (3.11) and (3.12), we get

$$
\begin{aligned}
\left\|x_{n+1}-x\right\|^{2}+\left\|y_{n+1}-y\right\|^{2} \leq & \left\|z_{n}-x\right\|^{2}+\left\|w_{n}-y\right\|^{2} \\
& -\alpha_{n}\left(1-\alpha_{n}\right)\left(\left\|S\left(z_{n}\right)-z_{n}\right\|^{2}+\left\|T\left(w_{n}\right)-w_{n}\right\|^{2}\right)
\end{aligned}
$$

Using (3.3), (3.4) and (3.9) in above inequalities, we get

$$
\begin{align*}
\left\|x_{n+1}-x\right\|^{2}+\left\|y_{n+1}-y\right\|^{2} & \leq\left\|x_{n}-x\right\|^{2}+\left\|y_{n}-y\right\|^{2}-\gamma_{n}\left[2\left\|A u_{n}-B v_{n}\right\|^{2}\right. \\
& \left.-\gamma_{n}\left(\left\|A^{*}\left(A u_{n}-B v_{n}\right)\right\|^{2}+\left\|B^{*}\left(A u_{n}-B v_{n}\right)\right\|^{2}\right)\right] \\
& -\alpha_{n}\left(1-\alpha_{n}\right)\left(\left\|S\left(z_{n}\right)-z_{n}\right\|^{2}+\left\|T\left(w_{n}\right)-w_{n}\right\|^{2}\right) . \tag{3.13}
\end{align*}
$$

Now, setting $\rho_{n}(x, y):=\left\|x_{n}-x\right\|^{2}+\left\|y_{n}-y\right\|^{2}$ in (3.13), we obtain

$$
\begin{align*}
\rho_{n+1}(x, y) \leq & \rho_{n}(x, y)-\gamma_{n}\left[2\left\|A u_{n}-B v_{n}\right\|^{2}\right. \\
& \left.-\gamma_{n}\left(\left\|A^{*}\left(A u_{n}-B v_{n}\right)\right\|^{2}+\left\|B^{*}\left(A u_{n}-B v_{n}\right)\right\|^{2}\right)\right] \\
& -\alpha_{n}\left(1-\alpha_{n}\right)\left(\left\|S\left(z_{n}\right)-z_{n}\right\|^{2}+\left\|T\left(w_{n}\right)-w_{n}\right\|^{2}\right) . \tag{3.14}
\end{align*}
$$

From the condition (3.2) on γ_{n}, we observe that the sequence $\left\{\rho_{n}(x, y)\right\}$ being decreasing and lower bounded by 0 , therefore it converges to some finite limit, say $\rho(x, y)$. Thus condition (i) of Lemma 2.5 is satisfied with $\mu_{n}=\left(x_{n}, y_{n}\right), \mu^{*}=(x, y)$ and $W=\Gamma$.
Since $\left\|x_{n}-x\right\|^{2} \leq \rho_{n}(x, y),\left\|y_{n}-y\right\|^{2} \leq \rho_{n}(x, y)$ and $\lim _{n \rightarrow \infty} \rho_{n}(x, y)$ exists, we observe that $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are bounded and $\limsup _{n \rightarrow \infty}\left\|x_{n}-x\right\|$ and $\limsup _{n \rightarrow \infty}\left\|y_{n}-y\right\|$ exist. From (3.3) and (3.4), we have that $\limsup _{n \rightarrow \infty}^{n \rightarrow \infty}\left\|u_{n}-x\right\|$ and $\limsup _{n \rightarrow \infty}^{n \rightarrow \infty}\left\|v_{n}-y\right\|$ also exist. Now, let \bar{x} and \bar{y} be weak cluster points of the sequences $\left\{x_{n}^{n \rightarrow \infty}\right.$ and $\left\{y_{n}\right\}$, respectively. From Lemma 2.4(i), we have

$$
\begin{aligned}
\left\|x_{n+1}-x_{n}\right\|^{2} & =\left\|x_{n+1}-x-x_{n}+x\right\|^{2} \\
& =\left\|x_{n+1}-x\right\|^{2}-\left\|x_{n}-x\right\|^{2}-2\left\langle x_{n+1}-x_{n}, x_{n}-x\right\rangle \\
& =\left\|x_{n+1}-x\right\|^{2}-\left\|x_{n}-x\right\|^{2}-2\left\langle x_{n+1}-\bar{x}, x_{n}-x\right\rangle+2\left\langle x_{n}-\bar{x}, x_{n}-x\right\rangle
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0 \tag{3.15}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\|y_{n+1}-y_{n}\right\|=0 \tag{3.16}
\end{equation*}
$$

Further, it follows from (3.15) and (3.16) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0 \tag{3.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|y_{n+1}-y_{n}\right\|=0 . \tag{3.18}
\end{equation*}
$$

For $n \in \Lambda$, again from (3.14), we have

$$
\begin{aligned}
\rho_{n+1}(x, y) \leq & \rho_{n}(x, y)-\gamma_{n}\left[2\left\|A u_{n}-B v_{n}\right\|^{2}\right. \\
& \left.-\gamma_{n}\left(\left\|A^{*}\left(A u_{n}-B v_{n}\right)\right\|^{2}+\left\|B^{*}\left(A u_{n}-B v_{n}\right)\right\|^{2}\right)\right]
\end{aligned}
$$

Since $\lim _{n \rightarrow \infty} \rho_{n}(x, y)$ exists, it follows from condition (3.2) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(\left\|A^{*}\left(A u_{n}-B v_{n}\right)\right\|^{2}+\left\|B^{*}\left(A u_{n}-B v_{n}\right)\right\|^{2}\right)=0 \tag{3.19}
\end{equation*}
$$

(Note that $A u_{n}-B v_{n}=0$ if $n \notin \Lambda$). Hence, we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|A^{*}\left(A u_{n}-B v_{n}\right)\right\|=\lim _{n \rightarrow \infty}\left\|B^{*}\left(A u_{n}-B v_{n}\right)\right\|=0 \tag{3.20}
\end{equation*}
$$

Similarly, from assumption $\left\{\alpha_{n}\right\} \subset(\delta, 1-\delta), \delta>0$ and (3.14), we observe that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|z_{n}-S\left(z_{n}\right)\right\|=\lim _{n \rightarrow \infty}\left\|w_{n}-T\left(w_{n}\right)\right\|=0 \tag{3.21}
\end{equation*}
$$

Since γ_{n} is bounded and $\lim _{n \rightarrow \infty} \rho_{n}(x, y)$ exists, it follows from (3.14), (3.20) and (3.21) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|A u_{n}-B v_{n}\right\|=0 \tag{3.22}
\end{equation*}
$$

Now, we estimate

$$
\begin{aligned}
\left\|z_{n}-x\right\|^{2}= & \left\|P_{C}\left(u_{n}-\gamma_{n} A^{*}\left(A u_{n}-B v_{n}\right)\right)-P_{C} x\right\|^{2} \\
\leq & \left\langle z_{n}-x, u_{n}-\gamma_{n} A^{*}\left(A u_{n}-B v_{n}\right)-x\right\rangle \\
= & \frac{1}{2}\left\{\left\|z_{n}-x\right\|^{2}+\left\|u_{n}-\gamma_{n} A^{*}\left(A u_{n}-B v_{n}\right)-x\right\|^{2}\right. \\
& \left.-\left\|z_{n}-u_{n}+\gamma_{n} A^{*}\left(A u_{n}-B v_{n}\right)\right\|^{2}\right\}
\end{aligned}
$$

