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Abstract. Using a new fixed point theorem for linear operators which act on function spaces, we give

an iterative method for proving the generalized stability in three essential cases and the hyperstability

for polynomial equation ∆n+1
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1. Introduction

Over the last twenty-five years, the stability theory of functional equations has
developed in two main directions. The first direction concerns some refinements and,
on the other hand, generalizations of the original concept of stability (introduced by
Hyers in [10] as an answer to a question posed by S.M. Ulam about the stability of
the group homomorphisms). The second one involves the stability’s proof techniques.

The vast majority of stability theorems require two proof techniques: the direct
method - firstly applied by Hyers in [10] for proving the stability of Cauchy’s functional
equation on Banach spaces -, and the fixed point method - firstly applied by Baker,
who solve a stability problem using a variant of Banach’s fixed point theorem (see
[4]).

Our paper is included in the second direction and analyses the well-known polyno-
mial equation with differences

∆n+1
y f (x) = 0, (1.1)

equation with various applications in many branches of mathematics and applied
sciences.

The first stability result on commutative semigroups for this equation was obtained
by Albert and Baker in [1], through the direct method, as an extension of Hyers’
result from [10]. The generalized stability for equation (1.1) has been proved in
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2014 on commutative n!− divisible groups, via the generalized stability of Frėchet’s
polynomial equation

∆x1
◦ · · · ◦∆xn+1

f (0) = 0, (1.2)

using the direct method, too (see [8] and [9]).
Here we firstly prove a fixed point theorem for linear operators which act on func-

tion spaces. We use this result to prove the generalized stability in three essential cases
and the hyperstability for equation (1.1) on commutative monoids. Also, in each case,
we give consequences using control functions of Aoki-Rassias type. We note that the
proposed iterative fixed point method leads to final concrete and unitary estimates.

A new proof of Fréchet’s functional characterization of real polynomials, but using
equation (1.1) is given in [2]. Applications of this equation to spectral synthesis can be
found in [15]. A perspective on the current state of the functional equations stability
theory is the handbook [14]. Different types of stability for functional equations as
well as the interlinked results are discussed in [5]. Applications of different fixed
point theorems to the theory of stability of functional equations can be found in [6].
A fixed point technique for solving the generalized stability of equation (1.2) for n = 2
is available in [3]. Finally, an overview of stability results regarding the equations (1.1)
and (1.2) - including their equivalence - can be found in [8].

2. Preliminaries

In the following lines A denotes a commutative monoid, n is a positive integer, B
is a Banach space, BA is the linear space of the functions A → B, R is the set of
real numbers, N is the set of natural numbers 0, 1, 2, ... and i, j, k, s denote natural
numbers.

We remember that for all f ∈ BA and all x, y ∈ A

• ∆n
yf (x) =

n∑
i=0

(−1)
n−i

(
n

i

)
f (x+ iy) ;

• ∆n
yf (x+ jy) = ∆n

yf (x) +

n−1∑
i=0

∆n+1
y f (x+ iy) for all j ∈ N\{0};

• ∆n
(j+1)yf (x) =

jn∑
i=0

(j)
n
i ·∆n

yf (x+ iy) for all j ∈ N, where (j)
n
i denotes the

coefficient of αi from
(
1 + α+ · · ·+ αj

)n
- Marchoud’s formula (see [12], p.

368), and from this:

•
jn∑
i=0

(j)
n
i = (1 + j)

n
for all j ∈ N, and

• ∆n
2yf (x)− 2n∆n

yf (x) =

n∑
s=1

(
n

s

) s∑
i=1

∆n+1
y f (x+ (i− 1)y) .

The function p ∈ BA is an n-polynomial (or, by abuse of language, Fréchet poly-
nomial of degree less then or equals n) if and only if ∆n+1

y p (x) = 0 for all x, y ∈ A
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or, equivalent,

p =

n∑
i=0

mi,

where mi ∈ BA is an i-monomial, i.e.

∆i
ymi (x) = i! ·mi (y)

for all x, y ∈ A. We denote Pn (A,B) the linear space of all n-polynomials from BA,
and Mi (A,B) the linear space of all i-monomials from BA, where i ∈ N.

If mn ∈Mn (A,B) then
mn (kx) = knmn (x)

for all x ∈ A and all k ∈ N. Also, if m ∈ Pn (A,B), i ∈ {1, ..., n} and m (kx) = kim (x)
for all x ∈ A and all k ∈ N, then m ∈Mi (A,B) .

For details on (generalized) polynomials and monomials see [8] and the papers
referred there.

We shall use the following elementary facts about the control functions.
Lemma 2.1. ([8]) Let ϕ′ ∈ RA

+ and i ∈ N such that

ϕi (y) :=

∞∑
k=0

2−i(k+1)ϕ′
(
2ky
)
<∞

for all y ∈ A. Then, for all y ∈ A
∞∑
k=0

2−(i+1)(k+1)ϕi

(
2ky
)
≤ 2−iϕi (y) and lim

k→∞
2−ikϕi

(
2ky
)

= 0.

Lemma 2.2. ([9]) Let A be a 2-divisible Abelian monoid, ϕ′ ∈ RA
+ and i ∈ N such

that ϕ̃i (y) :=

∞∑
k=0

2ikϕ′
(
2−k−1y

)
<∞ for all y ∈ A. Then

∞∑
k=0

2(i−1)kϕ̃i

(
2−k−1y

)
≤ 2ϕ̃i

(
2−1y

)
and lim

k→∞
2ikϕ̃i

(
2−ky

)
= 0

for all y ∈ A.

3. Fixed point theorem for J−contractive linear operators

In the following lines we give a fixed point theorem for linear J-contractive opera-
tors in the spirit of [7].

We remember that, if L : BA → BA and J : RA → RA are linear operators, then
L is J-contractive iff

[h ∈ BA, δ ∈ RA and ‖h (y)‖ ≤ δ (y) for all y ∈ A]
⇒ [‖(Lh) (y)‖ ≤ (Jδ) (y) for all y ∈ A].

Theorem 3.1. Let J : RA → RA be a linear operator, L : BA → BA be a linear
J-contractive operator, α ∈ RA

+ and g ∈ BA such that

(i) α (y) :=

∞∑
k=0

(
Jkα

)
(y) <∞ and (Jα) (y) =

∞∑
k=0

(
Jk+1α

)
(y) ,



138 DAN M. DĂIANU

(ii) ‖g (y)− (Lg) (y)‖ ≤ α (y)
for all y ∈ A. Then

m (y) := lim
k→∞

(
Lkg

)
(y) (3.1)

defines the unique fixed point of the operator L for which

‖g (y)−m (y)‖ ≤ α (y) for all y ∈ A. (3.2)

Proof. 1. Let y ∈ A. Since L is J-contractive linear operator, from (ii) we have∥∥(Lkg
)

(y)−
(
Lk+1g

)
(y)
∥∥ ≤ (Jkα

)
(y) for all k ∈ N and y ∈ A.

