
Fixed Point Theory, 20(2019), No. 1, 185-194

DOI: 10.24193/fpt-ro.2019.1.11

http://www.math.ubbcluj.ro/∼nodeacj/sfptcj.html

APPROXIMATING COINCIDENCE POINTS

BY α-DENSE CURVES

G. GARCÍA

∗Universidad Nacional de Educación a Distancia (UNED)

Departamento de Matemáticas.
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Abstract. The purpose of this paper is to show, under suitable conditions, an iterative procedure

which if converges, the limit point is a coincidence point of two given itself mappings defined in a
subset of a metric space. Also, under additional conditions, the convergence of proposed iterative

procedure holds. Our main tool will be the so called α-dense curves, which allow us to construct such
procedure in a stable way, in the specified sense, providing also a bound for the error approximation

at each iteration. To justify our result, we will analyze certain integral equations of Volterra type.
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1. Introduction

Many nonlinear problems arising from economics, physics and others applied sci-
ences can be expressed as an equation of the form:

S(x) = T (x), (1.1)

where S, T : B ⊂ E −→ E are known mappings and (E, d) a metric space. A point
x ∈ B satisfying (1.1) is said to be a coincidence point of S and T . Of course, for
the particular case that S be the identity mapping, (1.1) is a fixed point problem.
Moreover, under suitable conditions, a solution for (1.1) is equivalent to find a fixed
point of certain mapping. In fact, in [13, 21] to cite a pair of examples, the Banach
contraction principle is used to solve such problem.

Usually, under suitable conditions, a constructive way to approximate a solution
for (1.1) is, fixed an initial x1 ∈ B, by an iterative procedure (often called iteration) of
the form S(xn+1) = f(T, xn). The simplest of such iterations, essentially introduced
by Jungck [18, 19], is the following:

S(xn+1) = T (xn), (1.2)

although, as expected, such iteration has been modified to obtain convergence under
less restrictive conditions; see [1, 2, 3, 4, 7, 9, 10, 12, 17, 20, 32] and references therein.
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Note that, fixed x1 ∈ B in the iterative procedure (1.2), once calculated a1 :=
T (x1), we need to solve S(x2) = a1, or equivalently, to find x2 ∈ S−1(a1). The same
can be said for others more general iterations of the form S(xn+1) = f(T, xn). So, due
to discretization or rounding off (or other reasons), the value of S(x2) might not be
exactly equal to a1. Then, in general, we will obtain a sequence (S(zn))n≥1 which is
approximately equal to (S(xn))n≥1. This means that the sequence (S(zn))n≥1 can be
converging to a point which is not a solution of (1.1). Therefore, in actual numerical
environment, the stability of an iterative procedure is crucial.

The concept of stability for the Picard iteration xn+1 = T (xn) (that is, the iteration
(1.2) when S is the identity mapping), was introduced by Ostrowski [28]. However,
Singh et al. [31] (see also [14, 15, 32]) generalized and studied this concept for others
iterations:

Definition 1.1. Let S, T : B −→ B, with T (B) ⊂ S(B), f(T, xn) an iterative
procedure and x0 ∈ B a coincidence point of S and T , put p := S(x0) = T (x0).
Given any sequence (S(zn))n≥1, define εn := d(S(zn+1), f(T, xn)). Then, the iterative
procedure f(T, xn) is said to be (S, T )-stable, or simply stable if there is no ambiguity,
if limn εn = 0 implies that limn S(zn+1) = p.

Henceforth, by a stable iterative procedure (or stable iteration) we will mean in
the above sense.

On the other hand, in this paper we will introduce a new iteration (see Theorem
3.1) to approximate, if such iteration converges, a solution for (1.1) when the mappings
S and T satisfy certain conditions. Our main tool to define such iterative procedure
will be the so called α-dense curves, which are detailed in Section 2 and provide us
the following (desirable for any iteration) properties:

(a) The constructed iteration is stable.
(b) A bound for the error approximation, in the specified sense, in each iteration.