This implies that

$$
\begin{aligned}
\left\|z_{n}-x\right\|^{2} & \leq\left\|u_{n}-x\right\|^{2}-2 \gamma_{n}\left\langle u_{n}-x, A^{*}\left(A u_{n}-B v_{n}\right)\right\rangle+\gamma_{n}^{2}\left\|A^{*}\left(A u_{n}-B v_{n}\right)\right\|^{2} \\
& -\left\|z_{n}-u_{n}\right\|^{2}-\gamma_{n}^{2}\left\|A^{*}\left(A u_{n}-B v_{n}\right)\right\|^{2}-2 \gamma_{n}\left\langle z_{n}-u_{n}, A^{*}\left(A u_{n}-B v_{n}\right)\right\rangle \\
& \leq\left\|u_{n}-x\right\|^{2}+2 \gamma_{n}\left\|A u_{n}-A x\right\|\left\|A u_{n}-B v_{n}\right\|-\left\|z_{n}-u_{n}\right\|^{2} \\
& +2 \gamma_{n}\left\|A z_{n}-A u_{n}\right\|\left\|A u_{n}-B v_{n}\right\| .
\end{aligned}
$$

Using (3.3) and above inequality in (3.11), we get

$$
\begin{aligned}
\left\|x_{n+1}-x\right\|^{2} \leq & \left\|x_{n}-x\right\|^{2}+2 \gamma_{n}\left(\left\|A u_{n}-A x\right\|+\left\|A z_{n}-A u_{n}\right\|\right)\left\|A u_{n}-B v_{n}\right\| \\
& -\left\|z_{n}-u_{n}\right\|^{2}-\alpha_{n}\left(1-\alpha_{n}\right)\left\|S\left(z_{n}\right)-z_{n}\right\|^{2}
\end{aligned}
$$

This implies that

$$
\begin{align*}
\left\|z_{n}-u_{n}\right\|^{2} \leq & \left(\left\|x_{n}-x\right\|+\left\|x_{n+1}-x\right\|\right)\left\|x_{n}-x_{n+1}\right\| \\
& +2 \gamma_{n}\left(\left\|A u_{n}-A x\right\|+\left\|A z_{n}-A u_{n}\right\|\right)\left\|A u_{n}-B v_{n}\right\| \\
& -\alpha_{n}\left(1-\alpha_{n}\right)\left\|S\left(z_{n}\right)-z_{n}\right\|^{2} \tag{3.23}
\end{align*}
$$

Using (3.17), (3.21) and (3.22) in (3.23), we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|z_{n}-u_{n}\right\|=0 \tag{3.24}
\end{equation*}
$$

Similarly, we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|w_{n}-v_{n}\right\|=0 \tag{3.25}
\end{equation*}
$$

Since $J_{r_{n}}^{M}$ is firmly nonexpansive, we find that

$$
\begin{aligned}
\left\|t_{n}-x\right\|^{2} \leq & \left\langle\left(x_{n}-r_{n} U x_{n}\right)-\left(x-r_{n} U x\right), t_{n}-x\right\rangle \\
= & \frac{1}{2}\left\{\left\|\left(x_{n}-r_{n} U x_{n}\right)-\left(x-r_{n} U x\right)\right\|^{2}+\left\|t_{n}-x\right\|^{2}\right. \\
& \left.-\left\|\left(x_{n}-r_{n} U x_{n}\right)-\left(x-r_{n} U x\right)-\left(t_{n}-x\right)\right\|^{2}\right\} \\
\leq & \frac{1}{2}\left\{\left\|x_{n}-x\right\|^{2}+\left\|r_{n}\left(U x_{n}-U x\right)\right\|^{2}-2 r_{n} \sigma\left\|U x_{n}-U x\right\|^{2}+\left\|t_{n}-x\right\|^{2}\right. \\
& \left.-\left\|x_{n}-t_{n}-r_{n}\left(U x_{n}-U x\right)\right\|^{2}\right\} \\
\leq & \frac{1}{2}\left\{\left\|x_{n}-x\right\|^{2}+\left\|r_{n}\left(U x_{n}-U x\right)\right\|^{2}-2 r_{n} \sigma\left\|U x_{n}-U x\right\|^{2}+\left\|t_{n}-x\right\|^{2}\right. \\
& \left.-\left\|x_{n}-t_{n}\right\|^{2}-\left\|r_{n}\left(U x_{n}-U x\right)\right\|^{2}+2\left\|x_{n}-t_{n}\right\|\left\|r_{n}\left(U x_{n}-U x\right)\right\|\right\}
\end{aligned}
$$

It follows that

$$
\begin{equation*}
\left\|t_{n}-x\right\|^{2} \leq\left\|x_{n}-x\right\|^{2}+2 r_{n}\left\|x_{n}-t_{n}\right\|\left\|U x_{n}-U x\right\|-\left\|x_{n}-t_{n}\right\|^{2} . \tag{3.26}
\end{equation*}
$$

Since $T_{s_{n}}^{F}$ is nonexpansive and $u_{n}=T_{s_{n}}^{F} t_{n}$ and $x=T_{s_{n}}^{F} x$, then we have

$$
\left\|u_{n}-x\right\| \leq\left\|t_{n}-x\right\|
$$

Using (3.6) and above relation in (3.11), we get

$$
\begin{align*}
\left\|x_{n+1}-x\right\|^{2} & \leq\left\|u_{n}-x\right\|^{2}+2 \gamma_{n}\left\|A u_{n}-A x\right\|\left\|A u_{n}-B v_{n}\right\|+\gamma_{n}^{2}\left\|A^{*}\left(A u_{n}-B v_{n}\right)\right\|^{2} \\
& \leq\left\|t_{n}-x\right\|^{2}+2 \gamma_{n}\left\|A u_{n}-A x\right\|\left\|A u_{n}-B v_{n}\right\| \\
& +\gamma_{n}^{2}\left\|A^{*}\left(A u_{n}-B v_{n}\right)\right\|^{2} . \tag{3.27}
\end{align*}
$$

Using (3.26) in (3.27), we have

$$
\begin{aligned}
\left\|x_{n+1}-x\right\|^{2} \leq & \left\|x_{n}-x\right\|^{2}+2 r_{n}\left\|x_{n}-t_{n}\right\|\left\|U x_{n}-U x\right\|-\left\|x_{n}-t_{n}\right\|^{2} \\
& +2 \gamma_{n}\left\|A u_{n}-A x\right\|\left\|A u_{n}-B v_{n}\right\|+\gamma_{n}^{2}\left\|A^{*}\left(A u_{n}-B v_{n}\right)\right\|^{2} .
\end{aligned}
$$

Hence, we have

$$
\begin{align*}
\left\|x_{n}-t_{n}\right\|^{2} \leq & \left(\left\|x_{n}-x\right\|+\left\|x_{n+1}-x\right\|\right)\left\|x_{n}-x_{n+1}\right\|+2 r_{n}\left\|x_{n}-t_{n}\right\|\left\|U x_{n}-U x\right\| \\
& +2 \gamma_{n}\left\|A u_{n}-A x\right\|\left\|A u_{n}-B v_{n}\right\|+\gamma_{n}^{2}\left\|A^{*}\left(A u_{n}-B v_{n}\right)\right\|^{2} . \tag{3.28}
\end{align*}
$$

