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Abstract. In the paper, there were studied Caristi-like conditions that guaranteed existence of

a minimum of a function on a metric space. For functions dependent on a parameter, there were
obtained conditions for existence of a minimum for each value of the parameter. These results were

applied to derive conditions for fixed point and coincidence point existence for mappings in metric

spaces. For mappings dependent on a parameter, there were obtained conditions of coincidence point
existence for each value of the parameter.
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Introduction

In the paper [5] by J.Caristi, conditions for the existence of a fixed point for a
mapping g : X → X acting in a complete metric space X were proposed. This result
can be interpreted as sufficient conditions for the function x 7→ ρX(x, g(x)) to attain
its minimum and the minimal value to coincide with zero. This approach was used
in [1]. In this paper, it is proved that under a Caristi-like condition (see Definition
1.1 below) a bounded from below lower semi-continuous function attains its minimum
and an estimate of the distance from an arbitrary point to the minimum holds (see
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Theorem 3 from [1] and Theorem 1.2 below). Some results from [1] developed results
from [3].

It is important to note that these results on the existence of a minimum of a
function are not an end in itself and are not related to the theory of extremal problems
but provide a powerful research tool for studying non-linear equations. The main
purpose of these theorems is to be applied to obtain coincidence points and fixed
points existence conditions. The subsequent possible application of these results lies
in the areas of optimal control (see, for example, [11]), theory of ordinary differential
equations (see, for example, [13]) and control systems (see, for example, [12]).

Let us briefly describe the structure of this paper. It consists of four sections. In the
first section, we obtain global and local theorems (Theorems 1.2 and 1.3, respectively)
on the existence of a minimum for functions acting in metric spaces and satisfying
Caristi-like conditions. The proofs are based on Ekeland’s variational principle, which
is a powerful tool for research (e.g., [6, 4]). In addition, we study a stability of both
functions satisfying Caristi-like conditions and their minima (Propositions 1.5 – 1.8).
For a function acting in a Banach space, we obtain conditions in the terms of upper
Dini derivative for the function to satisfy Caristi-like condition (Lemma 1.9).

In the second section, we investigate the minimum existence problem for a function
dependent on a parameter. We obtain a theorem on the existence of a minimum
for all values of the parameter (Theorem 2.1), we obtain conditions for continuous
dependence of the set of minimum points on a parameter (Propositions 2.6 - 2.9),
and provide examples showing the essentiality of the assumptions of Theorem 2.1
(Example 2.10) and Propositions 2.7, 2.9 (Example 2.11).

In the third section, the obtained results on the minimum existence are applied
to obtain solvability conditions for equations in metric spaces. A local analogue of
Caristi fixed point theorem (Theorem 3.1) and coincidence point theorem for two set-
valued mappings in metric spaces (Theorem 3.2) as well as its corollary on fixed point
of a continuous mapping (Theorem 3.2′) are derived. An analogue of the coincidence
point theorem is obtained for mappings, dependent on a parameter (Theorem 3.7).
This result, in particular, generalizes the elementary implicit function theorem for
contractive mappings from [8, 7].

The fourth section contains discussions and comparison of Caristi fixed point the-
orem and Theorem 3.2′. Examples of mappings for which only one out of these
two theorems can be meaningfully applied are considered (Examples 4.1 – 4.4). The
problem of the fixed point uniqueness is studied.

1. The existence of a minimum of lower semi-continuous functions
and Caristi-like conditions

Let (X, ρX) be a complete metric space with the metric ρX . Given an arbitrary
point x̄ ∈ X and a number δ ≥ 0, denote a closed ball centered at x̄ with the radius
δ by BX(x̄, δ), i.e.

BX(x̄, δ) := {x ∈ X : ρX(x̄, x) ≤ δ}.
For non-empty subsets M1,M2 ⊂ X, denote the distance between them by

distX(M1,M2) := inf
x1∈M1, x2∈M2

ρX(x1, x2),
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the excess from M1 to M2 by

h+
X(M1,M2) := sup

x∈M1

distX(x,M2),

and the Hausdorff distance between M1 and M2 by

hX(M1,M2) := max{h+
X(M1,M2), h+

X(M2,M1)}.

Let U : X → R∪ {+∞} be a bounded from below function. Standardly denote by
domU the domain of U, i.e.

domU := {x ∈ X : U(x) < +∞}.

Our goal is to find conditions that guarantee that the function U attains its minimum.

Definition 1.1. Given a subset X̃ ⊂ X, we say that the function U satisfies the

Caristi-like condition on the set X̃ for some k > 0 if

∀x ∈ X̃ ∃x′ ∈ X : x′ 6= x, U(x′) + kρX(x′, x) ≤ U(x). (1.1)

We say that U satisfies the Caristi-like condition with k > 0 (without reference to the

set X̃) if it satisfies the Caristi-like condition on the set {x ∈ X : U(x) > inf
ξ∈X

U(ξ)}
with k > 0.

Let us discuss this definition. Let X be a Banach space. Assume that the function
U attains its minimum at the point x0 ∈ X, and U is continuously differentiable in
the neighbourhood of x0. It is a straightforward task to ensure that U does not satisfy
the Caristi-like condition on any punctured neighbourhood of the point x0 for any
k > 0, since U ′(x0) = 0. At the same time, for a function U(x) := ‖x − x0‖ that is
non-differentiable at point x0, the Caristi-like condition holds for k = 1 on any open
set that does not contain the point x0.

Consider the following property of the Caristi-like condition. Let the function
U : X → R ∪ {+∞} satisfy the Caristi-like condition for some k > 0, let a subset
X ⊂ X be closed, and U be the restriction of U to X. Then the Caristi-like condition
does not necessarily hold for the function U for any k > 0. This can be illustrated
by the following example. Set X = [−1, 1], U(x) = x2 ∀x ∈ [−1, 1/2), and U(x) =
(−5x + 3)/2 ∀x ∈ [1/2, 1]. The Caristi-like condition holds for k = 1/2 (condition
(1.1) is satisfied if one takes x′ = 1). At the same time, Caristi-like conditions does
not hold for the restriction U of the function U on any ball X = BX(0, δ), δ ≤ 1/2,
for any k > 0, since U(x) ≡ x2.

Theorem 1.2. Assume that the function U is lower semi-continuous and U(x) ≥ γ
for any x ∈ X. Given x̄ ∈ domU, k > 0, and δ ≥ (U(x̄) − γ)/k, assume that U
satisfies the Caristi-like condition (1.1) on the set

X̃ = {x ∈ BX(x̄, δ) : γ < U(x) ≤ U(x̄)}.

Then

∃ ξ ∈ BX(x̄, δ) : ρX(ξ, x̄) ≤ U(x̄)− γ
k

, U(ξ) = min
x∈X

U(x) = γ.
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Proof. We will carry out the proof in analogy with Theorem 3 from [1] using Ekeland’s
variational principle (see [4], Chapter 5, §3).