Using (i) we obtain

∥∥(Lkg
)

(y)−
(
Lk+s+1g

)
(y)
∥∥ ≤ k+s∑

i=k

(
J iα

)
(y) ≤

∞∑
i=k

(
J iα

)
(y) (3.3)

for all k, s ∈ N. Therefore
((
Lkg

)
(y)
)
k≥0

is a Cauchy sequence in the Banach space

B. Let m : A → B be the function defined by (3.1). Letting k = 0 and s → ∞ in
(3.3) we obtain immediately (3.2).

2. Let y ∈ A and s→∞ in (3.3). Then

∥∥(Lkg
)

(y)−m (y)
∥∥ ≤ ∞∑

i=k

(
J iα

)
(y) .

Since L is a J-contractive linear operator and J is linear, using (i) we obtain

∥∥(Lk+1g
)

(y)− (Lm) (y)
∥∥ ≤ ∞∑

i=k

(
J iα

)
(y)→ 0 when k →∞.

Therefore Lm = m, i.e. m is a fixed point of L which verifies (3.2).
3. It remains to show that m is the only fixed point of L which satisfies (3.2).

First, we remark that, from (i) it follows

α = α+ Jα and J iα = J iα+ J i+1α

for all i ∈ N. Therefore α = Jk+1α+

k∑
i=0

J iα for all k ∈ N and

lim
k→∞

(
Jkα

)
(y) = 0 for all y ∈ A. (3.4)

Let m′ be a fixed point of L which verify (3.2). Then ‖m′ (y)−m (y)‖ ≤ 2α (y)
for all y ∈ A. Since m and m′ are fixed points of the J-contractive operator L, from
(3.4) we have

‖m′ (y)−m (y)‖ =
∥∥(Lkm′

)
(y)−

(
Lkm

)
(y)
∥∥ ≤ 2

(
Jkα

)
(y)→ 0

when k →∞. Therefore m′ = m.
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4. The iterative fixed point method

The fundamental problem of generalized stability for an equation is to find control
functions ϕ for which the equation is ϕ-stable (see, for instance, [5] or [8]). In our
case, equation (1.1) is ϕ-stable, where ϕ : A × A → [0,∞) is a function, iff there
exists a function Ψ : A → [0,∞) such that for every function f : A → B for which∥∥∆n+1

y f (x)
∥∥ ≤ ϕ (x, y) for all x, y ∈ A there exists a polynomial p ∈ Pn (A,B) such

that ‖f (y)− p (y)‖ ≤ Ψ (y) for all y ∈ A.
The central idea of our method is to prove that, starting with a function f : A→ B

which verify approximately equation (1.1), the procedure

fn := f , m0 (y) := f (0) , and for i = n, n− 1, ..., 1 :

mi (y) := lim
k→∞

2−ik∆i
2kyfi (0) , fi−1 := fi −

1

i!
mi (4.1)

defines the monomials mi ∈Mi (A,B) such that the n−polynomial p :=

n∑
i=0

1

i!
mi to

approximate the function f .
In the following lines we use the coefficients

c′n+1 = πn+1 = 1, πi = (3i− 2)πi+1, ci = i2i−1πi+1, and c′i = 2i−1πi

for i = n, n−1, ..., 1. Also, if ϕ : A×A→ [0,∞) is a function, we define ϕ′ : A→ [0,∞)
by

ϕ′ (y) := max {ϕ (jy, y) |j ∈ {0, 1, ..., n− 1}} .
Theorem 4.1. Let i0 ∈ {1, ..., n} , ϕ : A×A→ [0,∞), and f : A→ B such that

ϕi0 (y) :=

∞∑
k=0

2−i0(k+1)ϕ′
(
2ky
)
<∞, (4.2)

lim
k→∞

2−i0kϕ
(
2kx, 2ky

)
= 0 (4.3)∥∥∆n+1

y f (x)
∥∥ ≤ ϕ (x, y) (4.4)

for all x, y ∈ A. Then procedure (4.1) defines mi ∈ Mi (A,B) for i = n, n− 1, ..., i0,
and ∥∥∆i0

y fi0−1 (0)
∥∥ ≤ ci0ϕi0 (y) (4.5)

for all y ∈ A. Moreover, if i0 = 1 then p :=

n∑
i=0

1

i!
mi is the unique n−polynomial for

which p (0) = f (0) and

‖f (y)− p (y)‖ ≤ ϕ1 (y)

n∏
i=1

(3i− 2) (4.6)

for all y ∈ A.
Proof. Let ϕn+1 := ϕ′ and, if i ∈ {i0, i0 + 1, ..., n}

ϕi (y) :=

∞∑
k=0

2−i(k+1)ϕ′
(
2ky
)
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for all y ∈ A. We remark that ϕi (y) = 2−iϕ′ (y) + 2−iϕi (2y) , hence

ϕ′ (y) ≤ 2iϕi (y) and ϕi (2y) ≤ 2iϕi (y) (4.7)

for all y ∈ A. Also, if n > 1 and i ≥ i0 + 1, from Lemma 2.1 we have
∞∑
k=0

2−(i−1)(k+1)ϕi

(
2ky
)

=

∞∑
k=0

2−i(k+1)ϕi−1

(
2ky
)
≤ 2−(i−1)ϕi−1 (y) . (4.8)

1. We prove, by reverse induction on i = n, n− 1, ..., i0, the following three asser-
tions: ∥∥∆i+1

y fi (jy)
∥∥ ≤ c′i+1ϕi+1 (y) for j ∈ {0, 1, ..., i− 1} , (4.9)

mi (y) := lim
k→∞

2−ik∆i
2kyfi (0) defines mi ∈M〉 (A,B) , (4.10)∥∥∆i

yfi−1 (0)
∥∥ ≤ ciϕi (y) (4.11)

for all y ∈ A, where fn := f , and fi−1 := fi − 1
i!mi (as in procedure (4.1)).

1.1. Let i = n and y ∈ A. From (4.4) we have∥∥∆n+1
y fn (jy)

∥∥ ≤ ϕ (jy, y) ≤ ϕ′ (y) = c′n+1ϕn+1 (y) (4.12)

for j ∈ {0, 1, ..., n− 1} and (4.9) is proved.
For proving (4.10) let first remark that

∆n
2yfn (0)− 2n∆n

yfn (0) =

n∑
s=1

(
n

s

) s∑
i=1

∆n+1
y fn ((i− 1)y) ;

from (4.12), and because

n∑
s=1

s

(
n

s

)
= n2n−1 we have

∥∥∆n
yfn (0)− 2−n∆n

2yfn (0)
∥∥ ≤ n2−1ϕ′ (y) . (4.13)

Now, we are able to introduce our fixed point method, using Theorem 3.1 for

(Lh) (y) : = 2−nh (2y) , (Jδ) (y) : = 2−nδ (2y) ,

α (y) : = n2−1ϕ′ (y) , and g (y) : = ∆n
yfn (0) .

