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Abstract. Using a new fixed point theorem for linear operators which act on function spaces, we give
an iterative method for proving the generalized stability in three essential cases and the hyperstability
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stability results for generalized polynomials.
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1. INTRODUCTION

Over the last twenty-five years, the stability theory of functional equations has
developed in two main directions. The first direction concerns some refinements and,
on the other hand, generalizations of the original concept of stability (introduced by
Hyers in [10] as an answer to a question posed by S.M. Ulam about the stability of
the group homomorphisms). The second one involves the stability’s proof techniques.

The vast majority of stability theorems require two proof techniques: the direct
method - firstly applied by Hyers in [10] for proving the stability of Cauchy’s functional
equation on Banach spaces -, and the fized point method - firstly applied by Baker,
who solve a stability problem using a variant of Banach’s fixed point theorem (see
).

Our paper is included in the second direction and analyses the well-known polyno-
mial equation with differences

APHLf (x) =0, (1.1)
equation with various applications in many branches of mathematics and applied
sciences.

The first stability result on commutative semigroups for this equation was obtained
by Albert and Baker in [1], through the direct method, as an extension of Hyers’
result from [10]. The generalized stability for equation (1.1) has been proved in
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2014 on commutative n!— divisible groups, via the generalized stability of Fréchet’s
polynomial equation

Az, o---0Ay, ., f(0)=0, (1.2)

using the direct method, too (see [8] and [9]).

Here we firstly prove a fixed point theorem for linear operators which act on func-
tion spaces. We use this result to prove the generalized stability in three essential cases
and the hyperstability for equation (1.1) on commutative monoids. Also, in each case,
we give consequences using control functions of Aoki-Rassias type. We note that the
proposed iterative fixed point method leads to final concrete and unitary estimates.

A new proof of Fréchet’s functional characterization of real polynomials, but using
equation (1.1) is given in [2]. Applications of this equation to spectral synthesis can be
found in [15]. A perspective on the current state of the functional equations stability
theory is the handbook [14]. Different types of stability for functional equations as
well as the interlinked results are discussed in [5]. Applications of different fixed
point theorems to the theory of stability of functional equations can be found in [6].
A fixed point technique for solving the generalized stability of equation (1.2) for n = 2
is available in [3]. Finally, an overview of stability results regarding the equations (1.1)
and (1.2) - including their equivalence - can be found in [8].

2. PRELIMINARIES

In the following lines A denotes a commutative monoid, n is a positive integer, B
is a Banach space, B# is the linear space of the functions A — B, R is the set of
real numbers, N is the set of natural numbers 0,1,2,... and 1, j, k, s denote natural
numbers.

We remember that for all f € B4 and all z,y € A

© Apfla) = i<—1>"*" (?)f(mﬂy);

i=0
n—1
o Alf(z+jy)=Anf(x)+ Y APt f(z+iy) for all j € N\{0};
i=0
n
o Al f (@) = Z (7); - Apf (x +iy) for all j € N, where (j); denotes the
i=0

coefficient of o from (1+a+ -+ ad)" - Marchoud’s formula (see [12], p.
368), and from this:

n

o) ()i =(1+j)" forall jeN,and
=0
o g1 @) -2 o) =30 (1) AT e+ - ).
s=1 =1

The function p € BA is an n-polynomial (or, by abuse of language, Fréchet poly-
nomial of degree less then or equals n) if and only if AZ‘Hp () =0for all z,y € A
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or, equivalent,
n
p= E myg,
i=0

where m; € B4 is an i-monomial, i.c.
i B
Aym; (z) =il - m; (y)

for all z,3y € A. We denote P, (A, B) the linear space of all n-polynomials from B4,
and M, (A, B) the linear space of all --monomials from B4, where i € N.

If m,, € M,, (A, B) then

my, (kx) = k"m,, (z)

forallz € Aand all k € N. Also, if m € P, (4, B), i € {1,...,n} and m (kz) = k'm (x)
for all z € A and all k € N, then m € M, (A, B).

For details on (generalized) polynomials and monomials see [8] and the papers
referred there.

We shall use the following elementary facts about the control functions.
Lemma 2.1. ([8]) Let ¢’ € RY and i € N such that

i(y) = 271G (2Fy) < o0
k=0
for ally € A. Then, for ally € A
22_(i+1)(k+1)¢i (2ky) < 2_i80i (y) and kll)l,go2—lk:saz (2ky) =0.
k=0

Lemma 2.2. ([9]) Let A be a 2-divisible Abelian monoid, ¢' € RY and i € N such

that @; (y) == Z 2tk (27k71y) < oo forally € A. Then
k=0

(i—-Dk~. (9—k-1 ~ (9-1 . ik (9—k,\ —
3202 05 (2 y) < 2¢; (2 y) and klggc2 Vi (2 y) =0
for all y € A.

3. FIXED POINT THEOREM FOR J—CONTRACTIVE LINEAR OPERATORS

In the following lines we give a fixed point theorem for linear J-contractive opera-
tors in the spirit of [7].