The function x 7→ U(x) − γ satisfies the assumptions of the theorem. Therefore,
we can assume without loss of generality that γ = 0 and, thus, U(x) ≥ 0 for each
x ∈ X. Set

X = {x ∈ X : U(x) ≤ U(x̄)}.
The set X is closed, since U is lower semi-continuous. Set ε := U(x̄), λ := ε/k. In
virtue of Ekeland’s variational principle (see, for example, [4], Chapter 5, §3), applied
in the complete metric space (X, ρX), there exists ξ ∈ X, such that

U(ξ) ≤ U(x̄), ρX(x̄, ξ) ≤ λ,

U(x) +
ε

λ
ρX(x, ξ) > U(ξ) ∀ x ∈ X : U(x) ≤ U(x̄), x 6= ξ. (1.2)

Let’s prove that ξ is the desired point. Since λ ≤ δ we have ξ ∈ B(x̄, δ). So, it is
enough to prove that U(ξ) = 0. Assume the contrary, i.e. U(ξ) > 0. In virtue of
Caristi-like condition (1.1) there exists x′ 6= ξ such that

U(x′) + kρX(x′, ξ) ≤ U(ξ). (1.3)

This contradicts the strict inequality in (1.2), since ε/λ = k. The contradiction proves
that U(ξ) = 0. �

In [10], it is proved that if U satisfies the Caristi-like condition (1.1) on the whole
X and the rest of the assumptions of Theorem 1.2 hold then U attains its minimum.

Note that Theorem 1.2 can be proved using a partial ordering of X × R proposed
by E. Bishop and R. Phelps (for more details see [1], [13]).

Assume that δ = +∞. Then Theorem 1.2 coincide with Theorem 3 from [1]. In
addition, under the assumptions of Theorem 1.2, condition (1.1) holds if for each
x ∈ X one takes x′ equal to the minimum point ξ such that ρX(ξ, x) ≤ (U(x)− γ)/k.
Moreover,

distX(x,Ξ) ≤
U(x)− min

χ∈X
U(χ)

k
∀x ∈ X,

where Ξ is the set of minima of the function U.
Consider the local analogue of Theorem 1.2. Let a point x̄ ∈ X, numbers γ ∈ R,

k > 0, δ ∈ [0,+∞], and a function U : BX(x̄, δ)→ R ∪ {+∞} be given.

Theorem 1.3. Assume that

(i) U is lower semi-continuous, bounded from below and U(x) ≥ γ for all x ∈
BX(x̄, δ);

(ii) x̄ ∈ domU, U(x̄) ≤ γ + δk;
(iii) for each x ∈ BX(x̄, δ), if

γ < U(x) ≤ U(x̄)− kρX(x, x̄) (1.4)

then there exists x′ ∈ BX(x̄, δ) such that x′ 6= x and

U(x′) + kρX(x, x′) ≤ U(x). (1.5)
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Then there exists ξ ∈ BX(x̄, δ) such that

U(ξ) = min
x∈BX(x̄,δ)

U(x) = γ, ρX(x̄, ξ) ≤ U(x̄)− γ
k

.

Proof. As before, we can assume without loss of generality that γ = 0 and, therefore,
U(x) ≥ 0 ∀x ∈ BX(x̄, δ). Set

X :=
{
x ∈ BX(x̄, δ) : U(x) ≤ U(x̄)− kρX(x, x̄)

}
.

This set is closed, since the function U is lower semi-continuous, and non-empty, since
it contains x̄. Therefore, the metric space (X, ρX) is complete. Let us show that the
assumptions of Theorem 1.2 hold for the function U on the space X.

Take x ∈ X such that U(x) > 0. It follows from (iii) that there exists x′ ∈ BX(x̄, δ)
such that (1.5) holds. Moreover, x′ ∈ X, since

U(x′) ≤ U(x)− kρX(x, x′) ≤ U(x̄)− kρX(x̄, x)− kρX(x, x′) ≤ U(x̄)− kρX(x̄, x′).

Here the first inequality follows from (1.5), the second one follows from the fact that
x ∈ X, and the third one from the triangle inequality for the metric ρX . Thus, the
metric space X and the restriction of the function U to X satisfy all the assumptions
of Theorem 1.2. So, the existence of the desired point ξ follows from Theorem 1.2. �

In condition (iii) of Theorem 1.3, the set of points x, for which condition (1.5) have
to be verified, is defined by inequality (1.4). It is important that this set is smaller
than the one in Theorem 1.2, where it was defined by the inequality U(x) ≤ U(x̄).
In order to illustrate this fact consider the following simple example in which all the
assumptions of Theorem 1.3 hold. However, if we replace the second inequality in
(1.4) by the inequality U(x) ≤ U(x̄) then condition (1.5) does not hold.

Example 1.4. Let X = R, x̄ = 0. Fix arbitrary a > 0, b ∈ R, and set U(x) = b+ ax
for x ≤ 0, U(x) = b for x > 0.

Take an arbitrary δ > 0 and set γ = min{U(x) : x ∈ B(0, δ)} = b− aδ. Condition
(iii) of Theorem 1.3 holds for k = a, since (1.4) implies that inequality (1.5) should
be verified only for x ≤ 0. At the same time, inequality (1.5) fails for each x ∈ (0, δ].

Let us discuss the dependence of the Caristi-like conditions and minimum points

on perturbations of the function U. Let a function Ũ : X ×X → R, a subset X̃ ⊂ X,
and a number k > 0 be given.

Proposition 1.5. Assume that for each x2 ∈ X̃ the function Ũ(·, x2) : X → R
satisfies Caristi-like condition (1.1) on the set X̃ with the chosen k, and for each

x1 ∈ X̃, the function Ũ(x1, ·) : X → R is l-Lipschitz on the set X̃, i.e.

|Ũ(x1, x)− Ũ(x1, x
′)| ≤ lρX(x, x′) ∀x, x′ ∈ X̃.

If l < k then the function

V : X → R, V (x) = Ũ(x, x) ∀x ∈ X,

satisfies the Caristi-like condition on the set X̃ with k − l.
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Proof. Take arbitrary x ∈ X̃. Since (1.1) holds for the function Ũ(·, x), we have

∃x′ ∈ X : x′ 6= x, Ũ(x′, x) + kρX(x′, x) ≤ Ũ(x, x).

Since Ũ(x′, ·) is l-Lipschitz, we have |Ũ(x′, x′)− Ũ(x′, x)| ≤ lρX(x′, x). Thus,

Ũ(x, x) ≥ Ũ(x′, x) + kρX(x′, x) = Ũ(x′, x) + lρX(x′, x) + (k − l)ρX(x′, x)

≥ Ũ(x′, x) + |Ũ(x′, x′)− Ũ(x′, x)|+ (k − l)ρX(x′, x) ≥ Ũ(x′, x′) + (k − l)ρX(x′, x).

Therefore, the function V satisfies Caristi-like condition on X̃ with k − l. �

Given functions U,∆ : X → R, consider the special case, when

Ũ(x1, x2) ≡ U(x1) + ∆(x2).

In this case, Proposition 1.5 implies the following assertion.

Corollary 1.6. Assume that the function U satisfies the Caristi-like condition on the

set X̃ with k > 0, and the function ∆ is l-Lipschitz on the set X̃. If l < k then the
function U∆ : X → R, U∆(x) = U(x) + ∆(x), satisfies the Caristi-like condition on

the set X̃ with k − l.

Corollary 1.6 and Theorem 1.2 imply the following assertion concerning minima
of the function U∆. Let the assumptions of Theorem 1.2 hold and δ = +∞. Assume
that U has the only point of minimum (existence of this point follows from Theorem
1.2). Then Theorem 1.2 implies

∃ ξ ∈ X : U(ξ) = min
x∈X

U(x), U(x) ≥ U(ξ) + kρX(ξ, x) ∀x ∈ X.