Again, since $t_{n}=J_{r_{n}}^{M}\left(x_{n}-r_{n} U x_{n}\right)$, we have

$$
\begin{align*}
\left\|t_{n}-x\right\|^{2} & =\left\|J_{r_{n}}^{M}\left(x_{n}-r_{n} U x_{n}\right)-J_{r_{n}}^{M}\left(I-r_{n} U\right) x\right\|^{2} \\
& \leq\left\|\left(x_{n}-r_{n} U x_{n}\right)-\left(x-r_{n} U x\right)\right\|^{2} \\
& \leq\left\|\left(x_{n}-x\right)-r_{n}\left(U x_{n}-U x\right)\right\|^{2} \\
& \leq\left\|x_{n}-x\right\|^{2}-r_{n}\left(2 \sigma-r_{n}\right)\left\|U x_{n}-U x\right\|^{2} . \tag{3.29}
\end{align*}
$$

Using (3.29) in (3.27), we have

$$
\begin{align*}
\left\|x_{n+1}-x\right\|^{2} \leq & \left\|x_{n}-x\right\|^{2}-r_{n}\left(2 \sigma-r_{n}\right)\left\|U x_{n}-U x\right\|^{2}+\gamma_{n}^{2}\left\|A^{*}\left(A u_{n}-B v_{n}\right)\right\|^{2} \\
& +2 \gamma_{n}\left\|A u_{n}-A x\right\|\left\|A u_{n}-B v_{n}\right\| \tag{3.30}
\end{align*}
$$

which can be written as

$$
\begin{align*}
r_{n}\left(2 \sigma-r_{n}\right)\left\|U x_{n}-U x\right\|^{2} \leq & \left(\left\|x_{n}-x\right\|+\left\|x_{n+1}-x\right\|\right)\left\|x_{n}-x_{n+1}\right\| \\
& +2 \gamma_{n}\left\|A u_{n}-A x\right\|\left\|A u_{n}-B v_{n}\right\| \\
& +\gamma_{n}^{2}\left\|A^{*}\left(A u_{n}-B v_{n}\right)\right\|^{2} \tag{3.31}
\end{align*}
$$

Taking $n \rightarrow \infty$ and condition (i), using (3.17), (3.20) and (3.22) in (3.31), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|U x_{n}-U x\right\|=0 \tag{3.32}
\end{equation*}
$$

Again, taking $n \rightarrow \infty$, using (3.17), (3.20) (3.22) and (3.32) in (3.28), we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-t_{n}\right\|=0 \tag{3.33}
\end{equation*}
$$

Similarly, we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|V y_{n}-V y\right\|=0 \tag{3.34}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|y_{n}-t_{n}^{\prime}\right\|=0 \tag{3.35}
\end{equation*}
$$

where $t_{n}^{\prime}=J_{r_{n}}^{N}\left(y_{n}-r_{n} V y_{n}\right)$. Since $T_{s_{n}}^{F}$ is a firmly nonexpansive, therefore

$$
\begin{aligned}
\left\|u_{n}-x\right\|^{2} & =\left\|T_{s_{n}}^{F} t_{n}-x\right\|^{2} \\
& \leq\left\langle t_{n}-x, u_{n}-x\right\rangle \\
& =\frac{1}{2}\left(\left\|t_{n}-x\right\|^{2}+\left\|u_{n}-x\right\|^{2}-\left\|u_{n}-t_{n}\right\|^{2}\right)
\end{aligned}
$$

i.e.,

$$
\begin{gather*}
\left\|u_{n}-x\right\|^{2} \leq\left\|t_{n}-x\right\|^{2}-\left\|u_{n}-t_{n}\right\|^{2} \tag{3.36}\\
\left\|u_{n}-x\right\|^{2} \leq\left\|x_{n}-x\right\|^{2}-r_{n}\left(2 \sigma-r_{n}\right)\left\|U x_{n}-U x\right\|^{2}-\left\|u_{n}-t_{n}\right\|^{2} \tag{3.37}
\end{gather*}
$$

Similarly, we can find

$$
\left\|v_{n}-y\right\|^{2} \leq\left\|y_{n}-y\right\|^{2}-r_{n}\left(2 \beta-r_{n}\right)\left\|V y_{n}-V y\right\|^{2}-\left\|v_{n}-t_{n}^{\prime}\right\|^{2}
$$

Using (3.6), (3.37) in (3.11), we get

$$
\begin{aligned}
\left\|x_{n+1}-x\right\|^{2} & \leq\left\|u_{n}-x\right\|^{2}+2 \gamma_{n}\left\|A u_{n}-A x\right\|\left\|A u_{n}-B v_{n}\right\|+\gamma_{n}^{2}\left\|A^{*}\left(A u_{n}-B v_{n}\right)\right\|^{2} \\
& \leq\left\|x_{n}-x\right\|^{2}-r_{n}\left(2 \sigma-r_{n}\right)\left\|U x_{n}-U x\right\|^{2}-\left\|u_{n}-t_{n}\right\|^{2} \\
& +\gamma_{n}^{2}\left\|A^{*}\left(A u_{n}-B v_{n}\right)\right\|^{2}+2 \gamma_{n}\left\|A u_{n}-A x\right\|\left\|A u_{n}-B v_{n}\right\|,
\end{aligned}
$$

which can be written as

$$
\begin{aligned}
\left\|u_{n}-t_{n}\right\|^{2} \leq & \left(\left\|x_{n}-x\right\|+\left\|x_{n+1}-x\right\|\right)\left\|x_{n}-x_{n+1}\right\|-r_{n}\left(2 \sigma-r_{n}\right)\left\|U x_{n}-U x\right\|^{2} \\
& +\gamma_{n}^{2}\left\|A^{*}\left(A u_{n}-B v_{n}\right)\right\|^{2}+2 \gamma_{n}\left\|A u_{n}-A x\right\|\left\|A u_{n}-B v_{n}\right\| .
\end{aligned}
$$

Now, using (3.20), (3.22), (3.17) and (3.32) in above inequality, we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|u_{n}-t_{n}\right\|=0 \tag{3.38}
\end{equation*}
$$

Now,

$$
\left\|u_{n}-x_{n}\right\| \leq\left\|u_{n}-t_{n}\right\|+\left\|t_{n}-x_{n}\right\|
$$

Using (3.33) and (3.38), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|u_{n}-x_{n}\right\|=0 \tag{3.39}
\end{equation*}
$$

Again, since

$$
\left\|z_{n}-x_{n}\right\| \leq\left\|z_{n}-u_{n}\right\|+\left\|u_{n}-x_{n}\right\|
$$

Using (3.24) and (3.39), we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|z_{n}-x_{n}\right\|=0 \tag{3.40}
\end{equation*}
$$

Similarly, we can also obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|v_{n}-t_{n}^{\prime}\right\|=0 \tag{3.41}
\end{equation*}
$$

and

$$
\begin{align*}
& \lim _{n \rightarrow \infty}\left\|v_{n}-y_{n}\right\|=0 \tag{3.42}\\
& \lim _{n \rightarrow \infty}\left\|w_{n}-v_{n}\right\|=0 \tag{3.43}\\
& \lim _{n \rightarrow \infty}\left\|w_{n}-y_{n}\right\|=0 \tag{3.44}
\end{align*}
$$