We remember that, if L : BA — B4 and J : R4 — R are linear operators, then
L is J-contractive iff

[h € BA,§ € R* and ||h (y)|| < 8 (y) for all y € A]
= [[I(Lh) (W)]| < (J6) (y) for all y € A].
Theorem 3.1. Let J : R4 — R4 be a linear operator, L : B4 — B4 be a linear
J-contractive operator, o € Rﬁ and g € B4 such that

oo oo

(@) a(y) =Y (J*a) (y) < o0 and (J&) (y) = > _ (J*a) (y),

k=0 k=0
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(12) llg (y) — (Lg) (W)l < (y)
for ally € A. Then

m(y) = klim (Lkg) (y) (3.1)
—00
defines the unique fized point of the operator L for which
lg (y) —m (y)| <a(y) forally € A. (3.2)

Proof. 1. Let y € A. Since L is J-contractive linear operator, from (i) we have
I(LFg) () = (LF*'g) ()|| < (J*a) (y) for all k € N and y € A.

Using (i) we obtain

k+s

(24 )~ (g W < 37 )<Y (o (33)

i=k

for all k, s € N. Therefore ((Lkg) (y))k>0 is a Cauchy sequence in the Banach space
B. Let m : A — B be the function defined by (3.1). Letting k = 0 and s — oo in
(3.3) we obtain immediately (3.2).

2. Let y € A and s — oo in (3.3). Then

[(ZFg) () =m )| <> (J'a
i=k

Since L is a J-contractive linear operator and J is linear, using (i) we obtain

[(L**1g) (y) - ; ) =0 when k — oo.

Therefore Lm = m, i.e. m is a fixed point of L which verifies (3.2).
3. It remains to show that m is the only fixed point of L which satisfies (3.2).
First, we remark that, from (7) it follows

a=a+Ja and Ja=Ja+ Ja

k
for all i € N. Therefore @ = JFt1@ + Z Jia for all k € N and
1=0
lim (J’“a) (y) =0forally e A. (3.4)
k—o0

Let m’ be a fixed point of L which verify (3.2). Then ||m’' (y) — m (y)|| < 2a(y)
for all y € A. Since m and m’ are fixed points of the .J-contractive operator L, from
(3.4) we have

Im’ (y) —m (Y| = || (LFm') (y) = (L*m) ()|| < 2 (J*a) (y) = 0

when k£ — co. Therefore m’ = m.
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4. THE ITERATIVE FIXED POINT METHOD

The fundamental problem of generalized stability for an equation is to find control
functions ¢ for which the equation is ¢-stable (see, for instance, [5] or [8]). In our
case, equation (1.1) is ¢-stable, where ¢ : A x A — [0,00) is a function, iff there
exists a function ¥ : A — [0, 00) such that for every function f : A — B for which
||AZ+1f (x)” < @ (z,y) for all z,y € A there exists a polynomial p € P, (4, B) such
that || f (y) —p ()| < ¥ (y) for all y € A.

The central idea of our method is to prove that, starting with a function f : A — B
which verify approximately equation (1.1), the procedure

foni=1f, mo(y):=f(0),and fori=n,n—1,..,1:
o o—ik A 1
m; (y) == Jim 2 P, £i(0), fii1 = fi— L (4.1)

n
1
defines the monomials m; € M, (A, B) such that the n—polynomial p := Z —m; to
7!
i=0
approximate the function f.
In the following lines we use the coeflicients

i1 =M1 =1, m=Bi—2)mp1, ¢ =42 'mq1, and ¢ =2"'m
fori =n,n—1,...,1. Also,if p : AXA — [0, 00) is a function, we define ¢’ : A — [0, 00)
by
¢’ (y) = max{p (jy,y) 7 €{0,1,....,n — 1} }.
Theorem 4.1. Letipg € {1,....,n}, p: Ax A—[0,00), and f : A — B such that

io () = > _ 270G (2Fy) < oo, (4.2)
Jim 270 (252, 2%y) =0 (4.3)
AV f ()| < o (2,y) (4.4)

for all z,y € A. Then procedure (4.1) defines m; € M; (A, B) fori=mn,n—1,...,14,
and

||A Jio—1 )H < CipPig (y) (4-5)
1
for all y € A. Moreover, if ig = 1 then p := Z <M s the unique n—polynomial for
7!
i=0
which p (0) = £ (0) and
If ) —pWIl <@ () [[Bi-2) (4.6)
i=1

for all y € A.
Proof. Let p,41 := ¢’ and, if i € {ip,i9 + 1,...,n}

) — Z 27i(k‘+1)80/ (2ky)

k=0
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for all y € A. We remark that ¢; (y) = 27%¢’ (y) + 27 ¢; (2y) , hence

¢’ (y) < 2'pi (y) and g; (2y) < 2°¢i (y) (4.7)
for all y € A. Also, if n > 1 and i > ig + 1, from Lemma 2.1 we have
(oo} (oo}
Z27(i71)(k+1)90i (Qky) — 227i(k+1)<pi_1 (Qky) < 27(1'71)901._1 (y) ] (48)
k=0 k=0

1. We prove, by reverse induction on ¢ = n,n — 1, ..., iy, the following three asser-
tions:

AL fi (Gy)|| < Giyapivn (y) for j €{0,1,...,i — 1}, (4.9)

m; (y) = klim 2_“6Aékyfi (0) defines m; € M, (A, B), (4.10)
—00

14, fim1 ()| < espi (9) (4.11)

for all y € A, where f, := f, and f;_; := fi — +m; (as in procedure (4.1)).