Let the function ∆ be l-Lipscitz on the set X, l < k. Then ∆(x) ≥ ∆(ξ)− lρX(ξ, x)
for each x ∈ X. Therefore,

U(x) + ∆(x) ≥ U(ξ) + ∆(ξ) + (k − l)ρX(ξ, x) ∀x ∈ X.

Summarizing the above, under the above mentioned assumptions the function U∆

attains its minimum at the only point ξ, which is the point of minimum of the function
U, and

U∆(x) ≥ U∆(ξ) + (k − l)ρX(ξ, x) ∀x ∈ X.
Note that in these reasonings the assumption of the function U minimum point

uniqueness cannot be omitted. Namely, there exists a nonnegative function U with
multiple minimum points, satisfying Caristi-like condition with k = 1, such that for
every l ∈ (0, 1) there exists a bounded l-Lipschitz function ∆ such that the function
U∆ does not attain its minimum.

Let us consider now arbitrarily uniformly small perturbations of the function U.
Let U : X → R ∪ {+∞} be a bounded from below lower-semicontinuous function,
{Un} be a sequence of lower semi-continuous functions Un : X → R ∪ {+∞} that
converge uniformly to U, k > 0 be given.

Proposition 1.7. Let each function Un satisfy Caristi type condition with given k.
Then the functions U satisfies Caristi-like conditions with arbitrary positive k̄ < k.
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Proof. We can assume without loss of generality that

inf
x∈X

U(x) = inf
x∈X

Un(x) = 0.

Take k̄ < k and prove that U satisfies Caristi-like condition. Fix an arbitrary point
x ∈ X such that U(x) > 0. Then Un(x) > 0 for sufficiently large n. Theorem 1.2
implies that for each n there exists x′n ∈ X such that

x′n 6= x, Un(x′n) = 0, kρX(x′n, x) ≤ Un(x). (1.6)

So, each sequence {x′n} does not converge to x, since otherwise the uniform con-
vergence of {Un} to U and (1.6) imply that U(x) = 0, that contradicts the choice
of x. Therefore, there exists ε > 0 such that ρX(x′n, x) ≥ ε for sufficiently large
n. Since, Un(x′n) = 0 and Un(x′n) − U(x′n) → 0 as n → ∞, for each n we have
U(x′n) + |U(x)− Un(x)| ≤ (k − k̄)ε for sufficiently large n. Substituting x′ = x′n 6= x
into (1.6) we obtain U(x′) + k̄ρX(x′, x) ≤ U(x). �

Note that assumption of uniform convergence in Proposition 1.7 is essential and
cannot be replaced by pointwise convergence. For example, consider the function
U(x) = x2, x ∈ X = [−1, 1]. For this function the Caristi-like condition does not
hold for any k > 0, since U ′(0) = 0. Define a sequence of continuous functions {Un}
as follows: Un(x) := U(x) for each x 6∈ [1/(n + 1), 1/n], the function Un linearly
decreases until Un(xn) = −2 on the segment [1/(n+ 1), xn], and linearly increases on
the segment [xn, 1/n]. Here xn is the midpoint of the segment [1/(n+ 1), 1/n]. Then
Un(x)→ U(x) for each x and for every function Un, Caristi-like condition holds with
k = 1 (in order to verify this it is enough to set x′ := xn for each x 6= xn, for each n).

Note also that if the function U satisfies the Caristi-like condition with k̄ > 0,
then there may exist a uniformly convergent to U sequence of functions that do not
satisfy the Caristi-like condition with any k > 0. For example, consider the function
U(x) := |x|, x ∈ R. For each n, let Un be a continuously differentiable function such
that Un(x) = U(x) for each x such that |x| > 1/n, and Un is a quadratic function on
the segment [−1/n, 1/n] that attains its minimum at zero.

The following proposition shows the stability of the minimum point to perturba-
tions of the function U. Let k > 0 be given.

Proposition 1.8. Assume that the function U : X → R∪{+∞} attains its minimum
at the point x̄, the functions Un are bounded from below, lower semi-continuous, and
satisfy the Caristi-like condition with the same k for each n. Let Un(x̄)→ U(x̄) and

γn := inf
x∈X

Un(x)→ U(x̄).

Then there exits a sequence {xn} ⊂ X such that xn → x̄, for each n the point xn is
a minimum point of the function Un and

ρX(x̄, xn) ≤ Un(x̄)− γn
k

. (1.7)

Proof. It follows from Theorem 1.2 that for each n there exists a minimum point
xn ∈ X of the function Un such that (1.7) holds. The assumptions of the proposition
imply that {xn} is the desired sequence. �



38 A.V. ARUTYUNOV, B.D. GEL’MAN, E.S. ZHUKOVSKIY AND S.E. ZHUKOVSKIY

In conclusion, let us state the sufficient conditions for the Caristi-like condition
(1.1) to hold on an open subset of a normed space. Let X be a normed space with
the norm ‖ · ‖, a function U : X → R be given. Given x, e ∈ X, ‖e‖ = 1, denote
the upper Dini derivative of the function U at the point x along the direction e by
U ′+(x; e), i.e.

U ′+(x; e) = lim
ε→0+

U(x+ εe)− U(x)

ε
.

It is obvious that for two functions U, V : X → R the inequality

(U + V )′+(x; e) ≤ U ′+(x; e) + V ′+(x; e)

holds if the values in the right-hand side of the inequality are not infinities with
opposite signs.

Lemma 1.9. Given a number k > 0 and an open subset X̃ ⊂ X, assume that for

each x ∈ X̃ we have

∃ e ∈ X : ‖e‖ = 1, U ′+(x; e) < −k. (1.8)

Then the function U satisfies the Caristi-like condition (1.1) on the set X̃ with the
given k.

Proof. Take an arbitrary x ∈ X̃, a vector e satisfying (1.8), and a number ε > 0 such
that U ′+(x; e) < −(k+ ε). For s > 0 we have U(x+ se)−U(x) ≤ −(k+ ε)s+ o(s). For

a sufficiently small s > 0 such that o(s)− εs < 0 and x+ se ∈ X̃ set x′ := x+ se. We
have x′ 6= x, U(x′) + ks ≤ U(x). Since ‖x′ − x‖ = s, the Caristi-like condition holds

on X̃ with k. �

Remark 1.10. If the function U is differentiable on the set X̃ and |U ′(x)| > k for

each x ∈ X̃ then (1.8) holds.

2. The existence of a minimum of functions depending on a parameter

As before, we assume that X is a complete metric space with a metric ρX . Let the
following be given: a metric space T with a metric ρT , a closed subset A ⊂ X with the
boundary ∂A and the non-empty interior intA, a function U : A × T → R ∪ {+∞}.
Elements t of the space T are considered as a parameter.

We say that the function U is continuous in t at a point t0 ∈ T uniformly in x,
if for every ε > 0 there exists δ > 0 such that for every t ∈ BT (t0, δ) inequality
|U(x, t) − U(x, t0)| ≤ ε holds for each x ∈ A. The function U is continuous in t
uniformly in x, if it is continuous in t at every point t0 ∈ T uniformly in x.