Since $\left\{x_{n}\right\}$ is bounded, there exists a subsequence $\left\{x_{n_{i}}\right\}$ of $\left\{x_{n}\right\}$ such that $x_{n_{i}} \rightharpoonup \bar{x}$ and hence it follows from (3.40) that there is a subsequence $\left\{z_{n_{i}}\right\}$ of $\left\{z_{n}\right\}$ such that $z_{n_{i}} \rightharpoonup \bar{x}$. Further, demiclosedness of $S-I$ at 0 and (3.21) imply that $\bar{x} \in \operatorname{Fix}(S)$. Also, it follows from boundedness of $\left\{y_{n}\right\}$ and (3.44) that there exist subsequences $\left\{y_{n_{i}}\right\}$ of $\left\{y_{n}\right\}$ and $\left\{w_{n_{i}}\right\}$ of $\left\{w_{n}\right\}$ such that $y_{n_{i}} \rightharpoonup \bar{y}$ and $w_{n_{i}} \rightharpoonup \bar{y}$ and hence demiclosedness of $T-I$ at 0 and (3.21) yield that $\bar{y} \in \operatorname{Fix}(T)$. Since every Hilbert space satisfies Opial's condition which ensures that the weakly subsequential limit of $\left\{\left(x_{n}, y_{n}\right)\right\}$ is unique. Since $\left\{x_{n}\right\}$ and $\left\{u_{n}\right\}$ both have the same asymptotic behaviour, then there is a subsequence $\left\{u_{n_{i}}\right\}$ of $\left\{u_{n}\right\}$ such that $u_{n_{i}} \rightharpoonup \bar{x}$.

Now, we show that $\bar{x} \in \operatorname{Sol}(\operatorname{GGVLIP}(1.6))$ and $\bar{y} \in \operatorname{Sol}(\operatorname{GGVLIP}(1.7))$.
Since $u_{n}=T_{s_{n}}^{F} t_{n}$, where $t_{n}=J_{r_{n}}^{M}\left(x_{n}-r_{n} U x_{n}\right)$, we have

$$
F\left(u, u_{n} ; u_{n}\right)+\phi\left(u, u_{n}\right)-\phi\left(u_{n}, u_{n}\right)+\frac{1}{s_{n}}\left\langle u-u_{n}, u_{n}-t_{n}\right\rangle \geq 0, \forall u \in C
$$

It follows from generalized relaxed α-monotonicity of F, above inequality implies that

$$
\begin{equation*}
\phi\left(u, u_{n_{i}}\right)-\phi\left(u_{n_{i}}, u_{n_{i}}\right)+\left\langle u-u_{n_{i}}, \frac{u_{n_{i}}-t_{n_{i}}}{s_{n_{i}}}\right\rangle \geq-F\left(u, u_{n_{i}} ; u\right)+\alpha\left(u_{n_{i}}, u\right), \forall u \in C \tag{3.45}
\end{equation*}
$$

Since $\liminf _{n \rightarrow \infty} s_{n}>0$, then there exists a real number $s>0$ such that $s_{n} \geq s, \forall n$ and hence we have

$$
\frac{\left\|u_{n_{i}}-t_{n_{i}}\right\|}{s_{n_{i}}} \leq \frac{\left\|u_{n_{i}}-t_{n_{i}}\right\|}{s}
$$

It follows from (3.38) that $\lim _{i \rightarrow \infty}\left\|u_{n_{i}}-t_{n_{i}}\right\|=0$ and hence

$$
\lim _{i \rightarrow \infty} \frac{\left\|u_{n_{i}}-t_{n_{i}}\right\|}{s_{n_{i}}} \leq \frac{1}{s} \lim _{i \rightarrow \infty}\left\|u_{n_{i}}-t_{n_{i}}\right\|=0
$$

Since α is lower semicontinuous in the first argument, ϕ is weakly continuous and $F(u, \cdot ; u)$ is weakly continuous then on taking $n \rightarrow \infty$ in (3.45), we get

$$
\begin{equation*}
\alpha(\bar{x}, u)-F(u, \bar{x} ; u)-\phi(u, \bar{x})+\phi(\bar{x}, \bar{x}) \leq 0, \forall u \in C . \tag{3.46}
\end{equation*}
$$

For t with $0<t \leq 1$ and $u \in C$, set $u_{t}=t u+(1-t) \bar{x}$. Since C is convex set, $u_{t} \in C$, then from (3.46), we have

$$
\begin{equation*}
\alpha\left(\bar{x}, u_{t}\right)-F\left(u_{t}, \bar{x} ; u_{t}\right)-\phi\left(u_{t}, \bar{x}\right)+\phi(\bar{x}, \bar{x}) \leq 0 \tag{3.47}
\end{equation*}
$$

which implies that

$$
\begin{align*}
\alpha\left(\bar{x}, u_{t}\right) & \leq F\left(u_{t}, \bar{x} ; u_{t}\right)-\phi(\bar{x}, \bar{x})+\phi\left(u_{t}, \bar{x}\right) \\
& \leq t F\left(u, \bar{x} ; u_{t}\right)+(1-t) F\left(\bar{x}, \bar{x} ; u_{t}\right)-\phi(\bar{x}, \bar{x})+t \phi(u, \bar{x})+(1-t) \phi(\bar{x}, \bar{x}) \\
& \leq t\left[F\left(u, \bar{x} ; u_{t}\right)+\phi(u, \bar{x})-\phi(\bar{x}, \bar{x})\right] . \tag{3.48}
\end{align*}
$$

Since $F(u, \bar{x} ; \cdot)$ is hemicontinuous and letting $t \rightarrow 0$, we have

$$
\begin{equation*}
\lim _{t \rightarrow 0}\left\{F\left(u, \bar{x} ; u_{t}\right)+\phi(u, \bar{x})-\phi(\bar{x}, \bar{x})\right\} \geq \lim _{t \rightarrow 0} \frac{\alpha\left(\bar{x}, u_{t}\right)}{t} \tag{3.49}
\end{equation*}
$$

which implies

$$
\begin{equation*}
F(u, \bar{x} ; \bar{x})+\phi(u, \bar{x})-\phi(\bar{x}, \bar{x}) \geq 0 \tag{3.50}
\end{equation*}
$$

This implies that $\bar{x} \in \operatorname{Sol}(\operatorname{GGVLIP}(1.6))$. Following a similar argument as the proof of above, we have $\bar{y} \in \operatorname{Sol}(\operatorname{GGVLIPP}(1.7))$.