il

1.1. Let i =n and y € A. From (4.4) we have

AT fr G| < @ Gyy) @' () = Cpronat (1) (4.12)
for j €{0,1,...,n — 1} and (4.9) is proved.
For proving (4.10) let first remark that
n n n = n . n -
SFACEERSTAURS 9 (D A AN
= i=1

s=1

from (4.12), and because E s<n) =n2""! we have
s
s=1

| AY £ (0) =277 AZ, £, (0)]| <n27'¢' (). (4.13)
Now, we are able to introduce our fixed point method, using Theorem 3.1 for
(Lh)(y): = 27"h(2y), (J&)(y): =27"0(2y),
a(y): = n27'¢ (y), and g(y): = Ay f,(0).

Of course, J is a linear operator and L is a linear J—contractive operator. From (4.2)
it follows that @ is well defined, because

aly) =Y 27" a(2%y) =n27' D 27y (2Fy) < n27le, (y),
k=0 k=0

and, since
(Ja) (y) =27"a(2y) = »_27"* o (261y) = (S a) (),
k=0 k=0

condition (7) is verified. Moreover, (4.13) is exactly (i3). Therefore, from Theorem
3.1, it follows that

my (y) := lim 27" AL f, (0) (4.14)

k—o0
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defines m,, € B4, and

for all y € A.
For proving that m,, is an n—monomial we show first that
: —nk AN k
my (y) = klgrgo 27" Ay fn (2%sy) (4.16)

for all s € N. For s = 0 relation (4.16) is exactly (4.14). Let s > 0. From (4.3) and
(4.4) it follows that

lim 27"FAZELf, (2¢5y) = 0

k—o0

for j € N. Therefore, from (4.14) and

s—1
A7 fu (sy) = A7 £ (0) + > AP £ ()
7=0
it follows (4.16).
Secondly, we prove that
my (jy) = j"mn (y), for j €N (4.17)
Since A§ = 0 we have m,, (0) = 0. Applying (4.16), Marchaud’s formula, and taking
n
into account the relation Z (1) =(j+1)" we have for j € N :
=0
my ((G+1)y) = lim 27"AL G fa (0)
Jjn Jjn

= lim 2° ”kz P AL fa (i25)

and (4.17) is proved.
Taking into account (4.17), for proving that m, € M, (A, B) it is sufficient to
show that m,, is an n—polynomial. Let x,y € A. Then

n+1
Ayt )= 3 (0™ (" o o4 )

i=0 J
n+1

T —nk fH‘l J +1
PR STl (M FCRRAT
§=0

n+1 41 n n
= kli)nolo 9—nk Z (_1)n+1—3 ( . ) (_1)n—s (s>fn (kax —&—j2ksy)
Jj=0 0

VA

: —n S n n

but, from (4.3) and (4.4) we have

Z (])ZL mn (y) = (G +1)" my (y),

i=0

0< lim 27"k

k—o0

’A"H In (kax)H < lim 27 (kax,2ksy) =0,

k
2hsy k— o0
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hence A7 'm,, (z) = 0 for all z,y € A, i.e. m, € M,, (4, B) and (4.10) is proved.
It remains to prove (4.11). Since

1
fnfl = fn - *'mn7
n.

we have A} f,—1(0) = A} fn (0) — my (y) and (4.15) becomes (4.11).

1.2. Suppose that n > 1 and (4.9), (4.10), and (4.11) are true for i € {ig + 1, ...,n}.
For proving the three assertions for ¢ — 1, we work similarly as in the first part.

a. First we show that for all y € A

| AL fim1 Gy) || < i (y) for all j € {0,....i — 2} (4.18)
Since ¢; < ¢ from (4.11) it follows (4.18) for j = 0. Since m; € M; (A, B), we have
AL = ALf and, for j > 1 and y € A we have

j—1
Ay fim1 (Gy) = Ay fima (0) + Y A i (sy) -
s=0
Therefore, using (4.11), (4.9), and the inequality

eit1 (y) < vi (),

we have for j <i—2
1AL ficr Gy)|| < cipi (y) + (i = 1) ciapir (y) <2771 (36— 2) migai (),
and (4.18) is proved.
b. As in the first part for proving that

mi—1 (y) := kl'l)n;o 2_(i_1)kA;;fi_1 (0) defines m;_1 € M;_1 (A, B) (4.19)

we use the formula

i—1 . s
i— i—1 Adi— 1—1 i .
A i O =2 e 0= 30 () XA (G- ).
s=1 ji=1
and (4.18). We obtain immediately
A i ) = 2 DAL (0] < o () (4.20)
for all y € A. Taking in Theorem 3.1
(Lh)(y): = 27 Dn(2y), (JO)(y): =276 (2y),
a(y): = ciapi(y), and g(y): = AL fii1(0),

from (4.20) it follows that the limit from (4.19) defines a function m;_; : A — B and

185 fier (0) = mics )| <@ (v);
but
o0
a(y) =ci-1 Z 2= =D+, (2%y),
k=0
and from (4.8) it follows that @ (y) < 2'7%c;_14;_1 (), hence

HAZ_lfifl (0) —mi— (y)H < cic1pi-1 () (4.21)
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for all y € A. Following the technique used in the first part we obtain successively:

mi—1 (Jy) := klir& 2*(i*1)kA§;;fi_1 (2ksy) for all s € N,

mi—1 (jy) = 7" mi_1 (y), for all j € N,
A" m,_y () = 0 for all 2,y € A.