Of course, J is a linear operator and L is a linear J−contractive operator. From (4.2)
it follows that α is well defined, because

α (y) =

∞∑
k=0

2−nkα
(
2ky
)

= n2−1
∞∑
k=0

2−nkϕ′
(
2ky
)
≤ n2−1ϕi0 (y) ,

and, since

(Jα) (y) = 2−nα (2y) =

∞∑
k=0

2−n(k+1)α
(
2k+1y

)
=

∞∑
k=0

(
Jk+1α

)
(y) ,

condition (i) is verified. Moreover, (4.13) is exactly (ii). Therefore, from Theorem
3.1, it follows that

mn (y) := lim
k→∞

2−nk∆n
2kyfn (0) (4.14)
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defines mn ∈ BA, and ∥∥∆n
yfn (0)−mn (y)

∥∥ ≤ cnϕn (y) (4.15)

for all y ∈ A.
For proving that mn is an n−monomial we show first that

mn (y) = lim
k→∞

2−nk∆n
2kyfn

(
2ksy

)
(4.16)

for all s ∈ N. For s = 0 relation (4.16) is exactly (4.14). Let s > 0. From (4.3) and
(4.4) it follows that

lim
k→∞

2−nk∆n+1
2ky

fn
(
2kjy

)
= 0

for j ∈ N. Therefore, from (4.14) and

∆n
yfn (sy) = ∆n

yfn (0) +

s−1∑
j=0

∆n+1
y fn (jy)

it follows (4.16).
Secondly, we prove that

mn (jy) = jnmn (y) , for j ∈ N (4.17)

Since ∆n
0 = 0 we have mn (0) = 0. Applying (4.16), Marchaud’s formula, and taking

into account the relation

jn∑
i=0

(j)
n
i = (j + 1)

n
we have for j ∈ N :

mn ((j + 1) y) = lim
k→∞

2−nk∆n
2k(j+1)yfn (0)

= lim
k→∞

2−nk
jn∑
i=0

(j)
n
i ∆n

2kyfn
(
i2ky

)
=

jn∑
i=0

(j)
n
i mn (y) = (j + 1)

n
mn (y) ,

and (4.17) is proved.
Taking into account (4.17), for proving that mn ∈ Mn (A,B) it is sufficient to

show that mn is an n−polynomial. Let x, y ∈ A. Then

∆n+1
y mn (x) =

n+1∑
j=0

(−1)
n+1−j

(
n+ 1

j

)
mn (x+ jy)

= lim
k→∞

2−nk
n+1∑
j=0

(−1)
n+1−j

(
n+ 1

j

)
∆n

2k(x+jy)fn (0)

= lim
k→∞

2−nk
n+1∑
j=0

(−1)
n+1−j

(
n+ 1

j

) n∑
s=0

(−1)
n−s

(
n

s

)
fn
(
2ksx+ j2ksy

)
= lim

k→∞
2−nk

n∑
s=0

(−1)
n−s

(
n

s

)
∆n+1

2ksy
fn
(
2ksx

)
;

but, from (4.3) and (4.4) we have

0 ≤ lim
k→∞

2−nk
∥∥∥∆n+1

2ksy
fn
(
2ksx

)∥∥∥ ≤ lim
k→∞

2−nkϕ
(
2ksx, 2ksy

)
= 0,
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hence ∆n+1
y mn (x) = 0 for all x, y ∈ A., i.e. mn ∈Mn (A,B) and (4.10) is proved.

It remains to prove (4.11). Since

fn−1 := fn −
1

n!
mn,

we have ∆n
yfn−1 (0) = ∆n

yfn (0)−mn (y) and (4.15) becomes (4.11).
1.2. Suppose that n > 1 and (4.9), (4.10), and (4.11) are true for i ∈ {i0 + 1, ..., n}.

For proving the three assertions for i− 1, we work similarly as in the first part.
a. First we show that for all y ∈ A∥∥∆i

yfi−1 (jy)
∥∥ ≤ c′iϕi (y) for all j ∈ {0, ..., i− 2} . (4.18)

Since ci ≤ c′i from (4.11) it follows (4.18) for j = 0. Since mi ∈ Mi (A,B) , we have
∆i+1fi−1 = ∆i+1fi, and, for j ≥ 1 and y ∈ A we have

∆i
yfi−1 (jy) = ∆i

yfi−1 (0) +

j−1∑
s=0

∆i+1
y fi (sy) .

Therefore, using (4.11), (4.9), and the inequality

ϕi+1 (y) ≤ ϕi (y) ,

we have for j ≤ i− 2∥∥∆i
yfi−1 (jy)

∥∥ ≤ ciϕi (y) + (i− 1) c′i+1ϕi+1 (y) ≤ 2i−1 (3i− 2)πi+1ϕi (y) ,

and (4.18) is proved.
b. As in the first part for proving that

mi−1 (y) := lim
k→∞

2−(i−1)k∆i−1
2ky

fi−1 (0) defines mi−1 ∈Mi−1 (A,B) (4.19)

we use the formula

∆i−1
2y fi−1 (0)− 2i−1∆i−1

y fi−1 (0) =

i−1∑
s=1

(
i− 1

s

) s∑
j=1

∆i
yfi−1 ((j − 1)y) ,

and (4.18). We obtain immediately∥∥∥∆i−1
y fi−1 (0)− 2−(i−1)∆i−1

2y fi−1 (0)
∥∥∥ ≤ ci−1ϕi (y) (4.20)

for all y ∈ A. Taking in Theorem 3.1

(Lh) (y) : = 2−(i−1)h (2y) , (Jδ) (y) : = 2−(i−1)δ (2y) ,

α (y) : = ci−1ϕi (y) , and g (y) : = ∆i−1
y fi−1 (0) ,

from (4.20) it follows that the limit from (4.19) defines a function mi−1 : A→ B and∥∥∆i−1
y fi−1 (0)−mi−1 (y)

∥∥ ≤ α (y) ;

but

α (y) = ci−1

∞∑
k=0

2−(i−1)(k+1)ϕi

(
2ky
)
,

and from (4.8) it follows that α (y) ≤ 21−ici−1ϕi−1 (y), hence∥∥∆i−1
y fi−1 (0)−mi−1 (y)

∥∥ ≤ ci−1ϕi−1 (y) (4.21)
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for all y ∈ A. Following the technique used in the first part we obtain successively:

mi−1 (jy) := lim
k→∞

2−(i−1)k∆i−1
2ky

fi−1

(
2ksy

)
for all s ∈ N,

mi−1 (jy) = ji−1mi−1 (y) , for all j ∈ N,

∆n+1
y mi−1 (x) = 0 for all x, y ∈ A.

Therefore mi−1 is an (i− 1)−monomial and (4.21) becomes exactly (4.11) for i− 1.
2. For i = i0 from (4.11) we obtain immediately (4.5).
3. Let i0 = 1. Since

∆1
yf0 (0) = f0 (y)− f0 (0) , c1 =

n∏
i=1

(3i− 2) , and f0 = f −
n∑

j=0

1

j!
mj ,

where m0 (y) := f (0) = f0 (0), from (4.5) it follows that p :=

n∑
j=0

1

j!
mj verifies (4.6).