Theorem 2.1. Let the metric space T be connected, domU(·, t) 6= ∅ for each t ∈ T,
a number k > 0 be given. Denote the set of minimum points x ∈ A of the function
U(·, t) on the set A by M(t) for every t ∈ T. Set

γ(t) = inf
x∈A

U(x, t). (2.1)

Assume that

(i) the function U(·, t) is lower semi-continuous for every t ∈ T ;
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(ii) the function U(·, t) is bounded from below for every t ∈ T ;
(iii) for every t ∈ T, for every x ∈ A, if

γ(t) < U(x, t) ≤ γ(t) + k distX(x, ∂A) (2.2)

then there exists x′ ∈ A such that x′ 6= x and

U(x′, t) + kρX(x, x′) ≤ U(x, t);

(iv) the function U is continuous in t uniformly in x;
(v) M(t) ∩ ∂A = ∅ for every t ∈ T ;
(vi) for any point t̄ ∈ T and a subsequence {ti} convergent to t̄, if M(ti) 6= ∅ and

h+(M(ti), ∂A) → 0 then there exists xi ∈ M(ti) such that the sequence {xi}
contains a convergent subsequence.

Then if the set M(t) is non-empty for some t ∈ T, then it is non-empty for all t ∈ T.

Proof. Set Ũ(x, t) = U(x, t)− γ(t). Considering, if necessary, the function Ũ instead
of U, we can assume without loss of generality that γ = 0, U(x, t) ≥ 0 for all x ∈ A,
t ∈ T. Set

T := {t ∈ T : M(t) 6= ∅}.
The set T is non-empty by assumption. It is enough to prove that T is both open and
closed. At first, we will prove that T is open. Let’s take an arbitrary point t̄ ∈ T and
x̄ ∈ M(t̄). It follows from (v) that M(t̄) ∩ ∂A = ∅. Thus, x̄ ∈ intA. Hence, for some
δ > 0, we have BX(x̄, δ) ⊂ A. In particular, this inclusion implies δ ≤ distX(x̄, ∂A).
It follows from condition (iv) that there exists ε > 0 such that |U(x, t)−U(x, t̄)| ≤ kδ
for every x ∈ A, for every t ∈ BT (t̄, ε).

Let us prove that BT (t̄, ε) ⊂ T . Take an arbitrary point t ∈ BT (t̄, ε) and show that
the function U(·, t) satisfies all the conditions of Theorem 1.3 on the ball BX(x̄, δ).
Condition (i) holds obviously. Since ρT (t̄, t) ≤ ε and U(x̄, t̄) = 0, we have

U(x̄, t) = U(x̄, t)− U(x̄, t̄) ≤ |U(x̄, t)− U(x̄, t̄)| ≤ kδ.

Therefore, U(x̄,t)
k ≤ δ. So, condition (ii) of Theorem 1.3 holds.

Let us prove that condition (iii) of Theorem 1.3 is satisfied. Fix an arbitrary t ∈ T
and for convenience set U(x) := U(x, t) for every x ∈ A. Take an arbitrary point
x ∈ A such that (1.4) holds. The triangle inequality implies

distX(x̄, ∂A) ≤ ρX(x̄, x) + distX(x, ∂A).

So,

U(x) ≤ k(δ − ρX(x, x̄)) ≤ k(distX(x̄, ∂A)− ρX(x, x̄)) ≤ k distX(x, ∂A).

Thus, it follows from (2.2) that there exists x′ ∈ A such that (1.5) holds. Let us prove

that x′ ∈ BX(x̄, δ). From (1.5), it follows that ρX(x, x′) ≤ U(x)
k . Therefore,

ρX(x̄, x′) ≤ ρX(x̄, x) + ρX(x, x′) ≤ ρX(x̄, x) +
U(x)

k
≤ δ.

The last inequality holds, since the choice of x implies that (1.4) holds. Thus, condi-
tion (iii) of Theorem 1.3 holds.
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It follows from Theorem 1.3 that the set M(t) is non-empty. Thus, it is proved
that BT (t̄, ε) ⊂ T . Therefore, the set T is open. Let us prove that T is closed. Given
a sequence {ti} ⊂ T that converges to the point t̄, prove that t̄ ∈ T .

Let us show that for some δ > 0 inequality h+(M(ti), ∂A) ≥ δ holds for all suf-
ficiently large i. By assuming the contrary and considering a subsequence, we have
h+(M(ti), ∂A)→ 0. Again considering a subsequence, we deduce from condition (vi)
that there exists a sequence of points xi ∈M(ti) and a point x̄ ∈ ∂A such that xi → x̄.
It is obvious that x̄ ∈ ∂A. Let us show that U(x̄, t̄) = 0. Assume that a := U(x̄, t̄) > 0.
Condition (i) implies that U(xi, t̄) ≥ 2a/3 for sufficiently large i. Condition (iv) im-
plies that |U(xi, ti)−U(xi, t̄)| ≤ a/3 for sufficiently large i. Therefore, U(xi, ti) ≥ a/3
for sufficiently large i, whereas U(xi, ti) = 0 for each i. The contradiction proves that
U(x̄, t̄) = 0. This contradicts condition (v).

Thus, there exists δ > 0 such that h+(M(ti), ∂A) > δ for all sufficiently large
i, that we will exclusively consider. Therefore, there exist xi ∈ M(ti) such that
BX(xi, δ) ⊂ A for all i. Condition (iv) implies that |U(xi, ti)−U(xi, t̄)| → 0. Therefore,
since U(xi, ti) = 0 for all i, we have U(xi, t̄) ≤ kδ for some sufficiently large number
i. The function U(·, t̄) on the ball BX(xi, δ) ⊂ A satisfies all conditions of Theorem
1.3. Indeed, conditions (i) and (ii) hold obviously, condition (iii) can be verified as
above (by replacing x̄ by xi in the corresponding reasonings). Theorem 1.3 implies
that the set M(t̄) is non-empty. Therefore, T is closed.

Thus, the set T is simultaneously open, closed and non-empty. Therefore, T = T ,
since T is connected. �

Remark 2.2. Note that (iv) implies that the function γ(t) = inf
x∈A

U(x, t) is continu-

ous.

Remark 2.3. Theorem 2.1 is correct if T is not a metric but a topological space. In
this case, the function U is assumed to be continuous in t, uniformly in x, if for every
point t0 ∈ T and for every δ > 0 there exists a neighbourhood V of the point t0, such
that |U(x, t)− U(x, t0)| < δ for all x ∈ A and t ∈ V.

Let us discuss condition (iv). It is quite burdensome but often it can be weakened.
Denote

c0 = inf
x∈A

sup
t∈T

U(x, t).

If T is compact then it is easy to observe that c0 is finite, whereas in the general
case it is not. For example, if X = A = R, T = R, and U(x, t) = |x − t|, then
c0 = +∞.

For finite c0 take an arbitrary c > c0, set c = +∞ if c0 = +∞. Consider the
condition:

(iv)c the function U is continuous in t uniformly in
x ∈ Ac := {x ∈ A : U(x, t) ≤ c∀ t ∈ T}.

Proposition 2.4. Let c > c0. Theorem 2.1 remains true if we replace condition (iv)
by a weaker condition (iv)c.
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Proof. Let for the function U all assumptions of Theorem 2.1 except (iv) hold and let
(iv)c hold as well. Set

Uc(x, t) :=

{
U(x, t), if x ∈ Ac;
+∞, if x ∈ A \Ac.