Therefore m;_1 is an (i — 1) —monomial and (4.21) becomes exactly (4.11) for i — 1.
2. For i = ig from (4.11) we obtain immediately (4.5).
3. Let ig = 1. Since

(3i — 2), andf():f—z_l'mﬁ

1 j=0‘7'

Ay fo(0) = fo(y) — fo(0),c1 =

where myg (y) := f(0) = fo (0), from (4.5) it follows that p := Z %mj verifies (4.6).
J

j=0""
n

4. Uniqueness. Suppose that Z m;» is an n— polynomial that verifies (4.6), where
§=0
m}; € M; (A, B) for j € {0,...,n}, mg (y) == f(0). Then for all y € A

Fly) =Y m) )| < e )
=0

and from (4.6) we obtain

> () - %mj )| < 2c11 (y) - (4.22)

From Lemma 2.1 we have limj,_,o 27%¢1 (2¥y) = 0, and from (4.21) (replacing y with
2Fy) it follows

k—o0 j'

o 1
lim 27"F ZQJk (m; (y) — -my (y)) H =0.
j=1

Therefore m], = Lm,, and (4.21) becomes
n—1 1
> ml(y) - TR )| < 2c101 (y) -
i=1 :

By reverse induction we finally obtain m} = %ml for all i € {0,...,n}.

An alternative procedure to find the unique p € P, (A, B) which verifies (4.6) is
the following.
Corollary 4.2. Let ¢ and f as in Theorem 4.1 and ig = 1. Then the unique p €

Pn (A, B) which verifies (4.6) and p(0) = f(0) has the form p := Zm; (y), where

=0
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m; € M; (A, B) can be find with the procedure
for = f.m(y): = £(0), and fori=1,2,..,n
fio = Fa—miy, andmi(y): = lim 27 7 (2). (4.23)

K2

Proof. We prove by induction on ¢ € {0,1,...,n} that m} = %mi. By hypotesis
mg = mg. Suppose that i € {0,1,...,n — 1} and m} = %m]- for j €{0,...,i} . Then

z+1 f Zm

and (4.6) becomes

n

fa) = Y =m )| < )

j=i+1 J:
for all y € A. Then, for all y € A and k € N:

n

27(i+1)k)fil+1 (2ky) o Z

j=it1

1 .. ,
ﬁ2(]7171)kmj (y) S 27(24’1)]661901 (2ky) .

But, from Lemma 2.1 we have limy_,o, 2 % ¢, (Zky) = 0. Therefore

) 1
: —(i+1)k pr k _ )
Jim 2 fiya (2%y) = ke (¥)
1
for all y € A and mj,, = mmi+1.

For bounded control functions we obtain an extension of the main result from [1].
Corollary 4.3. Lete >0 and f : A — B such that HA”Hf H <e forallxz,y € A.
Then procedure (4.1) (or procedure (4.23)) defines the unique n—polynomial p for

which p(0) = f(0) and || f (y) —p (y)|| < eH (3i — 2) for ally € A.

i=1
We conclude this section with a stability result -which generalizes and improves
Corollary 5.5 from [9]- for control functions of Aoki-Rassias type.
Corollary 4.4. Let A be a normed linear space, € > 0, r1,72 € (0,1) and f: A— B
such that
1A5F1F @ < elllal™ + llyll™)

for all z,y € A. Then procedure (4.1) (or procedure (4.23)) defines the unique
n—polynomial p for which

(n — 1)” T -
170 -l < e| G Il + s | Tl G- 2
i=1
for ally € A.
Proof. We apply Theorem 4.1. Since ¢’ (y) :=e[(n — 1)™ ||y||"™ + ||ly]|"™*] and

(n—=1)" 1 ,
o1 )= |G i + 5o 1
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we immediately obtain (4.24).

5. HYPERSTABILITY FOR FRECHET POLYNOMIALS

We remember that, according to [5], equation (1.1) is p-hyperstable (where ¢ €
R{*4) if from f € B and |AFLf (2)|| < ¢ (z,y) for all 7,y € A it follows that f
is an n-polynomial.