Also, we show in Corollary 3.1 sufficient conditions to guarantee the convergence
of the proposed iterative procedure in Theorem 3.1. As the mentioned procedure is
based on α-curves, a compactness condition for the mapping T is required.

Although the compactness condition mentioned above, required in our iteration,
may seem very strong, the reality is that integral operators with sufficiently regular
kernels provide the most important examples of compact operators on infinite dimen-
sional Banach spaces; see, for instance, [22, Chapter 5]. Thus, as application of our
results, in Section 4 we will analyze the existence of solutions, by showing a sequence
converging to some of them, of certain Volterra integral equations.

2. α-dense curves and fixed points

In what follows B(E) will be the class of non-empty and bounded subsets of the
metric space (E, d), and I := [0, 1]. The concept of α-dense curve and densifiable set
were introduced in 1997 by Mora and Cherruault [24]:

Definition 2.1. Given α ≥ 0 and B ∈ B(E), a continuous mapping γ : I −→ (E, d)
is said to be an α-dense curve in B if the following conditions hold:

(i) γ(I) ⊂ B.
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(ii) For any x ∈ B, there is y ∈ γ(I) such that d(x, y) ≤ α.

If for every α > 0 there is an α-dense curve in B, then B is said to be densifiable.

Remark 2.1. If B := IN , N > 1, and γ is a 0-dense curve in B, then γ is precisely,
a space-filling curve in B, i.e. γ(I) = B (see [30]). So, we can say that the α-dense
curves are a generalization of the so called space-filling curves.

Example 2.1. The cosines curve. For each integer n ≥ 1, let γn : I −→ RN , N > 1,
given by

γn(t) :=
(
t,

1

2
(1− cos(nπt)), . . . ,

1

2
(1− cos(nN−1πt))

)
for all t ∈ I,

Then γn is a
√
N−1
n -dense curve in IN , see [8, Proposition 9.5.4, p. 144].

Other examples of α-dense curves and its applications can be found in [8, 11, 23,
25, 26] and references therein. As expected, not every bounded set of a Banach space,
even compact and connected, is densifiable:

Example 2.2. In the Euclidean plane consider the set

B :=
{

(x, sin(x−1)) : x ∈ [−1, 0) ∪ (0, 1]
}
∪
{

(0, y) : y ∈ [−1, 1]
}
.

Then, given α > 0 and any continuous mapping γ : I −→ R2, if γ(I) ⊂ B then it is
contained in some arc-connected component of B. So, taking 0 < α < 1, it is clear
that there is no an α-dense curve in B, and therefore B is not densifiable.

So, the class of densifiable sets is strictly between the class of Peano Continua
(i.e. those sets which are the continuous image of I) and the class of connected and
precompacts sets. However, we have the following result (see [27]):

Proposition 2.1. The following properties hold for any B ∈ B(E):

(1) If B is densifiable, then is precompact (i.e., its closure is compact).
(2) If B is precompact and arc-connected, then is densifiable.

3. Main result

The following result holds:

Theorem 3.1. Let B ∈ B(X) and S, T : B −→ B two continuous mappings satisfying
the following conditions:

(1) T (B) ⊂ S(B).
(2) T (B) is densifiable and S−1(T (B)) is precompact.

Fixed x1 ∈ B, define the iterative procedure

S(xn+1) = yn, (3.1)

where yn ∈ γn(I) is such that d(yn, T (xn)) ≤ αn, γn being, for each n ≥ 1, an αn-
dense curve in T (B) with αn → 0. Then, if the sequence (xn)n≥1 converges to some
x0 ∈ B, x0 is a coincidence point of S and T and it is stable. Moreover, we have:

|d(S(xn+1), S(x0))− d(T (xn), T (x0))| ≤ αn for all n ≥ 1. (3.2)



188 G. GARCÍA

Proof. First at all, note that for each n ≥ 1 the αn-dense curves γn of the statement
and the sequence (3.1) are well defined by conditions (1)-(2). By the continuity of S

S(x0) = lim
n
S(xn+1) = lim

n
yn. (3.3)