Its obvious that the set Ac is non-empty. Condition (i) implies that this set is closed.
Moreover, it is a straightforward task to ensure that (iv)c implies that condition (iv) of
Theorem 2.1 holds for the function Uc. Thus, the desired result follows from Theorem
2.1. �

Assume now that the set T is linearly connected. Then Theorem 2.1 still holds, if
condition (iv) is replaced by the following weaker condition:

(iv)> for all c ∈ R, the function U is continuous in t uniformly in
x ∈ Ac = {x ∈ A : U(x, t) ≤ c∀ t ∈ T}.

Let us prove this. Fix t ∈ T such that the set M(t) is non-empty. Take an arbitrary
τ ∈ T. We have to prove that the set M(τ) is non-empty as well. Since T is linearly
connected, there exists a continuous curve l that connects the points t and τ. The
curve l is compact. Therefore, as it was noted above, there exists c ∈ R, such that

c > inf
x∈A

sup
t∈l

U(x, t).

Condition (iv)> implies that condition (iv)c holds for the chosen c. Therefore, replac-
ing the space T by its subspace l, from Proposition 2.4, we obtain that the set M(τ)
is non-empty.

Let us consider more general assumptions that allow to replace condition (iv) by
condition (iv)> in Theorem 2.1. Let the space T coincide with the union of sets Ti,
i ∈ I, where I – is a set of indexes. Assume that each set Ti is either linearly connected
or connected and compact. Moreover, let for arbitrary points t, τ ∈ T there exist such
indexes i1, ..., im ∈ I, that t ∈ Ti1 , τ ∈ Tim and Tij ∩ Tij+1

6= ∅, j = 1, ...,m − 1. In
this case, in Theorem 2.1, condition (iv) can be replaced by condition (iv)>. This fact
holds true due to the aforementioned arguments.

Proposition 2.5. Assume that all conditions of Theorem 2.1 hold and

(vii) there exist x̄ ∈ A and t̄ ∈ T such that U(x̄, t̄) ≤ γ(t̄) + k distX(x̄, ∂A).

Then the set M(t) is non-empty for all t ∈ T.

Proof. Set δ := U(x̄,t̄)−γ(t̄)
k . Condition (vii) implies that BX(x̄, δ) ⊂ A. So, it follows

from Theorem 1.3 that the set M(t̄) is non-empty. Thus, Theorem 2.1 implies that
the set M(t) is non-empty for all t ∈ T. �

Let us study the properties of the set-valued mapping M.

Proposition 2.6. Assume that all conditions of Theorem 2.1 hold. Then the set-
valued mapping M is sequentially lower semi-continuous and closed (i.e. its graph is
closed).
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Proof. As before, we can assume without loss of generality that γ(t) = 0, U(x, t) ≥ 0
for all x ∈ A, t ∈ T. Fix an arbitrary t̄ ∈ T, x̄ ∈ M(t̄), and a subsequence {ti}
convergent to t̄. It follows from condition (v) that BX(x̄, δ) ⊂ A for some δ > 0.
Condition (iv) implies that U(x̄, ti)→ U(x̄, t̄) = 0. Thus, using arguments analogous
to those in the proof of the openness of the set T in Theorem 2.1, we conclude that
the function U(·, ti) on the ball BX(x̄, δ) satisfies all the conditions of Theorem 1.3
for sufficiently large i. This theorem implies that there exist points ξi ∈ M(ti) such
that ξi → x̄. So, M is sequentially lower semi-continuous.

The closedness of the graph of M follows from the fact that if xi → x̄, ti → t̄ and
U(xi, ti) = 0 for every i then U(x̄, t̄) = 0. This property was shown in the proof of
Theorem 2.1. �

Let ω be the modulus of continuity of the function U in the variable t, i.e.

ω(ε) = sup{|U(x, t1)− U(x, t2)| : x ∈ A, t1, t2 ∈ T, ρT (t1, t2) ≤ ε}

for ε > 0 (here and everywhere below we assume that (+∞)− (+∞) = 0). Obviously

|U(x, t1)− U(x, t2)| ≤ ω(ρT (t1, t2)) ∀ t1, t2 ∈ T.

The condition ω(ε) → 0 as ε → 0+ means that the function U is continuous in t
uniformly in x.

Let us define the internal δ-shell of the boundary of the set A as follows:

A(δ) := {x ∈ A : distX(x, ∂A) ≤ δ}.

Proposition 2.7. Assume that all the conditions of Theorem 2.1, except (v), hold
and

(viii) there exists δ > 0, such that M(t) ∩A(δ) = ∅ for all t ∈ T.
Moreover, let ω(ε)→ 0 as ε→ 0 + .

Then if the set M(t) is non-empty for some t ∈ T, then the conclusion of Theorem
2.1 holds and

hX(M(t1),M(t2)) ≤ k−12ω(ρT (t1, t2)) ∀ t1, t2 ∈ T : ω(ρT (t1, t2)) ≤ kδ. (2.3)

Proof. Set γ(t) := inf
x∈A

U(x, t), t ∈ T. The assumptions of the proposition imply that

the function γ is uniformly continuous and its modulus of continuity does not exceed

ω. Set Ũ(x, t) := U(x, t) − γ(t). Thus, passing to the function Ũ from the function
U, we will assume that γ = 0, U(x, t) ≥ 0 for all x ∈ A, t ∈ T, and the modulus of
continuity of the function U with respect to variable t does not exceed 2ω.

Condition (v) follows from condition (viii). Therefore, it is enough to prove that
(2.3). For all t ∈ T, x ∈ M(t), condition (viii) implies BX(x, δ) ⊂ A. Take arbitrary
t1, t2 ∈ T such that 2ω(ρT (t1, t2)) ≤ kδ. Let x1 ∈M(t1). Then U(x1, t1) = 0 and thus
U(x1, t2) ≤ 2ω(ρT (t1, t2)) ≤ kδ. Moreover, as it was mentioned above, BX(x1, δ) ⊂ A.
Therefore, Theorem 1.2 implies that there exists x2 ∈ A such that U(x2, t2) = 0,
ρX(x1, x2) ≤ k−12ω(ρT (t1, t2)). Carrying out analogical arguments for the set M(t2),
we have hX(M(t1),M(t2)) ≤ 2k−1ω(ρT (t1, t2)). �
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Remark 2.8. If T is a convex subset of a normed space then inequality (2.3) holds
for all t1, t2 ∈ T (i.e. the conditon ω(ρT (t1, t2)) ≤ kδ can be omitted in (2.3)).

Condition (vi) of Theorem 2.1 and condition (viii) of Proposition 2.7 are burden-
some. They are caused by the possible non-compactness of the set A ⊂ X. Condition
(vi) of Theorem 2.1 is required only for the proof of closedness of the set T . In [9], the
closedness of the set T was assumed instead of condition (vi). Moreover, condition
(vi) automatically holds in certain important applications, for example, as it is shown
below in specific problems related with fixed points.

Assume thatA is compact. Then condition (vi) of Theorem 2.1 holds automatically.
Moreover, Proposition 2.6 implies that the set-valued mapping M is sequentially lower
semi-continuous and, therefore, continuous in Hausdorff metric. In addition, in this
case, condition (viii) of Proposition 2.7 is a corollary of condition (v) of Theorem 2.1.

Theorem 2.1 gives the following ”homotopic” corollary.

Proposition 2.9. Let T = [0, 1], all the conditions of Proposition 2.7 hold, and there
exist x0 ∈ domU(·, 0) such that U(x0, 0) ≤ γ(0) + kdistX(x0, ∂A).