Theorem 5.1. Let A be an Abelian group, ¢ € RﬁXA and f € B such that

_l_im @ (iz,jy) =0 (5.1)

HA”'Hf H <pl(x,y) (5.2)
for all z,y € A (where the double limit is taken in Pringsheim’s sense (see [13])).
Then f is an n-polynomial.
Proof. We use Theorem 4.1 and the notation introduced there. Let y € A. First, we
remark that the sequence (¢’ (2%y)) i converges to 0 (from (5.1)). Therefore there

exists an i, € N such that ¢’ (Qky) <y (Qlyy) for all k£ € N, hence

p1(y) <D 271 (2y) = ¢ (27y) . (5.3)
k=0

If k — oo then k2 > k — 0o, and from (5.1) we have limy_, o ¢’ (Zikyky) = 0;
therefore, from (5.3) it follows that

lim ¢ (ky) = 0. (5.4)
k—o0

1
Let F := f — Z My where the j-monomials m; are defined by procedure (4.1).
— j!
j=0
From Theorem 4.1 (for i = 1) we have

[F )| < cren (v) (5.5)
for all y € A. Let k € N\ {0}. Then

AL ((k+1)y) = (=1)" (n+ 1) F (y)

n+1

n —1 1 .
+ Y <”f )F((1+k—zk)y) (5.6)
= i
1=0,i#1
But AP F = A7+l f. Therefore, from (5.6) we have
1 n
IF @I < —~ [HA_J;Z; (k+1)y)l
( ) |1F ((1+ &k —ik)y)|l]- (5.7)
From (5.7), (5.2), (5.5) and ( 1) it follows that

n+1

PO < Jin —le @+ Dk te S ("7 ek ing] =0

i=0,i1
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n
for all y € A. Consequently f = Z i’mj €Pn(A B).

=0

We remark that, since Ay is t}ie null operator, in the above theorem we can define,

without any loss of generality, ¢ (2,0) = 0 for all € A. Consequently, from the
previous theorem we obtain the following hyperstability result (see [11] and the papers
referred there for similar results obtained by the direct method for n < 5).
Corollary 5.2. Let A be a normed linear space, r1,72,73 < 0, €1,€2 > 0, and
f:A— B be a function which verify

AT @) < e ()™ +yll™), and [|AFFHFO)] < e llyll™
for all z,y € A\{0}. Then AJT'f (x) =0 for all z,y € A.

6. A NEW CLASS OF CONTROL FUNCTIONS

In this section A denotes a 2—divisible Abelian monoid. The coefficients 7;, ¢;, and
the function ¢’ are defined in Section 4.

We remark that Theorem 3.2 from [9] combined with Lemma 5.1 from [8] provides
a stability result for difference equation (1.1) (realized with the direct method) on
n!—divisible commutative groups. Here, using our fixed point theorem, and the fixed
point method described in Section 4, we generalize this result in the following theorem.
Theorem 6.1. Let ¢ : Ax A — Ry and f: A — B such that

oo
= 2kl (27 1Y) < oo, (6.1)
k=0
Jim 2" (27%z,27%y) = 0, (6.2)
HA"'Hf H < opl(z,y) (6.3)

for all x,y € A. Then there exists a unique n—polynomial p such that

I @) —pWI <Py H (3i —2) (6.4)

n
1
for ally € A. Moreover, p := g M, and m; € M; (A, B) can be calculated with
7!
i=0
the procedure

fni=Ff, mi (y) = kILrI;OQZkA;*kyfl( ) fic1 = fzi ml for
1=1,2,...,n, and mg (y) :== f(0). (6.5)
Proof. 1. We remark that @ (2y) = ¢’ (y) + 2"% (y), hence
"(y) <P (2y)

®
?(y) <27"%(2y)
for all y € A.
2. We prove, by reverse induction on i < n the following three assertions:

AL fi Gy)|| < 2" "mia® (2y) for j € {0,...,i — 1}, (6.8)
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mi (y) = lim 2% Al 4, f; (0) defines m; € M; (A, B), (6.9)
—00
HA;fi—l (O)H <cap(y) (6.10)
for all y € A in a similarly manner as in Theorem 4.1.
2.1. Let t =n.
2.1.1. Using (6.3) and (6.6) we obtain
AT (Gy)]| < @' () < M1 @ (2y) for j € {0,...;n — 1} (6.11)

2.1.2. Since és(?) =n2""! and
83,10 =283, 0) = 3 (1) S AT (G- ).

s=1 j=1
using (6.11) we obtain
HAan (0) = 2" A1, fr (O)H <n2nly (27Yy) | (6.12)
We apply Theorem 3.1 for
(Lh)(y) = =2"n(271y),  (JO)(y):==2"3(27"y),
a(y) = =n2""'¢' (27'y), and g (y) := Ay fu (0).

We have:

e if he BA 5 € R4 and ||h(z)|| < ||6 (z)]| for all x € A, then
|27h (27 2)|| < []276 (27 a) ], e ||(Lh) (z)|| < ||(J(5) (2)] for all x € A;

o
° a(y):Z(Jka) (y):Z2nk ( )_n2n 1Z2nk ’ 2—k 1 )
k=0

k=0 k=0
=n2"" @(y) ) -
° (Ja) (y) — oy (2 y) Z 2n(k+1) 2—k 1 Z Jk-l-l

k=0 k=0
e (6.12) is equivalent with ||g (y) — (Lg) ()] < a(y),

and all the requirements of Theorem 3.1 are verified.
Since (L*g) (y) = Z”kA;’,kyfn (0), from Theorem 3.1 it follows that

M (9) = Jim 2FAL L £, (0)
defines m,, € B4 and

A} £ (0) = mn (y)|| < T (y) (6.13)

for all y € A.
2.1.3. For proving that m,, € M,, (A, B) we follow the technique used in Theorem