4. Uniqueness. Suppose that

n∑
j=0

m′j is an n− polynomial that verifies (4.6), where

m′j ∈Mj (A,B) for j ∈ {0, ..., n} , m′0 (y) := f (0). Then for all y ∈ A∥∥∥∥∥∥f (y)−
n∑

j=0

m′j (y)

∥∥∥∥∥∥ ≤ c1ϕ1 (y)

and from (4.6) we obtain∥∥∥∥∥∥
n∑

j=1

m′j (y)− 1

j!
mj (y)

∥∥∥∥∥∥ ≤ 2c1ϕ1 (y) . (4.22)

From Lemma 2.1 we have limk→∞ 2−kϕ1

(
2ky
)

= 0, and from (4.21) (replacing y with

2ky) it follows

lim
k→∞

2−nk

∥∥∥∥∥∥
n∑

j=1

2jk
(
m′j (y)− 1

j!
mj (y)

)∥∥∥∥∥∥ = 0.

Therefore m′n = 1
n!mn and (4.21) becomes∥∥∥∥∥∥

n−1∑
j=1

m′j (y)− 1

j!
mj (y)

∥∥∥∥∥∥ ≤ 2c1ϕ1 (y) .

By reverse induction we finally obtain m′i = 1
i!mi for all i ∈ {0, ..., n} .

An alternative procedure to find the unique p ∈ Pn (A,B) which verifies (4.6) is
the following.
Corollary 4.2. Let ϕ and f as in Theorem 4.1 and i0 = 1. Then the unique p ∈

Pn (A,B) which verifies (4.6) and p (0) = f (0) has the form p :=

n∑
i=0

m′i (y), where
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m′i ∈Mi (A,B) can be find with the procedure

f ′0 : = f , m′0 (y) : = f (0) , and for i = 1, 2, ..., n:

f ′i : = f ′i−1 −m′i−1, and m′i (y) : = lim
k→∞

2−ikf ′i
(
2ky
)
. (4.23)

Proof. We prove by induction on i ∈ {0, 1, ..., n} that m′i = 1
i!mi. By hypotesis

m′0 = m0. Suppose that i ∈ {0, 1, ..., n− 1} and m′j = 1
j!mj for j ∈ {0, ..., i} . Then

f ′i+1 = f −
i∑

j=0

m′j

and (4.6) becomes ∥∥∥∥∥∥f ′i+1 (y)−
n∑

j=i+1

1

j!
mj (y)

∥∥∥∥∥∥ ≤ c1ϕ1 (y)

for all y ∈ A. Then, for all y ∈ A and k ∈ N:∥∥∥∥∥∥2−(i+1)kf ′i+1

(
2ky
)
−

n∑
j=i+1

1

j!
2(j−i−1)kmj (y)

∥∥∥∥∥∥ ≤ 2−(i+1)kc1ϕ1

(
2ky
)
.

But, from Lemma 2.1 we have limk→∞ 2−kϕ1

(
2ky
)

= 0. Therefore

lim
k→∞

2−(i+1)kf ′i+1

(
2ky
)

=
1

(i+ 1)!
mi+1 (y)

for all y ∈ A and m′i+1 =
1

(i+ 1)!
mi+1.

For bounded control functions we obtain an extension of the main result from [1].
Corollary 4.3. Let ε > 0 and f : A→ B such that

∥∥∆n+1
y f (x)

∥∥ ≤ ε for all x, y ∈ A.
Then procedure (4.1) (or procedure (4.23)) defines the unique n−polynomial p for

which p (0) = f (0) and ‖f (y)− p (y)‖ ≤ ε
n∏

i=1

(3i− 2) for all y ∈ A.

We conclude this section with a stability result -which generalizes and improves
Corollary 5.5 from [9]- for control functions of Aoki-Rassias type.
Corollary 4.4. Let A be a normed linear space, ε > 0, r1, r2 ∈ (0, 1) and f : A→ B
such that ∥∥∆n+1

y f (x)
∥∥ ≤ ε (‖x‖r1 + ‖y‖r2)

for all x, y ∈ A. Then procedure (4.1) (or procedure (4.23)) defines the unique
n−polynomial p for which

‖f (y)− p (y)‖ ≤ ε
[

(n− 1)
r1

2− 2r1
‖y‖r1 +

1

2− 2r2
‖y‖r2

] n∏
i=1

(3i− 2) (4.24)

for all y ∈ A.
Proof. We apply Theorem 4.1. Since ϕ′ (y) := ε [(n− 1)

r1 ‖y‖r1 + ‖y‖r2 ] and

ϕ1 (y) := ε

[
(n− 1)

r1

2− 2r1
‖y‖r1 +

1

2− 2r1
‖y‖r2

]
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we immediately obtain (4.24).

5. Hyperstability for Fréchet polynomials

We remember that, according to [5], equation (1.1) is ϕ-hyperstable (where ϕ ∈
RA×A

+ ) if from f ∈ BA and
∥∥∆n+1

y f (x)
∥∥ ≤ ϕ (x, y) for all x, y ∈ A it follows that f

is an n-polynomial.
Theorem 5.1. Let A be an Abelian group, ϕ ∈ RA×A

+ and f ∈ BA such that

lim
i,j→∞

ϕ (ix, jy) = 0 (5.1)∥∥∆n+1
y f (x)

∥∥ ≤ ϕ (x, y) (5.2)

for all x, y ∈ A (where the double limit is taken in Pringsheim’s sense (see [13])).
Then f is an n-polynomial.
Proof. We use Theorem 4.1 and the notation introduced there. Let y ∈ A. First, we
remark that the sequence

(
ϕ′
(
2ky
))

k≥0
converges to 0 (from (5.1)). Therefore there

exists an iy ∈ N such that ϕ′
(
2ky
)
≤ ϕ′

(
2iyy

)
for all k ∈ N, hence

ϕ1 (y) ≤
∞∑
k=0

2−k−1ϕ′
(
2iyy

)
= ϕ′

(
2iyy

)
. (5.3)

If k → ∞ then k2iky ≥ k → ∞, and from (5.1) we have limk→∞ ϕ′
(
2ikyky

)
= 0;

therefore, from (5.3) it follows that

lim
k→∞

ϕ1 (ky) = 0. (5.4)

Let F := f −
n∑

j=0

1

j!
mj , where the j-monomials mj are defined by procedure (4.1).

From Theorem 4.1 (for i0 = 1) we have

‖F (y)‖ ≤ c1ϕ1 (y) (5.5)

for all y ∈ A. Let k ∈ N\ {0}. Then

∆n+1
−kyF ((k + 1) y) = (−1)

n
(n+ 1)F (y)

+

n+1∑
i=0,i6=1

(−1)
n+1−i

(
n+ 1

i

)
F ((1 + k − ik) y) (5.6)

But ∆n+1
y F = ∆n+1

y f . Therefore, from (5.6) we have

‖F (y)‖ ≤ 1

n+ 1
[‖∆n+1

−kyf ((k + 1) y) ‖

+

n+1∑
i=0,i6=1

(
n+ 1

i

)
‖F ((1 + k − ik) y)‖]. (5.7)

From (5.7), (5.2), (5.5) and (5.1) it follows that

‖F (y)‖ ≤ lim
k→∞

1

n+ 1
[ϕ ((k + 1) y,−ky) + c1

n+1∑
i=0,i6=1

(
n+ 1

i

)
ϕ1 ((1 + k − ik) y)] = 0
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for all y ∈ A. Consequently f =

n∑
j=0

1

j!
mj ∈ Pn (A,B) .