Then there exists a point ξ ∈ A at which the function U(·, 1) attains its minimum.
Moreover, the set M(t) is non-empty for all t and

hX(M(t1),M(t2)) ≤ 2k−1ω(ρT (t1, t2)) ∀ t1, t2 ∈ [0, 1]. (2.4)

Proof. Theorem 1.3 implies that the set M(t) is non-empty. Inequality (2.4) follows
from Proposition 2.7 and Remark 2.8. �

Unlike (2.3), estimate (2.4) is not local, since in Proposition 2.9, instead of an
arbitrary connected metric space, the interval [0, 1] is considered. If the modulus of
continuity of ω satisfies inequality ω(ε) ≤ cε for each ε > 0 for a certain c > 0, then
the function U is Lipschitz in t. Then (2.4) implies that the set-valued mapping M(·)
is also Lipschitz.

To conclude this section, we provide examples illustrating the results above. The
following example demonstrates the essentiality of assumption (vi) in Theorem 2.1.

Example 2.10. Let T = [0, 1/3], X = [3,∞)× R, A = [3,∞)× [0, 1/2] ⊂ X,
ρX(x, x′) = |λ− λ′|+ |χ− χ′| ∀x = (λ, χ), x′ = (λ′, χ′) ∈ X. (2.5)

Define a function U : A× T → R as follows. Set

a0(λ) = 0, a1(λ) =
λ3

λ4 + 1
, a2(λ) =

1

λ
, a3(λ) =

1

3
, b(λ) = λ4 ∀λ ∈ [3,∞), (2.6)

Di = {(λ, t) : ai−1(λ) ≤ t ≤ ai(λ)}, i = 1, 3,

U(x, t) =

 |χ− t|+ a1(λ), if (λ, t) ∈ D1 ;
|χ− t|+ b(λ)(a2(λ)− t), if (λ, t) ∈ D2 ;
|χ− a2(λ)|, if (λ, t) ∈ D3 .

It is a straightforward task to ensure that γ(t) := inf
x∈A

U(x, t) = 0 for every t ∈ T.
When t 6= 0, the set of points of minimum of the function U(·, t) is the set

M(t) :=
{
x = (λ, λ−1) : λ ≥ t−1

}
.
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The function U(·, 0) has no points of minimum, i.e. M(0) = ∅. So, the proposition of
Theorem 2.1 does not hold for the function U.

Let us show that all the conditions of Theorem 2.1 except (vi) hold for U. Condition
(i) holds, since the function U is continuous. Condition (ii) holds with γ(t) ≡ 0. Let
us show that condition (iii) holds for k = 1. Take arbitrary t ∈ T, x = (λ, χ) ∈ A,
x 6∈M(t). Consider three cases: (λ, t) ∈ Dj , j = 1, 2, 3.

Let (λ, t) ∈ D1 \ D2. If χ 6= t then for x′ = (λ, t) the following equation holds

U(x′, t) + ρ(x, x′) = U(x, t), (2.7)

while if χ = t then inequality (2.2) is violated, since

distX(x, ∂A) ≤ χ = t < a1(λ) = U(x, t).

Thus, when (λ, t) ∈ D1 condition (iii) holds.
Let (λ, t) ∈ D2. If χ 6= t then (2.7) holds for x′ = (λ, t). If χ = t then set

x′ := (1/t, t). Since (1/t, t) ∈ D3, we have

U(x′, t) + ρX(x, x′) =
1

t
− λ < λ3a1(λ)

(
1

t
− λ
)
< λ3t

(
1

t
− λ
)

= U(x, t).

Thus, in the second case condition (iii) holds as well. Let now (λ, t) ∈ D3 \ D2. Then
x = (λ, χ) 6∈M(t). So, (2.7) holds for x′ := (λ, 1/λ). Moreover, x 6= x′, since χ 6= 1/λ.
Hence, condition (iii) holds.

Let us verify condition (iv). First, we prove that the function U is continuous at
the point t = 0 in t uniformly in x ∈ A. For this purpose let us estimate the value
|U(x, 0)−U(x, t)| for each t ∈ T, x ∈ A. Consider three cases: (λ, t) ∈ Dj , j = 1, 2, 3.

If (λ, t) ∈ D1 then |U(x, 0)−U(x, t)| =
∣∣|χ− t| − |χ|∣∣ ≤ t < 2/λ. If (λ, t) ∈ D2 then

|U(x, 0)− U(x, t)| ≤ |U(x, 0)− U(x, a1(λ))|+ |U(x, a1(λ))− U(x, t)|
≤ a1(λ) + (t− a1(λ)) + b(λ)(t− a1(λ)) = t+ b(λ)(t− a1(λ))

≤ a2(λ) + b(λ)(a2(λ)− a1(λ)) < 2/λ.

Finally, if (λ, t) ∈ D3 then U(x, t) = U(x, a2(λ)), so

|U(x, 0)− U(x, t)| ≤ |U(x, 0)− U(x, a1(λ))|+ |U(x, a1(λ))− U(x, a2(λ))| < 2/λ.

Take an arbitrary ε > 0. For x = (λ, χ) ∈ [2/ε,+∞) × [0, 1/2], t ∈ T, we have
|U(x, 0) − U(x, t)| < 2/λ < ε. Since the function U is continuous on the compact
[3, 2/ε]× [0, 1/2]× T, this function is uniformly continuous on it. Therefore,

∃ δ > 0 : ∀x = (λ, χ) ∈ [3, 2/ε]× [0, 1/2] ∀ t ∈ [0, δ) |U(x, 0)− U(x, t)| < ε.

Hence, for all (λ, χ) ∈ A, t ∈ [0, δ), we have |U(x, 0) − U(x, t)| < ε. Therefore, the
function U is continuous in t at the point t = 0 uniformly in x.

Now let us prove that the function U is continuous in t at every point t̄ 6= 0
uniformly in x ∈ A. Take arbitrary t1, t2 ∈ T, 0 < t1 < t̄ < t2. Note that if x = (λ, χ) ∈
A and λ > 1/t2 then (λ, χ) ∈ D3 and, therefore, the function U(x, ·) is constant on
[t1, t2]. Since the function U is continuous on the compact [0, 1/t2]×[0, 1/2]×[t1, t2], it
is uniformly continuous on it. Therefore, U is continuous in t at the point t̄ uniformly
in x ∈ A. Condition (v) holds, since (λ, 0) 6∈M(t) and (λ, 1/2) 6∈M(t).
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Theorem 2.1 implies that condition (vi) fails. Let us show this fact directly. For
any decreasing sequence ti → 0+ we have M(ti) 6= ∅, h+(M(ti), ∂A) = ti → 0. For
any sequence of elements xi ∈M(ti), xi = (ti, λi), we have λi ≥ t−1

i . Therefore, this
sequence does not contain any convergent subsequence.

Consider an example showing that assumption (viii) on the separability of the set
M(t) from the boundary of the set A is essential in Propositions 2.7 and 2.9.

Example 2.11. Let T = [0, 3−1], X = [2,∞) × R, A = [2,∞) × [0, 2−1] ⊂ X. In
the space X = [2,∞) × R, define a metric using the function (2.5). Set ā := a1(3),
b̄ := b(3), where a1(·) and b(·) are defined by formula (2.6). Define the function
U : A × T → R as follows. If (λ, χ, t) ∈ [3,∞) × [0, 2−1] × T then U(x, t) coincides
with the value U(x, t) from Example 2.10. If (λ, χ, t) ∈ [2, 3)× [0, 2−1]× T then

U(x, t) =

{ ∣∣χ− t− 1 + λ
3

∣∣+ ā(λ− 2), if (λ, t) ∈ D̃1 ,∣∣χ− t− 1 + λ
3

∣∣+ b̄
∣∣ 1

3 (λ− 2)− t
∣∣, if (λ, t) ∈ D̃2 ;

where

D̃1 = {(λ, t) : 0 ≤ t ≤ ā(λ− 2)}, D̃2 = {(λ, t) : ā(λ− 2) < t ≤ 1/3} .