4.1. Let y € A. From (6.3) and (6.2) it follows that
lim Q”kA"H fn ( sy) for all s € N.

k—o0
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Therefore, using the formula

j—1
A7 fo (Gy) = AU £ (0) + D> AT f (sy), > 1,
s=0
it follows immediately that
1 k —k ;
my (y) == klglgo 2"AY vy fn (27%jy) (6.14)
for all 7 € N. Using this, we prove that
ma (jy) = " mn (y) (6.15)

for all j G N and y € A. Of course m,, (0) = 0. From Marchaud’s formula and (6.14)
we have Z (+1)" for all j € N, and

mn ((j+1)y) :klir&2”kA§,k(j+1)yfn( = lim 2”’“2 )P Ay, fo (28iy)

k—o0

=2 G)ima(y) = G+ 1)" ma ()

and (6.15) is completely proved.
Taking into account (6.15), for proving that m, € M, (A, B) it is sufficient to
show that m,, is an n—polynomial. Let x,y € A. Then

n+1 ) n+1
Ay )= 3 (0" (" o o)
i=0 J
n+1
. n n+l—j n+1
= i 23 0 () AL 100
=0
n+1 n4+1 n n
T nk n+1—j n—s —k o0—k
= kll)HOlOQ JZ_(:) (—1) < ; ) ;(—1) (s)f" (27"sz + j2 " sy)

= lim 2"y " (-1)""° < )A;*,}Syfn (27" sw);
but, from (6.3) and (6.2) we have

0< hm onk

‘A72L+klsyf" (Z_ks.r) H < kh_?;o anQO (2_k5$7 2_k3y) =0,

hence AZHmn () =0 for all z,y € A., i.e. m,, € M,, (A, B). Moreover, since

fic1:=fi— %mi,
then
AYfn-1(0) = Ay fu (0) = ma (y)
hence (6.13) becomes exactly (6.10) (for i = n).
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2.2. Let n > 1 and suppose that (6.8), (6.9), and (6.10) are true for i € {2,...,n}.
For proving (6.8), (6.9), and (6.10) for i — 1 we proceed similarly as in case 2.1.
2.2.1. For proving

|ALfic1 (Gy)|| < 27" 'mie (2y) for all j € {0,...,i — 2} (6.16)
we remark first that, from (6.7) and from ¢ < 3i — 2 we have
i (y) <27 M 27"p (2y) < 27T (2y)

hence, from (6.10) it follows (6.16) for j = 0. Since A"*tm,; =0, for j € {1,...,i — 1}

we have
j—1

Al ficr (Gy) = AL fi (0) + D AT (sy).

s=0

Therefore, from (6.10), (6.8), and (6.7) it follows

1AL fica Gy)|| < [27"e + (i — 1) 2 " mia | 2 (2y) -
But
27+ (1 —1) 2 My = (272 + (- 1) 27 Mgy = 207

and (6.16) is completely proved.
2.2.2. As in the case 2.1.2, using (6.16) we have

i—1 /. s
[45 fis ) 2747 i O < 3 (’;1> ZHA;fi((j—l)y)H

§(2—1)22’ "% (2y),

hence
HA;—lfifl() 2 AT fia ( H (i — 1) 22735 (y) (6.17)

We apply Theorem 3.1 for
(L) (y) =2 h (271y),  (JO) (y) =213 (27 1),
aly) = (i—1)2""F(y), and g(y) = A, fi-1(0).
From (6.17) and Theorem 3.1 it follows that
Ay fie1 (0) = mi—s (y)|| <@ (y) (6.18)
where
1 i—1)k Ai—1
mi—1 (y) = k:ll)n;o 2(1 ) Ag—kyfifl (0) .
We remark that, using Lemma 2.2,

a y> — Z 2(i—1)]€a (2—ky) S ('L _ 1) 22i—n—37Ti Z 2(%—1)k¢ (2—k—1 (2y))
k=0

k=0
< (-1 g ().

Since i < n, we have (i — 1) 22" 21; < ¢;_1, and, from (6.18),

HAZ_lfiq( ) —mi_1(y H <19 (y) . (6.19)
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Using the same technique as at 2.1.3 it follows that m;_; is an (i — 1) —monomial.

Denoting
1

fi—2 = f¢—1 - m

mi—1

relation (6.19) becomes
A fi2 (0)|| < cima® (v),
and our reverse induction is complete.
3. From (6.10) (for ¢ = 1) we have

Il fo(y) — fo (0)]| < 1@ (y) forall y € A.

n

But fo=f— Z il'mi’ fo(0)=f(0) =mo(y) and ¢; = H (3i — 2). Therefore

i=1 i=1

f(y)—zzl'mz(y) S@(Q)H(Si—@ for all y € A.

i=1

4. Uniqueness. Finally, suppose that m} € M, (A, B) and

F) = mi )| <ap(y) forallye A (6.20)
i=0
From (6.4) and (6.20) we have
. 1
ng (y) — 7 W <219 (y) for all y € A. (6.21)
i=0 ’

We prove by induction on j € {1,...,n} that

—~

1 n
= e and |30 [l )= i || < 20900 022

(j— 1! P
for all y € A. From (6.1) it follows that $ (0) = 0 and from (6.21) (for y = 0) we
obtain m{, = mg. Therefore, from (6.21) it follows (6.22) for j = 1.
Suppose that n > 1 and (6.22) is true for j € {1,...,n — 1}. From Lemma 2.2 we
have
lim 2775 (27%y) =0 for all y € A. (6.23)

k—oc0

From (6.22) and (6.23) we have

. n . 1 .
: k —ik . k — (o—k
khm 27 E 2 [m; (y) = 7mi () ||| < lim 27219 (27%y) =0