We remark that, since ∆0 is the null operator, in the above theorem we can define,
without any loss of generality, ϕ (x, 0) = 0 for all x ∈ A. Consequently, from the
previous theorem we obtain the following hyperstability result (see [11] and the papers
referred there for similar results obtained by the direct method for n ≤ 5).
Corollary 5.2. Let A be a normed linear space, r1, r2, r3 < 0, ε1, ε2 ≥ 0, and
f : A→ B be a function which verify∥∥∆n+1

y f (x)
∥∥ ≤ ε1 (‖x‖r1 + ‖y‖r2) , and

∥∥∆n+1
y f (0)

∥∥ ≤ ε2 ‖y‖r3
for all x, y ∈ A\ {0} . Then ∆n+1

y f (x) = 0 for all x, y ∈ A.

6. A new class of control functions

In this section A denotes a 2−divisible Abelian monoid. The coefficients πi, ci, and
the function ϕ′ are defined in Section 4.

We remark that Theorem 3.2 from [9] combined with Lemma 5.1 from [8] provides
a stability result for difference equation (1.1) (realized with the direct method) on
n!−divisible commutative groups. Here, using our fixed point theorem, and the fixed
point method described in Section 4, we generalize this result in the following theorem.
Theorem 6.1. Let ϕ : A×A→ R+ and f : A→ B such that

ϕ (y) :=

∞∑
k=0

2nkϕ′
(
2−k−1y

)
<∞, (6.1)

lim
k→∞

2nkϕ
(
2−kx, 2−ky

)
= 0, (6.2)∥∥∆n+1

y f (x)
∥∥ ≤ ϕ (x, y) (6.3)

for all x, y ∈ A. Then there exists a unique n−polynomial p such that

‖f (y)− p (y)‖ ≤ ϕ (y)

n∏
i=1

(3i− 2) (6.4)

for all y ∈ A. Moreover, p :=

n∑
i=0

1

i!
mi, and mi ∈ Mi (A,B) can be calculated with

the procedure

fn := f , mi (y) := lim
k→∞

2ik∆i
2−kyfi (0) , fi−1 := fi −

1

i!
mi for

i = 1, 2, ..., n, and m0 (y) := f (0) . (6.5)

Proof. 1. We remark that ϕ (2y) = ϕ′ (y) + 2nϕ (y), hence

ϕ′ (y) ≤ ϕ (2y) (6.6)

ϕ (y) ≤ 2−nϕ (2y) (6.7)

for all y ∈ A.
2. We prove, by reverse induction on i ≤ n the following three assertions:∥∥∆i+1

y fi (jy)
∥∥ ≤ 2i−nπi+1ϕ (2y) for j ∈ {0, ..., i− 1} , (6.8)



STABILITY OF GENERALIZED POLYNOMIALS 147

mi (y) := lim
k→∞

2ik∆i
2−kyfi (0) defines mi ∈Mi (A,B) , (6.9)∥∥∆i
yfi−1 (0)

∥∥ ≤ ciϕ (y) (6.10)

for all y ∈ A in a similarly manner as in Theorem 4.1.
2.1. Let i = n.
2.1.1. Using (6.3) and (6.6) we obtain∥∥∆n+1

y f (jy)
∥∥ ≤ ϕ′ (y) ≤ πn+1ϕ (2y) for j ∈ {0, ..., n− 1} . (6.11)

2.1.2. Since

n∑
s=1

s

(
n

s

)
= n2n−1 and

∆n
2yfn (0)− 2n∆n

yfn (0) =

n∑
s=1

(
n

s

) s∑
j=1

∆n+1
y fn ((j − 1)y) ,

using (6.11) we obtain∥∥∥∆n
yfn (0)− 2n∆n

2−1yfn (0)
∥∥∥ ≤ n2n−1ϕ′

(
2−1y

)
. (6.12)

We apply Theorem 3.1 for

(Lh) (y) : = 2nh
(
2−1y

)
, (Jδ) (y) := 2nδ

(
2−1y

)
,

α (y) : = n2n−1ϕ′
(
2−1y

)
, and g (y) := ∆n

yfn (0) .

We have:

• if h ∈ BA, δ ∈ RA and ‖h (x)‖ ≤ ‖δ (x)‖ for all x ∈ A, then∥∥2nh
(
2−1x

)∥∥ ≤ ∥∥2nδ
(
2−1x

)∥∥, hence ‖(Lh) (x)‖ ≤ ‖(Jδ) (x)‖ for all x ∈ A;

• α (y) =

∞∑
k=0

(
Jkα

)
(y) =

∞∑
k=0

2nkα
(
2−ky

)
= n2n−1

∞∑
k=0

2nkϕ′
(
2−k−1y

)
= n2n−1ϕ (y) ;

• (Jα) (y) = 2nα
(
2−1y

)
=

∞∑
k=0

2n(k+1)α
(
2−k−1y

)
=

∞∑
k=0

(
Jk+1α

)
(y) ;

• (6.12) is equivalent with ‖g (y)− (Lg) (y)‖ ≤ α (y) ,

and all the requirements of Theorem 3.1 are verified.
Since

(
Lkg

)
(y) = 2nk∆n

2−kyfn (0), from Theorem 3.1 it follows that

mn (y) := lim
k→∞

2nk∆n
2−kyfn (0)

defines mn ∈ BA and ∥∥∆n
yfn (0)−mn (y)

∥∥ ≤ cnϕ (y) (6.13)

for all y ∈ A.
2.1.3. For proving that mn ∈Mn (A,B) we follow the technique used in Theorem

4.1. Let y ∈ A. From (6.3) and (6.2) it follows that

lim
k→∞

2nk∆n+1
2−ky

fn
(
2−ksy

)
for all s ∈ N.
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Therefore, using the formula

∆n
yfn (jy) = ∆n

yfn (0) +

j−1∑
s=0

∆n+1
y fn (sy) , j ≥ 1,

it follows immediately that

mn (y) := lim
k→∞

2nk∆n
2−kyfn

(
2−kjy

)
(6.14)

for all j ∈ N. Using this, we prove that

mn (jy) = jnmn (y) (6.15)

for all j ∈ N and y ∈ A. Of course mn (0) = 0. From Marchaud’s formula and (6.14)

we have

jn∑
i=0

(j)
n
i = (j + 1)

n
for all j ∈ N, and

mn ((j + 1) y) = lim
k→∞

2nk∆n
2−k(j+1)yfn (0) = lim

k→∞
2nk

jn∑
i=0

(j)
n
i ∆n

2−kyfn
(
2kiy

)
=

jn∑
i=0

(j)
n
i mn (y) = (j + 1)

n
mn (y) ;

and (6.15) is completely proved.
Taking into account (6.15), for proving that mn ∈ Mn (A,B) it is sufficient to

show that mn is an n−polynomial. Let x, y ∈ A. Then

∆n+1
y mn (x) =

n+1∑
j=0

(−1)
n+1−j

(
n+ 1

j

)
mn (x+ jy)