Noticing that the continuity of T and (3.3) we find

limn d(yn, T (x0)) ≤ limn[d(yn, T (xn)) + d(T (xn), T (x0))]

≤ limn[αn + d(T (xn), T (x0))] = 0,
(3.4)

So, joining (3.3) and (3.4), we conclude that x0 is a coincidence point of T and S.
Now, let (S(zn))n≥1 be any sequence, and assume that εn := d(S(zn+1), yn) → 0.
Putting p := S(x0) = T (x0), we have

d(S(zn+1), p) ≤ d(S(zn+1), yn) + d(yn, T (xn)) + d(T (xn), T (x0))

≤ εn + αn + d(T (xn), T (x0)) −→ 0,

and therefore, the iterative procedure (3.1) is stable.
On the other hand, fixed n ≥ 1, assume that d(S(xn+1), p) ≥ d(T (xn), p). Then, we
have

d(S(xn+1), p) = d(yn, p) ≤ d(yn, T (xn)) + d(T (xn), p) ≤ αn + d(T (xn), p),

and so

0 ≤ d(S(xn+1), p)− d(T (xn), p) ≤ αn. (3.5)

If d(T (xn), p) > d(S(xn+1), p), as

d(T (xn), p) ≤ d(T (xn), yn) + d(yn, p) ≤ αn + d(S(xn), p),

we deduce that

0 < d(T (xn), p)− d(S(xn+1), p) ≤ αn. (3.6)

Then, joining (3.5) and (3.6), the inequality (3.2) holds and the proof is now com-
plete. �

If S−1 is continuous, B is closed and (yn)n≥1 is converging, then the sequence
(xn)n≥1 is also converging. For instance, assume that B is closed and yn := γn(tn) for
certain sequence (tn)n≥1 ⊂ I, and (tn)n≥1 is monotone. Then, (tn)n≥1 is converging,
and therefore yn → y0, for some y0 ∈ B. So, under these conditions, xn+1 = S−1(yn)
converges to S−1(y0).

On the other hand, under some additional conditions, the procedure of Theorem
3.1 is converging, as we show in the next result.

Corollary 3.1. Let B ∈ B(X) and S, T : B −→ B as in Theorem 3.1. Assume that

(1) S(B) is complete and S−1 is continuous.
(2) There is r ∈ (0, 1) such that d(T (x), T (y)) ≤ rd(S(x), S(y)) for each x, y ∈ B.

Then, taking (αn)n≥1 such that
∑
n≥1

αn < ∞, the iterative procedure of Theorem 3.1

converges to a coincidence point of S and T .
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Proof. For each n > 1, we have

d(S(xn+1), S(xn)) ≤ αn + d(T (xn), S(xn)) ≤ αn + αn−1 + d(T (xn), T (xn−1))

≤ αn + αn−1 + rd(S(xn), S(xn−1).
(3.7)

It is a well known fact (see, for instance, [6]) that if (an)n≥1 and (bn)n≥1 are two

sequence of non-negative numbers such that an+1 ≤ bn + an and
∑
n≥1

bn < ∞, then

the sequence (an)n≥1 converges to some number a. Therefore, putting

an := d(S(xn), S(xn−1)) and bn := αn + αn−1,

from (3.7) we conclude from the inequality

0 ≤ a = lim
n
an+1 ≤ r lim

n
an = ra

that limn d(S(xn+1), S(xn)) = 0.
Thus, (S(xn))n≥1 is a Cauchy sequence in the complete metric space S(B) and,

consequently, converges. Of course, as limn yn = limn S(xn+1) we infer that the
sequence yn is also converging and by the continuity of S−1, the sequence xn+1 =
S−1(yn) converges. The results follows then by Theorem 3.1. �

It is important to stress that the contraction condition (2) of the above result, or
even others more general, are often used to prove the existence of a coincidence point
of S and T ; see, for instance,[32] and references therein. However, usually, an explicit
iterative procedure to approximate such coincidence point is not provided.