— 2. k—o0
i=j

for all y € A, hence m

i = %mj. Moreover, if j < n, from (6.22) we have

1
Z m; (y) — ﬁmi W <219 (y) for all y € A.
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n
1
Therefore p = Z —m; is the unique n—monomial that verifies (6.4).
i!
i=0
An Aoki-Rassias type stability result is the following consequence (see [11] and the
papers referred there for similar results obtained by the direct method for n < 5).
Corollary 6.4. Let A be a normed linear space, ¢ > 0, 7 >n and f: A — B such
that

[ATTHf (@) < ezl + lyll™) for all z,y € A.
Then procedure (6.5) defines the unique n—polynomial p for which

17 @) - p @)l < P g [T i - 2)

for all x € A.

7. A HYBRID STABILITY THEOREM

Combining Theorem 4.1 and Theorem 6.1 we can give the following result. We use
the coefficients 7;, ¢;,¢; and the functions ¢’, ¢; defined in Section 4.
Theorem 7.1. Let n > 1, A be a 2—divisible commutative monoid, iy € {2,...,n},
p:Ax A—10,00), and [ : A — B which verify conditions (4.2), (4.3), (4.4) and

Bly) =) 200 Vg, (27Fy) < oo, (7.1)
k=0
Jim 2U0=Dky, (27Fg 27ky) = 0 (7.2)

for all x,y € A. Then there exists p € P, (A, B) such that

lF@w) —-pl <z ][[Gi-2) (7.3)
i=1
for all y € A. Moreover, p = Z Emi’ where the monomials My, mp_1,...,m;, are
i=0
defined by procedure (4.1), and the monomials m;,_1,Miy—2,...,mg are defined by
procedure (6.5). If, in addition
lim 2 %k% (Qky) =0 forally € A, (7.4)

k—o0

then p is the unique n—polynomial which fulfills (7.3).
Proof. From Theorem 4.1 it follows that procedure (4.1) defines the functions f; and
the monomials m; such that

HAZOinA (0)|| < ciypio (y) and ||A;0+1fio Gy)|| < ¢yr19i0+1 (1) (7.5)

forally € A and j € {0, ...,i0 — 1} (see part 1 from the proof of Theorem 4.1). From
(7.1) we have B (y) = ¢;, (y) + 2715 (27'y) , hence

@i, (y) <P (y) <2770 (2y) ,y € A. (7.6)
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1. We shall prove, by reverse induction on i € {1,...,ig — 1}, the following three
assertions:

AL fi )| < ¢ () for j € {0,...i =1}, (7.7)
m; (y) == klim ZikAé,kyfi (0) defines m; € M, (A, B), (7.8)
—00
HA;fi—l (O)H <o (y) (7.9)
for all y € A.
1.1. Let ¢ = 49 — 1. First we prove (7.7), i.e
||Ay fio—1 ()| < ¢, @ (y) for j €{0,...,ig — 2} and y € A. (7.10)

Since ¢;, < ¢, from (7.6) and (7.5) if follows (7.10) for j = 0. Let j > 1.
Since Pio+1 \Y ( ) < Pig ( ) and
j—1
A fig—1 (Gy) = AP fig—1 (0) + Y ARTfi (sy)

s=0

using (7.5) we obtain

|AY fio—1 Gy)|| < [eio + (io — 1) ¢hy 1] ©io () = i (1) (7.11)

and from (7.6) we obtain immediately (7.10).
For proving (7.8) and (7.9) we proceed as in the proof of Theorem 6.1. Using the
formula

10—1
Ag;/_lfio—l (0) _ 2i0_1A;U_1fi0—1 (0) _ Z ( ) ZAzoflo _ ) )

s=1
and (7.11) we obtain immediately
HAijoflfirl (0) =207 AP fig—1 ( H io — 1) 2°72¢f @i, (27 1Y) (7.12)
for all y € A. We apply again Theorem 3.1 for
(Lh) (y) : =2%"'h (2_1y) (J6) (y) := 200~ 1§ (2_1y) ,
aly) : =(io—1)2°7%¢ v, (271y), and g (y) = AP~ fi—1 (0);

and (7.12); if follows that
Mmig—1 (y) := hm AU 1)kA1° kl fio—1(0)
defines m;,_1 : A — B such that