= lim
k→∞

2nk
n+1∑
j=0

(−1)
n+1−j

(
n+ 1

j

)
∆n

2−k(x+jy)fn (0)

= lim
k→∞

2nk
n+1∑
j=0

(−1)
n+1−j

(
n+ 1

j

) n∑
s=0

(−1)
n−s

(
n

s

)
fn
(
2−ksx+ j2−ksy

)
= lim

k→∞
2nk

n∑
s=0

(−1)
n−s

(
n

s

)
∆n+1

2−ksy
fn
(
2−ksx

)
;

but, from (6.3) and (6.2) we have

0 ≤ lim
k→∞

2nk
∥∥∥∆n+1

2−ksy
fn
(
2−ksx

)∥∥∥ ≤ lim
k→∞

2nkϕ
(
2−ksx, 2−ksy

)
= 0,

hence ∆n+1
y mn (x) = 0 for all x, y ∈ A., i.e. mn ∈Mn (A,B). Moreover, since

fi−1 := fi −
1

i!
mi,

then
∆n

yfn−1 (0) = ∆n
yfn (0)−mn (y) ,

hence (6.13) becomes exactly (6.10) (for i = n).
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2.2. Let n > 1 and suppose that (6.8), (6.9), and (6.10) are true for i ∈ {2, ..., n} .
For proving (6.8), (6.9), and (6.10) for i− 1 we proceed similarly as in case 2.1.

2.2.1. For proving∥∥∆i
yfi−1 (jy)

∥∥ ≤ 2i−n−1πiϕ (2y) for all j ∈ {0, ..., i− 2} . (6.16)

we remark first that, from (6.7) and from i ≤ 3i− 2 we have

ciϕ (y) ≤ i2i−1πi+12−nϕ (2y) ≤ 2i−n−1πiϕ (2y) ,

hence, from (6.10) it follows (6.16) for j = 0. Since ∆i+1mi = 0, for j ∈ {1, ..., i− 1}
we have

∆i
yfi−1 (jy) = ∆i

yfi−1 (0) +

j−1∑
s=0

∆i+1
y fi (sy) .

Therefore, from (6.10), (6.8), and (6.7) it follows∥∥∆i
yfi−1 (jy)

∥∥ ≤ [2−nci + (i− 1) 2i−nπi+1

]
ϕ (2y) .

But

2−nci + (i− 1) 2i−nπi+1 =
(
2−ni2i−1 + (i− 1) 2i−n

)
πi+1 = 2i−n−1πi,

and (6.16) is completely proved.
2.2.2. As in the case 2.1.2, using (6.16) we have∥∥∆i−1

2y fi−1 (0)− 2i−1∆i−1
y fi−1 (0)

∥∥ ≤ i−1∑
s=1

(
i− 1

s

) s∑
j=1

∥∥∆i
yfi ((j − 1) y)

∥∥
≤ (i− 1) 22i−n−3ϕ (2y) ,

hence ∥∥∥∆i−1
y fi−1 (0)− 2i−1∆i−1

2−1yfi−1 (0)
∥∥∥ ≤ (i− 1) 22i−n−3ϕ (y) (6.17)

We apply Theorem 3.1 for

(Lh) (y) := 2i−1h
(
2−1y

)
, (Jδ) (y) := 2i−1δ

(
2−1y

)
,

α (y) =: (i− 1) 22i−n−3ϕ (y) , and g (y) := ∆i−1
y fi−1 (0) .

From (6.17) and Theorem 3.1 it follows that∥∥∆i−1
y fi−1 (0)−mi−1 (y)

∥∥ ≤ α (y) (6.18)

where

mi−1 (y) := lim
k→∞

2(i−1)k∆i−1
2−ky

fi−1 (0) .

We remark that, using Lemma 2.2,

α (y) =

∞∑
k=0

2(i−1)kα
(
2−ky

)
≤ (i− 1) 22i−n−3πi

∞∑
k=0

2(n−1)kϕ
(
2−k−1 (2y)

)
≤ (i− 1) 22i−n−2πiϕ (y) .

Since i ≤ n, we have (i− 1) 22i−n−2πi ≤ ci−1, and, from (6.18),∥∥∆i−1
y fi−1 (0)−mi−1 (y)

∥∥ ≤ ci−1ϕ (y) . (6.19)
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Using the same technique as at 2.1.3 it follows that mi−1 is an (i− 1)−monomial.
Denoting

fi−2 := fi−1 −
1

(i− 1)!
mi−1

relation (6.19) becomes ∥∥∆i−1
y fi−2 (0)

∥∥ ≤ ci−1ϕ (y) ,

and our reverse induction is complete.
3. From (6.10) (for i = 1) we have

‖f0 (y)− f0 (0)‖ ≤ c1ϕ (y) for all y ∈ A.

But f0 = f −
n∑

i=1

1

i!
mi, f0 (0) = f (0) = m0 (y) and c1 =

n∏
i=1

(3i− 2). Therefore

∥∥∥∥∥f (y)−
n∑

i=0

1

i!
mi (y)

∥∥∥∥∥ ≤ ϕ (y)

n∏
i=1

(3i− 2) for all y ∈ A.

4. Uniqueness. Finally, suppose that m′i ∈Mi (A,B) and∥∥∥∥∥f (y)−
n∑

i=0

m′i (y)

∥∥∥∥∥ ≤ c1ϕ (y) for all y ∈ A. (6.20)

From (6.4) and (6.20) we have∥∥∥∥∥
n∑

i=0

m′i (y)− 1

i!
mi (y)

∥∥∥∥∥ ≤ 2c1ϕ (y) for all y ∈ A. (6.21)

We prove by induction on j ∈ {1, ..., n} that

m′j−1 =
1

(j − 1)!
mj−1 and

∥∥∥∥∥∥
n∑

i=j

[
m′i (y)− 1

i!
mi (y)

]∥∥∥∥∥∥ ≤ 2c1ϕ (y) (6.22)

for all y ∈ A. From (6.1) it follows that ϕ (0) = 0 and from (6.21) (for y = 0) we
obtain m′0 = m0. Therefore, from (6.21) it follows (6.22) for j = 1.

Suppose that n > 1 and (6.22) is true for j ∈ {1, ..., n− 1}. From Lemma 2.2 we
have

lim
k→∞

2jkϕ
(
2−ky

)
= 0 for all y ∈ A. (6.23)

From (6.22) and (6.23) we have

lim
k→∞

2jk

∥∥∥∥∥∥
n∑

i=j

2−ik
[
m′i (y)− 1

i!
mi (y)

]∥∥∥∥∥∥ ≤ lim
k→∞

2jk · 2c1ϕ
(
2−ky

)
= 0

for all y ∈ A, hence m′j = 1
j!mj . Moreover, if j < n, from (6.22) we have∥∥∥∥∥∥

n∑
i=j+1

m′i (y)− 1

i!
mi (y)

∥∥∥∥∥∥ ≤ 2c1ϕ (y) for all y ∈ A.
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Therefore p =

n∑
i=0

1

i!
mi is the unique n−monomial that verifies (6.4).

