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Abstract. The purpose of this paper is to show, under suitable conditions, an iterative procedure

which if converges, the limit point is a coincidence point of two given itself mappings defined in a

subset of a metric space. Also, under additional conditions, the convergence of proposed iterative
procedure holds. Our main tool will be the so called α-dense curves, which allow us to construct such

procedure in a stable way, in the specified sense, providing also a bound for the error approximation

at each iteration. To justify our result, we will analyze certain integral equations of Volterra type.
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[12] J. Garćıa-Falset, O. Muñiz Pérez, S. Kishin, Coincidence problems under contractive type con-

ditions, Fixed Point Theory, 18(1)(2017), 213–222.

[13] K. Goebel, A coincidence point theorem, Bull. de L’Acad. Polon. Sci., 16(9)(1968), 733–735.
[14] A.M. Harder, T.L. Hicks, Stability results for fixed point iteration procedures, Math. Japon.,

33(5)(1988), 693–706.

[15] A.M. Harder, T.L. Hicks, A stable iteration procedure for nonexpansive mappings, Math. Japon.,
33(5)(1988), 687–692.

[16] N. Hussain et al., Coincidence point theorems for generalized contractions with application to
integral equations, Fixed Point Theory Appl., 2015, 2015:78.

[17] N. Hussain, V. Kumar, R. Chugh, P. Malik, Jungck-type implicit iterative algorithms with

numerical examples, Filomat, 31(8)(2017), 2303–2320.
[18] G. Jungck, Commuting mappings and fixed points, Amer. Math. Moth., 83(4)(1974), 261–263.

[19] G. Jungck, Common fixed points for commuting and compatible maps on compacta, Proc. Amer.

Math. Soc., 103(3)(1988), 977–983.
[20] A.R. Khan, V. Kumar, N. Hussain, Analytical and numerical treatment of Jungck-type iterative

schemes, Appl. Math. Comput., 231(15)(2014), 521–535.

[21] R. Machuca, A coincidence problem, Amer. Math. Moth., 74(1967), 469.
[22] R.H. Martin, Nonlinear Operators and Differential Equations in Banach Spaces, John Wiley

and Sons, 1976.

[23] G. Mora, Optimization by space-densifying curves as a natural generalization of the Alienor
method, Kybernetes, 29(5-6)(2000), 746–754.

[24] G. Mora, Y. Cherruault, Characterization and generation of α-dense curves, Comput. Math.
Appl., 33(9)(1997), 83–91.

[25] G. Mora, Y. Cherruault, The theoretic calculation time associated to α-dense curves, Kyber-

netes, 27(8)(1998), 919–939.
[26] G. Mora, Y. Cherruault, An approximation method for the optimization of continuous functions

of n variables by densifying their domains, Kybernetes, 28(2)(1999), 164–180.

[27] G. Mora, D.A. Redtwitz, Densifiable metric spaces, Rev. Real Acad. Cienc. Exactas F́ıs. Nat.
Ser. A Math., 105(1)(2011), 71–83.

[28] A.M. Ostrowski, The round-off stability of iterations, Z. Angew. Math. Mech., 47(2)(1967),

77–81.
[29] J.R. Roshan, V. Parvaneh, I. Altun, Some coincidence point results in ordered b-metric spaces

and applications in a system of integral equations, Appl. Math. Comput., 226(1)(2014), 725–

737.
[30] H. Sagan, Space-filling Curves, Springer-Verlag, New York, 1994.

[31] S.L. Singh, C. Bhatnagar, S.N. Mishra, Stability of Jungck-type iterative procedures, Int. J.
Math. Math. Sci., 19(2005), 3035–3043.

[32] S.L. Singh, B. Prasad, Some coincidence theorems and stability of iterative procedures, Comput.

Math. Appl., 55(11)(2008), 2512–2520.

Received: May 15, 2017; Accepted: September 25, 2017.



APPROXIMATING COINCIDENCE POINTS BY α-DENSE CURVES 187