It is a straightforward task to ensure that γ(t) := inf
x∈A

U(x, t) = 0 for every t ∈ T.
At the same time, the function U(·, t) attains its minimum at points of the set

M(t) =

{
x =

(
λ,

1

λ

)
: λ ≥ 1

t

}
∪
{(

3t+ 2,
1

3

)}
for t 6= 0, M(0) =

{(
2,

1

3

)}
.

Thus, the statements of propositions 2.7 and 2.9 are violated for the function U, since
the set-valued mapping M is not continuous at zero.

Let us show that the function U satisfies all the conditions of Theorem 2.1. Con-
dition (i) holds, since U is continuous and (ii) holds with γ(t) ≡ 0.

Let us show that condition (iii) holds for any positive k ≤ 3ā/(4 + 12ā). For
arbitrary x = (λ, χ) ∈ A and t ∈ T such that x 6∈ M(t) and U(x, t) ≤ k distX(x, ∂A)
construct x′ ∈ A, x′ 6= x such that U(x′, t) + kρX(x, x′) ≤ U(x, t). For the case when
λ ≥ 3, the corresponding construction of the point x′ was made in Example 2.10 for
k = 1. Since the values of distX(x, ∂A) in Examples 2.10 and 2.11 coincide and k < 1,
the constructed point x′ in 2.10 is the desired one.

Now let λ ∈ [2, 3). Set x′ := (3t+ 2, 1/3). If (λ, t) ∈ D̃1 then

U(x′, t) + kρX(x, x′) ≤ k|λ− 3t− 2|+ k

∣∣∣∣χ− t− 1 +
λ

3

∣∣∣∣+ k

∣∣∣∣λ− 2

3
− t
∣∣∣∣

≤ k
∣∣∣∣χ− t− 1 +

λ

3

∣∣∣∣+
4

3
k(λ− 2) + 4kt ≤ k

∣∣∣∣χ− t− 1 +
λ

3

∣∣∣∣+
4

3
k(λ− 2)

+4kā(λ− 2) ≤ k
∣∣∣∣χ− t− 1 +

λ

3

∣∣∣∣+ ā(λ− 2) ≤
∣∣∣∣χ− t− 1 +

λ

3

∣∣∣∣+ ā(λ− 2) = U(x, t).
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If (λ, t) ∈ D̃2 then taking into account that 4k ≤ b̄, we have

U(x′, t) + kρX(x, x′) ≤ k|λ− 3t− 2|+ k

∣∣∣∣χ− t− 1 +
λ

3

∣∣∣∣+ k

∣∣∣∣λ− 2

3
− t
∣∣∣∣

= k

∣∣∣∣χ− t− 1 +
λ

3

∣∣∣∣+ 4k

∣∣∣∣λ− 2

3
− t
∣∣∣∣ ≤ ∣∣∣∣χ− t− 1 +

λ

3

∣∣∣∣+ b̄

∣∣∣∣λ− 2

3
− t
∣∣∣∣ = U(x, t).

Thus, condition (iii) holds.
Let us verify condition (iv). The restriction of the continuous function U to the

compact [2, 3]× [0, 2−1]×T is uniformly continuous. The restriction of the function U
to T × [3,∞)× [0, 2−1] considered in Example 2.10 satisfies condition (iv). Therefore,
condition (iv) holds for the function U. Conditions (v) and (vi) can be verified directly.

Thus, the function U satisfies all the conditions of Theorem 2.1. At the same time,
the set-valued mapping M(·) is discontinuous at zero, and, therefore, the function U
does not satisfy condition (viii).

3. Fixed points and coincidence points

Let us present a local analogue of the Caristi fixed point theorem. As before, we
assume that X is a complete metric space with a metric ρX , T is a metric space
with a metric ρT , A ⊂ X is a closed subset with the boundary ∂A and the non-empty
interior intA. Let a number r ∈ (0,+∞], a point x̄ ∈ X, a mapping g : BX(x̄, r)→ X,
and a function U : BX(x̄, r)→ R ∪ {+∞} be given.

Theorem 3.1. Given γ ∈ R and k > 0, assume that

(i) the function U is lower semi-continuous and U(x) ≥ γ for every x ∈ BX(x̄, r);
(ii) x̄ ∈ domU, U(x̄) ≤ γ + rk;
(iii) for every x ∈ BX(x̄, r), if

U(x) ≤ U(x̄)− kρX(x, x̄)

then
U(g(x)) + kρX(x, g(x)) ≤ U(x).

Then there exists a fixed point ξ ∈ X of the mapping g, i.e. g(ξ) = ξ, such that

ρX(x̄, ξ) ≤ U(x̄)− γ
k

.

Proof. Set δ := (U(x̄)−γ)/k. Condition (ii) implies that BX(x̄, δ) ⊂ BX(x̄, r). Let us
show that the mapping g has a fixed point ξ ∈ BX(x̄, δ). Consider the contrary, i.e.
g(x) 6= x for all x ∈ BX(x̄, δ). Then U(x) > γ for every x ∈ BX(x̄, δ), since condition
(iii) implies that either

U(x) ≤ U(x̄)− kρX(x, x̄) and U(x) > U(x)− kρX(x, g(x)) ≥ U(g(x)) ≥ γ,
or

U(x) > U(x̄)− kρX(x, x̄) ≥ U(x̄)− kδ = U(x̄)− kU(x̄)− γ
k

= γ.

It follows from (iii) that for every x ∈ BX(x̄, δ) such that U(x) ≤ U(x̄) − kρX(x, x̄),
for x′ := g(x), we have U(x′) + kρX(x, x′) ≤ U(x). Moreover, x′ 6= x, since g has
no fixed points in the ball BX(x̄, δ). Therefore, in the ball BX(x̄, δ), condition (iii)
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of Theorem 1.3 holds. Obviously, conditions (i) and (ii) of Theorem 1.3 hold as well.
Therefore, Theorem 1.3 implies that there exists a point ξ ∈ BX(x̄, δ) such that
U(ξ) = γ. However, it was shown above that U(x) > γ for every x ∈ BX(x̄, δ). The
obtained contradiction completes the proof. �

The Caristi fixed point theorem (see [5]) directly follows from Theorem 3.1. Let
us recall it.

Let a mapping g : X → X be given.

Caristi fixed point theorem (Theorem 2.1′ from [5]) Assume that there exist a
number k > 0 and a proper function U : X → R+ ∪ {+∞} (i.e. domU 6= ∅) such
that U is lower semi-continuous and

U(g(x)) + kρX(x, g(x)) ≤ U(x) ∀x ∈ X. (3.1)

Then for every point x̄ ∈ domU, there exists a fixed point ξ ∈ X of the mapping g
such that ρX(x̄, ξ) ≤ (U(x̄)− γ)/k, γ := inf

x∈X
U(x).