An Aoki-Rassias type stability result is the following consequence (see [11] and the
papers referred there for similar results obtained by the direct method for n ≤ 5).
Corollary 6.4. Let A be a normed linear space, ε > 0, r > n and f : A → B such
that ∥∥∆n+1

y f (x)
∥∥ ≤ ε (‖x‖r + ‖y‖r) for all x, y ∈ A.

Then procedure (6.5) defines the unique n−polynomial p for which

‖f (x)− p (x)‖ ≤ ε (n− 1)
r

+ 1

2r − 2n
‖x‖r

n∏
i=1

(3i− 2)

for all x ∈ A.

7. A hybrid stability theorem

Combining Theorem 4.1 and Theorem 6.1 we can give the following result. We use
the coefficients πi, ci,c

′
i and the functions ϕ′, ϕi defined in Section 4.

Theorem 7.1. Let n > 1, A be a 2−divisible commutative monoid, i0 ∈ {2, ..., n} ,
ϕ : A×A→ [0,∞), and f : A→ B which verify conditions (4.2), (4.3), (4.4) and

ϕ (y) :=

∞∑
k=0

2(i0−1)kϕio

(
2−ky

)
<∞, (7.1)

lim
k→∞

2(i0−1)kϕ
(
2−kx, 2−ky

)
= 0 (7.2)

for all x, y ∈ A. Then there exists p ∈ Pn (A,B) such that

‖f (y)− p (y)‖ ≤ ϕ (y)

n∏
i=1

(3i− 2) (7.3)

for all y ∈ A. Moreover, p =

n∑
i=0

1

i!
mi, where the monomials mn,mn−1, ...,mi0 are

defined by procedure (4.1), and the monomials mi0−1,mi0−2, ...,m0 are defined by
procedure (6.5). If, in addition

lim
k→∞

2−i0kϕ
(
2ky
)

= 0 for all y ∈ A, (7.4)

then p is the unique n−polynomial which fulfills (7.3).
Proof. From Theorem 4.1 it follows that procedure (4.1) defines the functions fi and
the monomials mi such that∥∥∆i0

y fi0−1 (0)
∥∥ ≤ ci0ϕi0 (y) and

∥∥∆i0+1
y fi0 (jy)

∥∥ ≤ c′i0+1ϕi0+1 (y) (7.5)

for all y ∈ A and j ∈ {0, ..., i0 − 1} (see part 1 from the proof of Theorem 4.1). From
(7.1) we have ϕ (y) = ϕi0 (y) + 2i0−1ϕ

(
2−1y

)
, hence

ϕi0 (y) ≤ ϕ (y) ≤ 21−i0ϕ (2y) , y ∈ A. (7.6)
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1. We shall prove, by reverse induction on i ∈ {1, ..., i0 − 1} , the following three
assertions: ∥∥∆i+1

y fi (jy)
∥∥ ≤ c′i+1ϕ (y) for j ∈ {0, ..., i− 1} , (7.7)

mi (y) := lim
k→∞

2ik∆i
2−kyfi (0) defines mi ∈Mi (A,B) , (7.8)∥∥∆i
yfi−1 (0)

∥∥ ≤ ciϕ (y) (7.9)

for all y ∈ A.
1.1. Let i = i0 − 1. First we prove (7.7), i.e.∥∥∆i0

y fi0−1 (jy)
∥∥ ≤ c′i0ϕ (y) for j ∈ {0, ..., i0 − 2} and y ∈ A. (7.10)

Since ci0 ≤ c′i0 , from (7.6) and (7.5) if follows (7.10) for j = 0. Let j ≥ 1.
Since ϕi0+1 (y) ≤ ϕi0 (y) and

∆i0
y fi0−1 (jy) = ∆i0

y fi0−1 (0) +

j−1∑
s=0

∆i0+1
y fi0 (sy) ,

using (7.5) we obtain∥∥∆i0
y fi0−1 (jy)

∥∥ ≤ [ci0 + (i0 − 1) c′i0+1

]
ϕi0 (y) = c′i0ϕi0 (y) , (7.11)

and from (7.6) we obtain immediately (7.10).
For proving (7.8) and (7.9) we proceed as in the proof of Theorem 6.1. Using the

formula

∆i0−1
2y fi0−1 (0)− 2i0−1∆i0−1

y fi0−1 (0) =

i0−1∑
s=1

(
i0 − 1

s

) s∑
j=1

∆i0
y fi0 ((j − 1) y)

and (7.11) we obtain immediately∥∥∥∆i0−1
y fi0−1 (0)− 2i0−1∆i0−1

2−1yfi0−1 (0)
∥∥∥ ≤ (i0 − 1) 2i0−2c′i0ϕi0

(
2−1y

)
(7.12)

for all y ∈ A. We apply again Theorem 3.1 for

(Lh) (y) : = 2i0−1h
(
2−1y

)
, (Jδ) (y) := 2i0−1δ

(
2−1y

)
,

α (y) : = (i0 − 1) 2i0−2c′i0ϕi0

(
2−1y

)
, and g (y) := ∆i0−1

y fi0−1 (0) ;

and (7.12); if follows that

mi0−1 (y) := lim
k→∞

2(i0−1)k∆i0−1
2−ky

fi0−1 (0)

defines mi0−1 : A→ B such that∥∥∆i0−1
y fi0−1 (0)−mi0−1 (y)

∥∥ ≤ α (y) (7.13)

for all y ∈ A. But

α (y) = (i0 − 1) 2i0−2c′i0

∞∑
k=0

2(i0−1)kϕi0

(
2−k−1y

)
= (i0 − 1) 2i0−2c′i0ϕ

(
2−1y

)
;

using (7.6) we have α (y) ≤ (i0 − 1) 2i0−2πi0ϕ (y), and from (7.13) we obtain∥∥∆i0−1
y fi0−1 (0)−mi0−1 (y)

∥∥ ≤ ci0−1ϕ (y) . (7.14)
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Since mi0−1 (jy) = ji0−1mi0−1 (y) for all j ∈ N and y ∈ A (see part 2.1.3 from the
proof of Theorem 6.1), for proving that mi0−1 ∈Mi0−1 (A,B) it is sufficient to show

that mi0−1 ∈ Pn (A,B). Let x, y ∈ A. Then

∆n+1
y mi0−1 (x) =

n+1∑
j=0

(−1)
n+1−j

(
n+ 1

j

)
mi0−1 (x+ jy)

= lim
k→∞

2(i0−1)k
n+1∑
j=0

(−1)
n+1−j

(
n+ 1

j

)
∆i0−1

2−k(x+jy)
fi0−1 (0)

= lim
k→∞

2(i0−1)k
n+1∑
j=0

(−1)
n+1−j

(
n+ 1

j

) i0−1∑
s=0

(−1)
i0−1−s

(
i0 − 1

s

)
fi0−1

(
2−ks (x+ jy)

)
= lim

k→∞
2(i0−1)k

i0−1∑
s=0

(−1)
i0−1−s

(
i0 − 1

s

)
∆n+1

2−ksy
fi0−1

(
2−ksx

)
.