AP fiy—1 (0) = miy—1 ()|| <@ (y) (7.13)
for all y € A. But

a(y) = (ip — 1)2° ¢ Zz“o Drgi, (277 1y) = (i — 1) 2 2¢} 3 (27 1) 5

using (7.6) we have @ (y) < (10 —1)2%~2m;, 5 (y), and from (7.13) we obtain
A3 fig—1(0) = mig—1 (W)]| < cip—1P (1) (7.14)
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Since mi,—1 (jy) = jio—rmy,—1 (y) for all j € N and y € A (see part 2.1.3 from the
proof of Theorem 6.1), for proving that m;,_; € M (A, B) it is sufficient to show
that m;,—1 € Pn (A, B). Let z,y € A. Then

ig—1

n+1 n+ 1
n 1—j ;
AP mg, oy () =Y (=) ( ; >mi0_1 (x4 Jjy)
Jj=0

n+1
. io— nti—j (n+1 io—
— lim 200Dk 37 (1)t < ' )A;ktﬁjy)ﬁo_l(m

k— o0 =0 ]
n+1 n+1 ip—1 i
. io— n+l—yj [ s 0 — .
= Jim 20070Ey ()™ ]( - ) PRNCH < >fzo 1 (2758 (@ 4 jy)
j=0 J s=0
ZO 1 .
— klingo 2 ig—1)k Z lo 1—s ( 0— ) )A;H_klsyfzo—l (27}€S‘r) )

But An+1fi0—1 = An+lf (smce mj € Mj (A, B) for j € {ip,i0+1,...,n}), and
from (4.4) and (7.2) we have
0= ,CILII;OQ(iO_l)k HA;+klsyf7/O 1 395) H < kILII;O 90—k, (2_ksgc7 2_ksy) =0;

hence A7'm,, (z) = 0 for all z,y € A. Therefore m,, € M, (A, B). Moreover, since
_ : 1 .
Abo=lf, o= Ab=Lf 1 —my, 1 where fij_1 = fi, — Hmio’ then (7.14) is exactly

(7.9) (for i =i —1).

1.2. Suppose now that (7.7), (7.8) and (7.9) are true for ¢ € {2,3,...,49 — 1}.
Following the ideas used in part 2.1 from the proof of Theorem 6.1, we prove the
three assertions for ¢ — 1.

j—1
e Let j > 1. Since A;fi,l (jy) = A;fi,l (0) + ZAZHfi (sy), from (7.9) and
s=0
(7.7) it follows that
1Ay fier G < (i + (= 1) ¢40) B (y) = B (1) (7.15)
but ¢; < ¢}; therefore, from (7.15) and (7.9) we have
| AL fici Gy)|| < @ (y) for j € {0,1,...,i — 1} (7.16)
for all y € A.
-1 /. s
: i i—1 Ai— i—1 i ;
e Since A2y1fi—1 (0) — 20 1ALf; 1 (0) = Z ( . ) ZAyfi (G-1Duwy),
s=1 j=1

using (7.16) we obtain
AL i1 (0) = 2L AL 1 (0)]] < (00— 1) 2273 (y) (7.17)
for all y € A. Now, from (7.17) and Theorem 3.1 apphed for
(Lh) (y) :=2"""h (27y) . (JO) (y) =210 (27"y),
a(y) =:(i—1)2* 35,5 (y), and g (y) := A;‘lfi,l (0)



154 DAN M. DAIANU

it follows that m;_1 (y) := limg_ 00 Q(ifl)kA;iiyfi_l (0) defines m;_1 : A — B such
that

Ay fie1 (0) = mima (y)]| <@ (y) (7.18)
for all y € A. Since
)= S22 (0 < 1 )7 S0 ),
k=0 k=0

using Lemma 2.2 and (7.4), since ¢ < n, we have

a(y) < (-2 7mp (270y) < (- 12 m2 0B (y) < (- 1) 2P mE (y)
and, from (7.18) it follows that

AL fio1 (0) —mioq ()] < cica® () (7.19)
for all y € A. As in the first part we show that m;_; is an (¢ — 1) —monomial. Hence
(7.19) becomes
AL iz (0)]] < cim1® (y)

for all y € A, and the reverse induction is complete.

2. From ¢ =1 in (7.9) we obtain

1fo () = fo O) < e (y),
or, equivalent

<cap(y)

| =

m; (y)

~

Hf W)= 5
i=0
and (7.3) is proved.
3. Uniqueness. Suppose that Zn:m; is an other n—polynomial which verify (7.3)
(where m; € M; (A, B)). Then o

<2019 (y) (7.20)

for all y € A.
1

As in the proof of Theorem 6.1 it follows that m} = M for i € {0,1,...,50 — 1}.
i!

Then (7.20) becomes

> mi(y) - %mi )| <2017 (y) (7.21)

i=ig

for all y € A. Applying the technique from part 4, Theorem 4.1 to inequality (7.21)
1

and using (7.4), it follows that m, = —m; fori € {ig,i0 + 1,...,n}.
i

Corollary 4.4 and Corollary 6.4 can be completed with the following consequence
of the above theorem.
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Corollary 7.2. Letn >2,¢>0, f: A— B, r € R, and iy € {2,...,n} such that
io—1<r<igand

AP f ()] < e(lzl|” + lyll") for all z,y € A.

Then there exists a unique n— polynomial p such that

n

If @) - p @) < (Qif’"[(;)‘( o }jl) el TT i - 2)

i=1
for all x € A.
Proof. In the above theorem, for ¢ (z,y) := e (||z||" + |ly||") we have
r (’I’L — 1)T —+ 1
¢ (@) =elln—1)" +1] 2", @i (z) == @ —2) lzll",

and
iy 2 [(n=1)" 4+ 1]
¥ (y) T 6(27;0 _ 2r) (2'r _ 2i0—1)
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