Next, we show that $(\bar{x}, \bar{y}) \in \operatorname{Sol}\left(\mathrm{S}_{\mathrm{p}} \operatorname{EMVIP}(1.9)-(1.10)\right)$. Since

$$
t_{n_{i}}=J_{r_{n_{i}}}^{M}\left(x_{n_{i}}-r_{n_{i}} U x_{n_{i}}\right)
$$

can be written as

$$
\frac{x_{n_{i}}-t_{n_{i}}}{r_{n_{i}}}-U x_{n_{i}} \in M t_{n_{i}}
$$

Let $\mu \in M v$. Since M is monotone, we have

$$
\left\langle\frac{x_{n_{i}}-t_{n_{i}}}{r_{n_{i}}}-U x_{n_{i}}-\mu, t_{n_{i}}-v\right\rangle \geq 0
$$

It follows from (3.33) and condition (i) that $\langle-U \bar{x}-\mu, \bar{x}-v\rangle \geq 0$. This implies that $-U \bar{x} \in M \bar{x}$, that is, $\bar{x} \in(U+M)^{-1}(0)$. Similarly, $\bar{y} \in(V+N)^{-1}(0)$.
Since $\|\cdot\|^{2}$ is weakly lower semicontinuous, we have

$$
\begin{equation*}
\|A \bar{x}-B \bar{y}\|^{2} \leq \lim _{n \rightarrow \infty} \inf \left\|A u_{n}-B v_{n}\right\|^{2}=0 \tag{3.51}
\end{equation*}
$$

i.e., $A \bar{x}=B \bar{y}$. Thus, $(\bar{x}, \bar{y}) \in \Gamma$ and hence $w_{w}\left(x_{n_{i}}, y_{n_{i}}\right) \subset \Gamma$. Now, it follows from Lemma 2.5 that the sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ generated by iterative algorithm (3.1) converges weakly to $(\bar{x}, \bar{y}) \in \Gamma$.

Further, since S and T are semi-compact, $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are bounded, and $S-I$ and $T-I$ are demiclosed at 0 then there exist subsequences $\left\{x_{n_{i}}\right\}$ of $\left\{x_{n}\right\}$ and $\left\{y_{n_{i}}\right\}$ of $\left\{y_{n}\right\}$ such that $\left\{x_{n_{i}}\right\}$ and $\left\{y_{n_{i}}\right\}$ converge strongly to some $\bar{u} \in H_{1}$ and $\bar{v} \in H_{2}$, respectively. Since $\left\{x_{n_{i}}\right\}$ and $\left\{y_{n_{i}}\right\}$ converge weakly to \bar{x} and \bar{y}, respectively then we have $\bar{u}=\bar{x}, \bar{v}=\bar{y}, \bar{x} \in \operatorname{Fix}(S)$ and $\bar{y} \in \operatorname{Fix}(T)$. Finally, using the same argument as the proof of above, we have $\bar{x} \in \operatorname{Sol}(\operatorname{GGVLIP}(1.6))$ and $\bar{y} \in \operatorname{Sol}(\operatorname{GGVLIP}(1.7))$,
$\bar{x} \in \operatorname{Sol}(\operatorname{MVIP}(1.9))$ and $\bar{y} \in \operatorname{Sol}(\operatorname{MVIP}(1.10))$. Since $A u_{n_{i}}-B v_{n_{i}} \rightarrow A \bar{x}-B \bar{y}$, we have

$$
\begin{equation*}
\|A \bar{x}-B \bar{y}\|^{2} \leq \lim _{i \rightarrow \infty} \inf \left\|A u_{n_{i}}-B v_{n_{i}}\right\|^{2}=0 \tag{3.52}
\end{equation*}
$$

which implies $A \bar{x}=B \bar{y}$ and hence $(\bar{x}, \bar{y}) \in \Gamma$.
On the other hand, since $\rho_{n}(x, y)=\left\|x_{n}-x\right\|^{2}+\left\|y_{n}-y\right\|^{2}$, for any $(x, y) \in \Gamma$ then $\lim _{i \rightarrow \infty} \rho_{n_{i}}(\bar{x}, \bar{y})=0$. Further, since $\lim _{n \rightarrow \infty} \rho_{n}(\bar{x}, \bar{y})$ exists then $\lim _{n \rightarrow \infty} \rho_{n}(\bar{x}, \bar{y})=0$ and hence $\lim _{n \rightarrow \infty}\left\|x_{n}-\bar{x}\right\|=0$ and $\lim _{n \rightarrow \infty}\left\|y_{n}-\bar{y}\right\|=0$. Thus $\left\{\left(x_{n}, y_{n}\right)\right\}$ converges strongly to $(\bar{x}, \bar{y}) \in \Gamma$. This completes the proof.

4. Consequences

We now give some consequences of Theorem 3.1. First, we have the following convergence result to approximate a common solution of $S_{p} \operatorname{ENPP}(1.11)-(1.12)$, $\mathrm{S}_{\mathrm{p}} \operatorname{EGGVLIP}(1.6)-(1.7)$ and $\mathrm{S}_{\mathrm{p}} \operatorname{EFPP}(1.3)$.

Corollary 4.1. Let H_{1}, H_{2} and H_{3} be real Hilbert spaces, $C \subseteq H_{1}$ and $Q \subseteq H_{2}$ be nonempty closed and convex sets. Assume that $F: C \times C \times C \rightarrow \mathbb{R}, G: Q \times Q \times Q \rightarrow \mathbb{R}$ are trifunctions and $\phi: C \times C \rightarrow \mathbb{R}, \psi: Q \times Q \rightarrow \mathbb{R}$ are bifunctions satisfying Assumption 2.1 with $F(x, \cdot ; x)$ and $G(y, \cdot ; y)$ are weakly continuous, and let $A: H_{1} \rightarrow$ $H_{3}, B: H_{2} \rightarrow H_{3}$ be two bounded linear operators. Let $M: H_{1} \rightarrow 2^{H_{1}}, N: H_{2} \rightarrow 2^{H_{2}}$ be a maximal monotone mappings. Let $\left(x_{1}, y_{1}\right) \in C \times Q$ be given and the iteration sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ be generated by the scheme:

$$
\left\{\begin{array}{l}
F\left(u, u_{n} ; u_{n}\right)+\phi\left(u, u_{n}\right)-\phi\left(u_{n}, u_{n}\right)+\frac{1}{s_{n}}\left\langle u-u_{n}, u_{n}-J_{r_{n}}^{M} x_{n}\right\rangle \geq 0, \forall u \in C \tag{4.1}\\
G\left(v, v_{n} ; v_{n}\right)+\psi\left(v, v_{n}\right)-\psi\left(v_{n}, v_{n}\right)+\frac{1}{s_{n}}\left\langle v-v_{n}, v_{n}-J_{r_{n}}^{N} y_{n}\right\rangle \geq 0, \forall v \in Q \\
z_{n}=P_{C}\left(u_{n}-\gamma_{n} A^{*}\left(A u_{n}-B v_{n}\right)\right) ; \\
x_{n+1}=\alpha_{n} z_{n}+\left(1-\alpha_{n}\right) S z_{n} ; \\
w_{n}=P_{Q}\left(v_{n}+\gamma_{n} B^{*}\left(A u_{n}-B v_{n}\right)\right) \\
y_{n+1}=\alpha_{n} w_{n}+\left(1-\alpha_{n}\right) T w_{n}
\end{array}\right.
$$

where $S: C \rightarrow C$ and $T: Q \rightarrow Q$ be quasi-nonexpansive mappings and the step size γ_{n} is chosen in such a way that for some $\epsilon>0$,

$$
\begin{equation*}
\gamma_{n} \in\left(\epsilon, \frac{2\left\|A u_{n}-B v_{n}\right\|^{2}}{\left\|A^{*}\left(A u_{n}-B v_{n}\right)\right\|^{2}+\left\|B^{*}\left(A u_{n}-B v_{n}\right)\right\|^{2}}-\epsilon\right), n \in \Lambda \tag{4.2}
\end{equation*}
$$

otherwise $\gamma_{n}=\gamma(\gamma \geq 0)$, where the index set $\Lambda=\left\{n: A u_{n}-B v_{n} \neq 0\right\}, \alpha_{n} \subset(\delta, 1-\delta)$ for some small enough $\delta>0$ and $\left\{r_{n}\right\},\left\{s_{n}\right\} \subset(0, \infty)$. Assume that the control sequences $\left\{r_{n}\right\}$ and $\left\{s_{n}\right\}$ satisfy the following conditions:
(i) $\liminf _{n \rightarrow \infty} r_{n}>0, \liminf _{n \rightarrow \infty} s_{n}>0$;
(ii) $\stackrel{n \rightarrow \infty}{S}-I$ and $T-I \xrightarrow{n \rightarrow \infty}$ are demiclosed at 0 .