4. Application to certain Volterra integral equations

Results on existence and approximation of coincidence points play an important
role in the analysis of integral equations, see for instance [3, 5, 16, 29] and references
therein. In this section, we will consider the following Volterra integral equation:

f(x(t)) = g(t) +

∫ t

0

K
(
t, s, x(s))ds for all t ∈ I, (4.1)

where f : R −→ R, g : I −→ R and K : I × I × R −→ R are known and obey certain
conditions that we will describe below. In what follows, E will be the Banach space
of continuous functions x : I −→ R, endowed the usual supremum norm ‖ · ‖∞.

Let the following conditions:

(C1) The functions f, g and K are continuous.
(C2) There are two numbers aK < bK such that K(t, s, x) ∈ [aK , bK ] for each s, t ∈ I

and x ∈ R.
(C3) There is a closed and bounded interval J := [af , bf ] ⊂ R such that

[aK + min{g(t) : t ∈ I}, bK + max{g(t) : t ∈ I}] ⊂ f(J) ⊂ J,

and f : J −→ f(J) is a homeomorphism.
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(C4) There is an integrable function ϕ : I2 −→ [0,+∞) such that for each s, t ∈ I
and x, y ∈ R, |K(t, s, x)−K(t, s, y)| ≤ ϕ(t, s)|f(x)− f(y)|, and

sup
{∫ t

0

ϕ(t, s)ds : t ∈ I
}
∈ (0, 1).

Under the above conditions, we can show that the equation (4.1) has some solution.
More specifically:

Proposition 4.1. Assume that conditions (C1)-(C4) hold and let

C := {x ∈ E : af ≤ x(t) ≤ bf ,∀t ∈ I}.

Then, there is for each integer n ≥ 1 an αn-dense curve in T (C), put γn, with∑
n≥1

αn <∞, such that fixed x1 ∈ C the iteration

f(xn+1) = yn, (4.2)

where yn ∈ γn(I) satisfies∣∣yn(t)− g(t)−
∫ t

0

K(t, s, xn(s))ds
∣∣ ≤ αn for all t ∈ I,

for each n ≥ 1, converges to

f(x0(t)) = g(t) +

∫ t

0

K(t, s, x0(s))ds,

for some x0 ∈ C, and is stable. Moreover, for each n ≥ 1, the following inequality
holds for each t ∈ I:∣∣|f(xn+1(t))− f(x0(t))| −

∣∣∣∣∫ t

0

[K(t, s, xn(s))−K(t, s, x0(s))]ds|
∣∣∣∣ ≤ αn. (4.3)

Proof. Let S, T : E −→ E be the mappings given by:

S(x)(t) := f(x(t)), T (x)(t) := g(t) +

∫ t

0

K(t, s, x(s))ds,

for each x ∈ E, that clearly are well defined and are continuous by condition (C1).
Also, a solution for (4.1) is equivalent to the existence of a coincidence point of S and
T . Therefore, we will apply Corollary 3.1 to show the existence of such point.

By conditions (C2)-(C3) we find that T (C) ⊂ C, S(C) ⊂ C and

T (C) ⊂ {x ∈ E : aK +m1 ≤ x(t) ≤ bK +M1,∀t ∈ I} ⊂ S(C) ⊂ C,

where m1 := min{g(t) : t ∈ I}, M1 := max{g(t) : t ∈ I}. In addition, as S−1 is
continuous in S(C), S−1(T (C)) is precompact.

A direct application of the well known Arzelá-Ascoli theorem, shows that T is a
compact mapping, that is to say, T (B) is precompact for each B ⊂ C non-empty.
Then, as T (C) is arc-connected (by the convexity of C) and precompact, by virtue of
Proposition 2.1 is densifiable.
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On the other hand, given x, y ∈ C, noticing condition (C4), for each t ∈ I we have:

|T (x)(t)− T (y)(t)| ≤
∫ t

0

ϕ(t, s)|f(x(s))− f(y(s))|ds

≤ ‖S(x)− S(y)‖∞
∫ t

0

ϕ(t, s)ds,

and so, by the arbitrariness of t ∈ I, we conclude that the inequality

‖T (x)− T (y)‖∞ ≤ r‖S(x)− S(y)‖∞
with

r := sup
{∫ t

0

ϕ(t, s)ds : t ∈ I
}
∈ (0, 1)

holds for all x, y ∈ C. Therefore, the conditions of Corollary 3.1 are satisfied, and
consequently the iteration (4.2) converges to

f(x0(t)) = g(t) +

∫ t

0

K(t, s, x0(s))ds

for some x0 ∈ C, and is stable. Moreover, the inequality (4.3) follows from the
inequality (3.2) of Theorem 3.1. �

Example 4.1. Consider the following integral equation:

1

2
x2(t) = ln(1 + t) +

1

2

∫ t

0

e−st

2 + ts2
cos2(x2(s))ds, for all t ∈ I. (4.4)

With the notation used so far, we have:

f(x) :=
1

2
x2, g(t) := ln(1 + t), K(s, t, x) :=

1

2

e−st

2 + ts2
cos2(x2),

for each t, s ∈ I and x ∈ R. Condition (C1) is clearly satisfied, and taking

[aK , bK ] := [0, 1/2] and J := [0,
√

2(1 + ln(2))] ' [0, 1.8401]

we have the inclusions

[0, ln(2) + 1/2] ' [0, 1.1931] ⊂ f(J) = [0, 1 + ln(2)] ' [0, 1.6931] ⊂ J,
and therefore, conditions (C2) and (C3) follow. Also, given any a, b ≥ 0, by the Mean
Value Theorem the inequality | cos2(a)− cos2(b)| ≤ |a− b| holds, and so

|K(t, s, x)−K(t, s, y)| ≤ 1

2

e−st

2 + ts2
|x2 − y2| = e−st

2 + ts2
|f(x)− f(y)|.

Then, condition (C4) is satisfied with ϕ(t, s) := e−st/(2 + ts2). So, the conditions of
Proposition 4.1 hold. Furthermore,

C := {x ∈ E : 0 ≤ x(t) ≤
√

2(1 + ln(2)),∀t ∈ I}.
Now, for each n ≥ 1, let γn be an αn-curve in the set{

ln(1 + t) +
1

2

∫ t

0

e−st

2 + ts2
cos2(x2(s))ds : x ∈ C

}
,
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with
∑
n≥1

αn <∞. Fixed x1 ∈ C the iteration (4.2) is given by

1

2
x2
n+1 = yn, (4.5)

with yn ∈ γn(I) such that

|yn(t)− ln(1 + t) +
1

2

∫ t

0

e−st

2 + ts2
cos2(x2

n(s))ds| ≤ αn for all t ∈ I.

Then, by Proposition 4.1, the iteration (4.5) converges to

1

2
x2

0(t) = ln(1 + t)− 1

2

∫ t

0

e−st

2 + ts2
cos2(x2

0(s))ds

for some x0 ∈ C, is stable and the inequality (4.3) of Proposition 4.1 holds.

We end the paper noticing that the iterative procedure given in [16, Theorem 12]
can not be applied in the above example, as the function K(t, s, ·) : R −→ R is not
increasing for all t, s ∈ I.
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[3] D. Ariza-Ruiz, J. Garćıa-Falset, Iterative approximation to a coincidence point of two mappings,
Appl. Math. Comput., 259(15)(2015), 762–776.

[4] A.V. Arutyunov, An iterative method for finding coincidence points of two mappings, Comput.

Math. Math. Phys., 52(11)(2012), 1483–1486.
[5] A. Azam, Coincidence points of mappings and relations with applications, Fixed Point Theory

Appl., 2012, 2012:50.

[6] V. Berinde, Iterative Approximation of Fixed Points. Second Edition, Lecture Notes in Mathe-
matics, 1912, Springer, Berlin, 2007.

[7] V. Berinde, Common fixed points of noncommuting discotinuous weakly contractive mappings

in cone metric spaces, Taiwanese J. Math., 14(5)(2010), 1763–1776.
[8] Y. Cherruault, G. Mora, Optimisation globale. Théorie des courbes α-denses, Económica, Paris,
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