But ∆n+1fi0−1 = ∆n+1f (since mj ∈ Mj
(A,B) for j ∈ {i0, i0 + 1, ..., n}), and

from (4.4) and (7.2) we have

0 ≤ lim
k→∞

2(i0−1)k
∥∥∥∆n+1

2−ksy
fi0−1

(
2−ksx

)∥∥∥ ≤ lim
k→∞

2(i0−1)kϕ
(
2−ksx, 2−ksy

)
= 0;

hence ∆n+1
y mn (x) = 0 for all x, y ∈ A. Therefore mn ∈ Mn (A,B). Moreover, since

∆i0−1fi0−2 = ∆i0−1fi0−1 −mi0−1 where fi0−1 := fi0 −
1

i0!
mi0 , then (7.14) is exactly

(7.9) (for i = i0 − 1).
1.2. Suppose now that (7.7), (7.8) and (7.9) are true for i ∈ {2, 3, ..., i0 − 1}.

Following the ideas used in part 2.1 from the proof of Theorem 6.1, we prove the
three assertions for i− 1.

• Let j ≥ 1. Since ∆i
yfi−1 (jy) = ∆i

yfi−1 (0) +

j−1∑
s=0

∆i+1
y fi (sy), from (7.9) and

(7.7) it follows that∥∥∆i
yfi−1 (jy)

∥∥ ≤ (ci + (i− 1) c′i+1

)
ϕ (y) = c′iϕ (y) ; (7.15)

but ci ≤ c′i; therefore, from (7.15) and (7.9) we have∥∥∆i
yfi−1 (jy)

∥∥ ≤ c′iϕ (y) for j ∈ {0, 1, ..., i− 1} (7.16)

for all y ∈ A.

• Since ∆i−1
2y fi−1 (0)− 2i−1∆i−1

y fi−1 (0) =

i−1∑
s=1

(
i− 1

s

) s∑
j=1

∆i
yfi ((j − 1) y) ,

using (7.16) we obtain∥∥∆i−1
2y fi−1 (0)− 2i−1∆i−1

y fi−1 (0)
∥∥ ≤ (i− 1) 22i−3πiϕ (y) (7.17)

for all y ∈ A. Now, from (7.17) and Theorem 3.1 applied for

(Lh) (y) := 2i−1h
(
2−1y

)
, (Jδ) (y) := 2i−1δ

(
2−1y

)
,

α (y) =: (i− 1) 22i−3πiϕ (y) , and g (y) := ∆i−1
y fi−1 (0)
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it follows that mi−1 (y) := limk→∞ 2(i−1)k∆i−1
2−ky

fi−1 (0) defines mi−1 : A → B such

that ∥∥∆i−1
y fi−1 (0)−mi−1 (y)

∥∥ ≤ α (y) (7.18)

for all y ∈ A. Since

α (y) =

∞∑
k=0

2(i−1)kα
(
2−ky

)
≤ (i− 1) 22i−3πi

∞∑
k=0

2(i−1)kϕ
(
2−k−1y

)
,

using Lemma 2.2 and (7.4), since i ≤ n, we have

α (y) ≤ (i− 1) 22i−2πiϕ
(
2−1y

)
≤ (i− 1) 22i−2πi2

1−i0ϕ (y) ≤ (i− 1) 22i−2πiϕ (y)

and, from (7.18) it follows that∥∥∆i−1
y fi−1 (0)−mi−1 (y)

∥∥ ≤ ci−1ϕ (y) (7.19)

for all y ∈ A. As in the first part we show that mi−1 is an (i− 1)−monomial. Hence
(7.19) becomes ∥∥∆i−1

y fi−2 (0)
∥∥ ≤ ci−1ϕ (y)

for all y ∈ A, and the reverse induction is complete.
2. From i = 1 in (7.9) we obtain

‖f0 (y)− f0 (0)‖ ≤ c1ϕ (y) ,

or, equivalent ∥∥∥∥∥f (y)−
n∑

i=0

1

i!
mi (y)

∥∥∥∥∥ ≤ c1ϕ (y)

and (7.3) is proved.

3. Uniqueness. Suppose that

n∑
i=0

m′i is an other n−polynomial which verify (7.3)

(where m′i ∈Mi (A,B)). Then∥∥∥∥∥
n∑

i=0

m′i (y)− 1

i!
mi (y)

∥∥∥∥∥ ≤ 2c1ϕ (y) (7.20)

for all y ∈ A.

As in the proof of Theorem 6.1 it follows that m′i =
1

i!
mi for i ∈ {0, 1, ..., i0 − 1} .

Then (7.20) becomes ∥∥∥∥∥
n∑

i=i0

m′i (y)− 1

i!
mi (y)

∥∥∥∥∥ ≤ 2c1ϕ (y) (7.21)

for all y ∈ A. Applying the technique from part 4, Theorem 4.1 to inequality (7.21)

and using (7.4), it follows that m′i =
1

i!
mi for i ∈ {i0, i0 + 1, ..., n}.

Corollary 4.4 and Corollary 6.4 can be completed with the following consequence
of the above theorem.
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Corollary 7.2. Let n ≥ 2, ε > 0, f : A → B, r ∈ R, and i0 ∈ {2, ..., n} such that
i0 − 1 < r < i0 and∥∥∆n+1

y f (x)
∥∥ ≤ ε (‖x‖r + ‖y‖r) for all x, y ∈ A.

Then there exists a unique n− polynomial p such that

‖f (x)− p (x)‖ ≤ ε 2r [(n− 1)
r

+ 1]

(2i0 − 2r) (2r − 2i0−1)
‖x‖r

n∏
i=1

(3i− 2)

for all x ∈ A.
Proof. In the above theorem, for ϕ (x, y) := ε (‖x‖r + ‖y‖r) we have

ϕ′ (x) := ε [(n− 1)
r

+ 1] ‖x‖r , ϕi0 (x) := ε
(n− 1)

r
+ 1

(2i0 − 2r)
‖x‖r ,

and

ϕ (y) := ε
2r [(n− 1)

r
+ 1]

(2i0 − 2r) (2r − 2i0−1)
‖x‖r .
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[7] L. Cădariu, L. Găvruţa, P. Găvruţa, Fixed points and generalized Hyers-Ulam stability, Abstr.

Appl. Anal., 2012(2012).

[8] D.M. Dăianu, Recursive procedure in the stability of Fréchet polynomials, Adv. Difference Equ.,
16(2014).
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Pures Appl., 6(1927), no. 9, 337-426.
[13] A. Pringsheim, Zur theorie der zweifach unendlichen Zahlenfolgen, Math. Ann., 53(1900), 289-

321.
[14] Th.M. Rassias (ed.), Handbook of Functional Equations: Stability Theory, Springer Optimiza-

tion and Its Applications, 96, 2014.
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