If $\Gamma:=\operatorname{Sol}\left(\mathrm{S}_{\mathrm{p}} \operatorname{ENPP}(1.11)-(1.12)\right) \cap \operatorname{Sol}\left(\mathrm{S}_{\mathrm{p}} \operatorname{EGGVLIP}(1.6)-(1.7)\right) \cap \Theta \neq \emptyset$, then the sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ converges weakly to a point (\bar{x}, \bar{y}) of Γ. In addition if S and T are semi-compact, then $\left\{\left(x_{n}, y_{n}\right)\right\}$ converges strongly to the point (\bar{x}, \bar{y}) of Γ.

Proof. Take $U=0$ and $V=0$ in Theorem 3.1.
Further, if we take $M=\partial I_{C}$ and $N=\partial I_{Q}$ then $\mathrm{S}_{\mathrm{p}} \operatorname{EMVIP}(1.9)-(1.10)$ is reduced to the following problem: f ind $\bar{x} \in C$ and $\bar{y} \in Q$ such that

$$
\begin{array}{r}
\langle U(\bar{x}), x-\bar{x}\rangle \geq 0, \forall x \in C \\
\langle V(\bar{y}), y-\bar{y}\rangle \geq 0, \forall y \in Q \tag{4.4}\\
\text { and } A \bar{x}=B \bar{y}
\end{array}
$$

Problem (4.3)-(4.4) is called the split equality variational inequality problem (in short, S_{p} EVIP). Solution set of $\operatorname{S}_{\mathrm{p}} \operatorname{EVIP}(4.3)-(4.4)$ is denoted by $\operatorname{Sol}\left(\mathrm{S}_{\mathrm{p}} \operatorname{EVIP}(4.3)-(4.4)\right)$. $\mathrm{S}_{\mathrm{p}} \operatorname{EVIP}(4.3)-(4.4)$ generalizes split variational inequality problem (in short, S_{p} VIP) studied in [9].

Finally, we have the following convergence result to approximate a common solution of $\mathrm{S}_{\mathrm{p}} \operatorname{EVIP}(4.3)-(4.4), \mathrm{S}_{\mathrm{p}} \operatorname{EGGVLIP}(1.6)-(1.7)$ and $\mathrm{S}_{\mathrm{p}} \operatorname{EFPP}(1.3)$.

Corollary 4.2. Let H_{1}, H_{2} and H_{3} be real Hilbert spaces, $C \subseteq H_{1}$ and $Q \subseteq H_{2}$ be nonempty closed and convex sets. Assume that $F: C \times C \times C \rightarrow \mathbb{R}, G: Q \times Q \times Q \rightarrow \mathbb{R}$ are trifunctions and $\phi: C \times C \rightarrow \mathbb{R}, \psi: Q \times Q \rightarrow \mathbb{R}$ are bifunctions satisfying Assumption 2.1 with $F(x, \cdot ; x)$ and $G(y, \cdot ; y)$ are weakly continuous, and let $A: H_{1} \rightarrow$ $H_{3}, B: H_{2} \rightarrow H_{3}$ be two bounded linear operators. Let $U: C \rightarrow H_{1}$ be an σ-inverse strongly monotone mapping and $V: Q \rightarrow H_{2}$ be an β-inverse strongly monotone mapping. Let $\left(x_{1}, y_{1}\right) \in C \times Q$ be given and the iteration sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ be generated by the scheme:

$$
\left\{\begin{align*}
& F\left(u, u_{n} ; u_{n}\right)+\phi\left(u, u_{n}\right)-\phi\left(u_{n}, u_{n}\right) \tag{4.5}\\
&+\frac{1}{s_{n}}\left\langle u-u_{n}, u_{n}-P_{C}\left(x_{n}-r_{n} U x_{n}\right)\right\rangle \geq 0, \forall u \in C \\
& G\left(v, v_{n} ; v_{n}\right)+\psi\left(v, v_{n}\right)-\psi\left(v_{n}, v_{n}\right) \\
&+\frac{1}{s_{n}}\left\langle v-v_{n}, v_{n}-P_{Q}\left(y_{n}-r_{n} V y_{n}\right)\right\rangle \geq 0, \forall v \in Q \\
& z_{n}=P_{C}\left(u_{n}-\gamma_{n} A^{*}\left(A u_{n}-B v_{n}\right)\right) \\
& x_{n+1}=\alpha_{n} z_{n}+\left(1-\alpha_{n}\right) S z_{n} \\
& w_{n}=P_{Q}\left(v_{n}+\gamma_{n} B^{*}\left(A u_{n}-B v_{n}\right)\right) \\
& y_{n+1}=\alpha_{n} w_{n}+\left(1-\alpha_{n}\right) T w_{n}
\end{align*}\right.
$$

where $S: C \rightarrow C$ and $T: Q \rightarrow Q$ be quasi-nonexpansive mappings and the step size γ_{n} is chosen in such a way that for some $\epsilon>0$,

$$
\begin{equation*}
\gamma_{n} \in\left(\epsilon, \frac{2\left\|A u_{n}-B v_{n}\right\|^{2}}{\left\|A^{*}\left(A u_{n}-B v_{n}\right)\right\|^{2}+\left\|B^{*}\left(A u_{n}-B v_{n}\right)\right\|^{2}}-\epsilon\right), n \in \Lambda \tag{4.6}
\end{equation*}
$$

otherwise $\gamma_{n}=\gamma(\gamma \geq 0)$, where the index set $\Lambda=\left\{n: A u_{n}-B v_{n} \neq 0\right\}, \alpha_{n} \subset(\delta, 1-\delta)$ for some small enough $\delta>0$ and $\left\{r_{n}\right\},\left\{s_{n}\right\} \subset(0, \infty)$. Assume that the control sequences $\left\{r_{n}\right\}$ and $\left\{s_{n}\right\}$ satisfy the following conditions:
(i) $0<r \leq r_{n} \leq r^{\prime}<2 \min \{\sigma, \beta\}$;
(ii) $\liminf _{n \rightarrow \infty} s_{n}>0$;
(iii) $S-I$ and $T-I$ are demiclosed at 0 .

If $\Gamma:=\operatorname{Sol}\left(\mathrm{S}_{\mathrm{p}} \operatorname{EVIP}(4.3)-(4.4)\right) \bigcap \operatorname{Sol}\left(\mathrm{S}_{\mathrm{p}} \operatorname{EGGVLIP}(1.6)-(1.7)\right) \bigcap \Theta \neq \emptyset$, then the sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ converges weakly to a point (\bar{x}, \bar{y}) of Γ. In addition if S and T are semi-compact, then $\left\{\left(x_{n}, y_{n}\right)\right\}$ converges strongly to the point (\bar{x}, \bar{y}) of Γ.

Proof. Take $M=\partial I_{C}$ and $N=\partial I_{Q}$ in Theorem 3.1.
Remark 4.1. Further effort is needed to extend the iterative method presented in this paper to the viscosity iterative method to approximate a common solution to $S_{p} \operatorname{EMVIP}(1.9)-(1.10), S_{p} \operatorname{EGGVLIP}(1.6)-(1.7)$ and $S_{p} \operatorname{EFPP}(1.3)$ for quasinonexpansive mappings by selecting the step size in such a way that the implementation of the algorithm does not require the calculation or estimation of the operator norms.

5. Numerical example

Now, we give a numerical example which justify Theorem 3.1.
Example 5.1. Let $H_{1}=H_{2}=H_{3}=\mathbb{R}$, the set of all real numbers, with the inner product defined by $\langle x, y\rangle=x y, \forall x, y \in \mathbb{R}$, and induced usual norm $|\cdot|$. Let $C=[0,+\infty)$ and $Q=(-\infty, 0]$; let $F: C \times C \times C \rightarrow \mathbb{R}$ and $G: Q \times Q \times Q \rightarrow \mathbb{R}$ be defined by $F(y, x ; x)=\left(x-\frac{5}{2}\right)(y-x)$, with $\alpha(x, y)=(y-x)^{2}, \forall x, y \in C$ and $G(w, u: u)=(u+10)(w-u)$, with $\alpha(u, w)=(w-u)^{2} \forall u, w \in Q$; let $\phi: C \times C \rightarrow \mathbb{R}$ and $\psi: Q \times Q \rightarrow \mathbb{R}$ be defined by $\phi(x, y)=x y, \forall x, y \in C$ and $\psi(u, w)=u w$, $\forall u, w \in Q$; let the mappings $U: C \rightarrow H_{1}$ and $V: Q \rightarrow H_{2}$ be defined by $U(x)=2 x-5$, $\forall x \in C$ and $V(y)=y+25, \forall y \in Q$, respectively; let $M, N: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $M x=2 x, \forall x \in \mathbb{R}$ and $N y=4 y, \forall y \in \mathbb{R}$; let $A: H_{1} \rightarrow H_{3}, B: H_{2} \rightarrow H_{3}$ be defined by $A(x)=4 x, \forall x \in C, B(y)=-y, \forall y \in Q$ and let the mappings $S: C \rightarrow C$ and $T: Q \rightarrow Q$ be defined by $S x=\frac{x+5}{5}, \forall x \in C, T y=\frac{y^{2}+5}{y-1}, \forall y \in Q$, respectively. If we set $\alpha_{n}=\frac{1}{2}, \forall n$, then there are unique sequences $\left\{x_{n}\right\},\left\{y_{n}\right\}$ generated by the iterative schemes:

$$
\left\{\begin{array}{l}
t_{n}=J_{r_{n}}^{M}\left(x_{n}-r_{n} U x_{n}\right) ; u_{n}=\left(\frac{5}{2}+\frac{t_{n}}{s_{n}}\right) \frac{s_{n}}{2 s_{n}+1} \tag{5.1}\\
t_{n}^{\prime}=J_{r_{n}}^{N}\left(y_{n}-r_{n} V y_{n}\right) ; v_{n}=\left(\frac{t_{n}^{\prime}}{s_{n}}-10\right) \frac{s_{n}}{2 s_{n}+1} \\
z_{n}=\left(1-16 \gamma_{n}\right) u_{n}-4 \gamma_{n} v_{n} ; w_{n}=-4 \gamma_{n} u_{n}+\left(1-\gamma_{n}\right) v_{n} \\
x_{n+1}=\frac{1}{2}+\frac{3}{5} z_{n} ; y_{n+1}=w_{n}+\frac{5+w_{n}}{2\left(w_{n}-1\right)}
\end{array}\right.
$$

Then the sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ converges to a point $(\bar{x}, \bar{y}) \in \Gamma$.
Proof. It is easy to prove that the trifunctions F, G and bifunctions ϕ, ψ satisfy Assumption 2.1 and G is upper semicontinuous. A and B are bounded linear operators
on \mathbb{R} with adjoint operators A^{*}, B^{*} and $\|A\|=\left\|A^{*}\right\|=4,\|B\|=\left\|B^{*}\right\|=1$ and hence $\gamma_{n} \in\left(\epsilon, \frac{2}{17}-\epsilon\right)$. Therefore, for $\epsilon=\frac{1}{100}$, we can choose $\gamma_{n}=\frac{1}{25}$. Further, we observe that U, V are respectively, $\frac{1}{2}$ - and 1-inverse strongly monotone mappings. Since $\left\{r_{n}\right\},\left\{s_{n}\right\} \subset(0, \infty)$ such that $0<r \leq r_{n} \leq r^{\prime}<2 \min \{\sigma, \beta\}$, so we set $r_{n}=s_{n}=0.4, \forall n$. Also, we can easily verify that M, N are maximal monotone mappings. Furthermore, we observe that S, T are quasi-nonexpansive mappings with $\operatorname{Fix}(S)=\left\{\begin{array}{c}5 \\ 4\end{array}\right\}, \operatorname{Fix}(T)=\{-5\}$ and $(S-I),(T-I)$ are demiclosed at 0 . Indeed, if $x_{n} \rightarrow \bar{x}$ and $S x_{n}-x_{n} \rightarrow 0$ then by continuity of S, we have $\bar{x}=S \bar{x}$, i.e., $\bar{x} \in \operatorname{Fix}(S)=$ $\left\{\begin{array}{l}5 \\ 4\end{array}\right\}$. Finally, we observe that $\Gamma:=\operatorname{Sol}\left(\mathrm{S}_{\mathrm{p}} \operatorname{EMVIP}(1.9)-(1.10)\right) \cap \operatorname{Sol}\left(\mathrm{S}_{\mathrm{p}} \operatorname{EGGVLIP}\right.$ (1.6) $-(1.7)) \cap \Theta=\left(\frac{5}{4},-5\right) \neq \emptyset$. After simplification, iterative schemes (5.1) are reduced to the following:

$$
\left\{\begin{align*}
x_{n+1} & =\frac{1}{2}+\frac{3}{125}\left(\frac{5}{9} x_{n}-\frac{2}{3.9} y_{n}+\frac{95}{9}+\frac{204}{11.7}\right) \tag{5.2}\\
y_{n+1} & =\frac{4}{25}\left(\frac{-5}{81} x_{n}+\frac{9}{11.7} y_{n}-\frac{306}{11.7}+\frac{95}{81}\right) \\
& +\frac{5+\frac{4}{25}\left(\frac{-5}{81} x_{n}+\frac{9}{11.7} y_{n}-\frac{306}{11.7}+\frac{95}{81}\right)}{2\left(\frac{4}{25}\left(\frac{-5}{81} x_{n}+\frac{9}{11.7} y_{n}-\frac{306}{11.7}+\frac{95}{81}\right)-1\right)}
\end{align*}\right.
$$

Next, using the software Matlab 7.8.0, we have following table and figure which shows that $\left\{\left(x_{n}, y_{n}\right)\right\}$ converges to a point $(\bar{x}, \bar{y})=\left(\frac{5}{4},-5\right)$.

No. of iterations	x_{n} $x_{1}=0$	y_{n} $y_{1}=0$	$A x_{n}-B y_{n}$		No. of iterations	x_{n}	y_{n}	$A x_{n}-B y_{n}$
$\mathbf{1}$	1.171795	-4.430693	0.128243		$\mathbf{1 6}$	1.249989	-4.999912	0.000173
$\mathbf{2}$	1.206873	-4.681621	0.137057		$\mathbf{1 7}$	1.249994	-4.999951	0.000099
$\mathbf{3}$	1.226190	-4.822298	0.109758		$\mathbf{1 8}$	1.249997	-4.999973	0.000056
$\mathbf{4}$	1.236872	-4.909912	0.078108		$\mathbf{1 9}$	1.249998	-4.999985	0.000032
$\mathbf{5}$	1.242724	-4.94775	0.05214		$\mathbf{2 0}$	1.249999	-4.999991	0.000018
$\mathbf{6}$	1.245974	-4.969229	0.033389		$\mathbf{2 1}$	1.249999	-4.999995	0.000010
$\mathbf{7}$	1.247771	-4.982858	0.020807		$\mathbf{2 2}$	1.250000	-4.999997	0.000006
$\mathbf{8}$	1.248765	-4.990451	0.012708		$\mathbf{2 3}$	1.250000	-4.999999	0.000003
$\mathbf{9}$	1.249315	-4.99681	0.007644		$\mathbf{2 4}$	1.250000	-4.999999	0.000002
$\mathbf{1 0}$	1.249620	-4.997037	0.004545		$\mathbf{2 5}$	1.250000	-5.000000	0.000001
$\mathbf{1 1}$	1.249789	-4.998350	0.002676		$\mathbf{2 6}$	1.250000	-5.000000	0.000001
$\mathbf{1 2}$	1.249883	-4.999081	0.001564		$\mathbf{2 7}$	1.250000	-5.000000	0.000000
$\mathbf{1 3}$	1.249935	-4.999488	0.000908		$\mathbf{2 8}$	1.250000	-5.000000	0.000000
$\mathbf{1 4}$	1.249964	-4.999715	0.000525		$\mathbf{2 9}$	1.250000	-5.000000	0.000000
$\mathbf{1 5}$	1.249980	-4.999841	0.000302	$\mathbf{3 0}$	1.250000	-5.000000	0.000000	

This completes the proof.
Acknowledgments. The authors are extremely grateful to three anonymous referees for their valuable comments and suggestions which improved the manuscript.

References

[1] A. Aleyner, S. Reich, Block iterative algorithms for solving convex feasibility problems in Hilbert and in Banach, J. Math. Anal. Appl., 343(2008), 427-435.
[2] H. Attouch, J. Bolte, P. Redont, A. Soubeyran, Alternating proximal algorithms for weakly coupled minimization problems, Applications to dynamical games and PDEs, J. Convex Anal., 15(2008), 485-506.
[3] H.H. Bauschke, P.L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Springer, New York, 2011.
[4] C. Byrne, Iterative oblique projection onto convex sets and the split feasibility problem, Inverse Probl., 18(2002), 441-453.
[5] C. Byrne, A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Probl., 20(2004), 103-120.
[6] C. Byrne, Y. Censor, A. Gibali, S. Reich, Weak and strong convergence of algorithms for the split common null point problem, J. Nonlinear Convex Anal., 13(2012), 759-775.
[7] Y. Censor, T. Elfving, A multiprojection algorithm using Bregman projections in a product space, Numer. Algorithms, 8(1994), 221-239.
[8] Y. Censor, T. Bortfeld, B. Martin, A. Trofimov, A unified approach for inversion problems in intensity modulated radiation therapy, Physics in Medicine and Biology, 51(2006), 2353-2365.
[9] Y. Censor, A. Gibali, S. Reich, Algorithms for the split variational inequality problem, Numer. Algorithms, 59(2)(2012), 301-323.
[10] P.L. Combettes, Hilbertian convex feasibility problem: convergence of projection methods, Appl. Math. Optim., 35(1997), 311-330.
[11] Q.L. Dong, S. He, J. Zhao, Solving the split equality problem without prior knowledge of operator norms, Optimization, 64(9)(2015), 1887-1906.
[12] P. Hartman, G. Stampacchia, On some non-linear elliptic differential-functional equation, Acta Mathenatica, 115(1966), 271-310.
[13] K.R. Kazmi, S.H. Rizvi, Iterative approximation of a common solution of a split equilibrium problem, a variational inequality problem and a fixed point problem, J. Egyptian Math. Soc., 21(2013), 44-51.
[14] K.R. Kazmi, S.H. Rizvi, An iterative method for split variational inclusion problem and fixed point problem for a nonexpansive mapping, Optim. Lett., 8(2014), 1113-1124.
[15] K.R. Kazmi, R. Ali, Hybrid projection method for a system of unrelated generalized mixed variational-like inequality problems, to appear in Georgian Math. J., https://doi.org/10.1515/gmj-2017-0027.
[16] Z. Ma, L. Wang, S.-S. Chang, W. Duan, Convergence theorems for split equality mixed equilibrium problems with applications, Fixed Point Theory Appl., 2015, 2015:31, https://doi.org/10.1186/s13663-015-0281-x.
[17] G. Marino, H.K. Xu, Weak and strong convergence theorems for strict pseudocontractions in Hilbert space, J. Math. Anal. Appl., 329(2007), 336-346.
[18] A. Moudafi, A note on the split common fixed point problem for quasi-nonexpansive operators, Nonlinear Anal., 74(2008), 4083-4087.
[19] A. Moudafi, Split monotone variational inclusions, J. Optim. Theory Appl., 150(2011), 275-283.
[20] A. Moudafi, A relaxed alternating CQ-algorithm for convex feasibility problems, Nonlinear Anal., 79 (2013), 117-121.
[21] A. Moudafi, E. Al-Shemas, Simultaneous iterative methods for split equality problems, Trans. Math. Program. Appl., 1(2)(2013), 1-11.
[22] A. Moudafi, Alternating CQ-algorithm for convex feasibility and split fixed point problems, J. Nonlinear Convex Anal., 15(2014), 809-818.
[23] M.A. Noor, General nonlinear mixed variational-like inequalities, Optimization, 37(1996), 357367.
[24] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc., 73(1967), 591-597.
[25] J. Parida, M. Sahoo, A. Kumar, A variational-like inequalitiy problem, Bull. Austral. Math. Soc., 39(1989), 225-231.
[26] V. Preda, M. Beldiman, A. Batatoresou, On variational-like inequalities with generalized monotone mappings, In: Generalized Convexity and Related Topics, Lecture Notes in Economics and Mathematical Systems, 583(2006), 415-431.
[27] B. Qu, N. Xu, A note on the $C Q$ algorithm for the split feasibility problem, Inverse Probl., 21(2005), 1655-1665.
[28] J.C. Yao, The Generalized quasi-variational inequality problem with applications, J. Math. Anal. Appl., 158(1991), 139-160.
[29] J. Zhao, Solving split equality fixed point problem of quasi-nonexpansive mappings without prior knowledge of operator norms, Optimization, 64(2015), 2619-2630.
[30] J. Zhao, S. Wang, Mixed iterative algorithms for the multiple-set split equality common fixedpoint problems without prior knowledge of operator norms, Optimization, 65(2016), 1069-1083.

Received: June 15, 2016; Accepted: January 20, 2017.