The proof of this proposition consists in the direct application of Theorem 3.1 with
δ = +∞. So, Theorem 3.1 is a local analogue of the Caristi fixed point theorem which
has a global nature. Note also that the continuity of the mapping g is not assumed
neither in the Caristi fixed point theorem nor in Theorem 3.1.

Let us proceed to generalized coincidence points of set-valued mappings. Let
(Y, ρY ) be a metric space, let G1, G2 : X ⇒ Y be given set-valued mappings,
i.e. mappings that assign to every point x ∈ X non-empty closed subsets of the
space Y. A point ξ ∈ X is called a coincidence point of the mappings G1 and G2, if
G1(ξ) ∩ G2(ξ) 6= ∅ and a generalized coincidence point, if distY (G1(ξ), G2(ξ)) = 0.
It is obvious that every coincidence point is a generalized coincidence point but not
vice-versa. If at least one of the sets G1(ξ) or G2(ξ) is compact (for example, if G1

and G2 are “single-valued” mappings), then the generalized coincidence point ξ is a
coincidence point.

Let a non-empty closed set A ⊂ X, the number k > 0, the point x̄ ∈ A and set-
valued mapping G1, G2 : A⇒ Y be given. Let us denote the set of generalized points
of the mappings G1 and G2 by Ξ, i.e.

Ξ := {ξ ∈ A : distY (G1(ξ), G2(ξ)) = 0}.

Theorem 3.2. Given a number k > 0, assume that

(i) the set-valued mappings G1, G2 are sequentially upper semi-continuous;
(ii) distY (G1(x̄), G2(x̄)) ≤ k distX(x̄, ∂A);
(iii) for every x ∈ A, if

0 < distY (G1(x), G2(x)) ≤ distY (G1(x̄), G2(x̄))− kρX(x, x̄)

then there exists a point x′ ∈ A such that x′ 6= x and

distY (G1(x′), G2(x′)) + kρX(x, x′) ≤ distY (G1(x), G2(x)).
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Then the set of generalized coincidence points Ξ is non-empty and

distX(x̄,Ξ) ≤ distY (G1(x̄), G2(x̄))

k
.

The proof of this theorem uses the following auxiliary proposition (see [1]).

Lemma 3.3. If the set-valued mappings G1 and G2 are sequentially upper semi-
continuous, then the function U : x 7→ distY (G1(x), G2(x)), x ∈ A, is lower semi-
continuous.

Proof. Let x ∈ A, xi → x. For each i take points y1,i ∈ G1(xi), y2,i ∈ G2(xi) such that
ρY (y1,i, y2,i) ≤ distY (G1(xi), G2(xi)) + i−1. Since G1 and G2 are sequentially upper
semi-continuous, there exist ỹ1,i ∈ G1(x) and ỹ2,i ∈ G2(x) such that ρY (y1,i, ỹ1,i)→ 0
and ρY (y2,i, ỹ2,i)→ 0. Applying the triangle inequality we obtain

distY (G1(x), G2(x)) ≤ ρY (ỹ1,i, ỹ2,i) ≤ ρY (y1,i, y2,i) + ρY (y1,i, ỹ1,i) + ρY (y2,i, ỹ2,i)

≤ distY (G1(xi), G2(xi)) + i−1 + ρY (y1,i, ỹ1,i) + ρY (y2,i, ỹ2,i) ∀ i.
Therefore, the function U is lower semi-continuous. �

Proof of Theorem 3.2. Set U(x) := distY (G1(x), G2(x)), x ∈ A, γ := 0,

δ := distX(x̄, ∂A).

It is obvious that BX(x̄, δ) ⊂ A. Let us show that the restriction of the function U to
the ball BX(x̄, δ) satisfies all the conditions of Theorem 1.3 hold.

It is obvious that U(x) ≥ 0 for every x ∈ BX(x̄, δ). Moreover, Lemma 3.3 im-
plies that U is lower semi-continuous. Therefore, condition (i) of Theorem 1.3 holds.
Assumptions (ii) and (iii) imply that conditions (ii) and (iii) of Theorem 1.3 hold.
Thus, the restriction of U to BX(x̄, δ) satisfies all the conditions of Theorem 1.3.
Theorem 1.3 implies that there exists a point ξ ∈ BX(x̄, δ) such that U(ξ) = 0 and
ρX(x̄, ξ) ≤ U(x̄)/k. Obviously, ξ is a generalized coincidence point. The desired
estimate follows the inequality ρX(x̄, ξ) ≤ U(x̄)/k. �

Theorem 3.2 is a analogue of Theorem 4 from [2] on generalized coincidence points
which has a global nature. Theorem 4 from [2] is a direct corollary of Theorem 3.2.
Let us recall the result from [2].

Given set-valued mappings G1, G2 : X ⇒ Y, denote

W (x̄) := {x ∈ X : 0 < distY (G1(x), G2(x)) ≤ distY (G1(x̄), G2(x̄))} ∀ x̄ ∈ X.

Corollary 3.4. (Theorem 4 from [2]) Assume that the mappings G1, G2 are sequen-
tially upper semi-continuous, there exist a point x̄ ∈ X and a number k > 0 such that
for every x ∈W (x̄) there exists a point x′ ∈ X, x′ 6= x, satisfying the relation

distY (G1(x′), G2(x′)) + kρX(x, x′) ≤ distY (G1(x), G2(x)). (3.2)

Then the set of generalized coincidence points Ξ of G1 and G2 is non-empty and

distX(x̄,Ξ) ≤ distY (G1(x̄), G2(x̄))

k
.



CARISTI-LIKE CONDITIONS 49

In order to prove this proposition it is enough to take δ := kdistY (G1(x̄), G2(x̄))
and apply Theorem 3.2 to the restriction of the mappings G1 and G2 to the ball
BX(x̄, δ).

Remark 3.5. If the assumptions of Corollary 3.4 hold then the mappings G1 and
G2 may have no coincidence points. For example, let X be a complete metric space,
Y = R2

+,

G1(x) ≡ {(t, 1/t) : t ≥ 0}, G2(x) ≡ {(t, 2/t) : t ≥ 0}.
All the assumptions of Corollary 3.4 hold, since distY (G1(x), G2(x)) ≡ 0. However, G1

and G2 have no coincidence points, even though all the points x ∈ X are generalized
coincidence points.

Remark 3.6. In [2], it was shown that if for certain α > β ≥ 0 the mapping G1

is α-covering and has a closed graph, while G2 is β-Lipschitz with respect to the
Hausdorff metric, then condition (3.2) holds for any positive k < α− β.

Apply Corollary 3.4 to the fixed point problem we obtain the following result.

Theorem 3.2′. Assume that the mapping g : X → X is continuous, x̄ ∈ X, there
exists a number k > 0 such that

0 < ρX(x, g(x)) ≤ ρX(x̄, g(x̄))

⇒ ∃x′ ∈ X : x′ 6= x, ρX(x′, g(x′)) + kρX(x, x′) ≤ ρX(x, g(x)). (3.3)

Then there exists a fixed point ξ ∈ X of the mapping g such that

ρX(x̄, ξ) ≤ ρX(x̄, g(x̄))/k.

In [8] (see Chapter I, §1.3) the elementary implicit function theorem for contractive
mappings was obtained. Let us consider its analogue for generalized coincidence points
of set-valued mappings.

Let set-valued mappings G1, G2 : A × T ⇒ Y be given (recall that T is a metric
space with a metric ρT , A ⊂ X is a non-empty closed subset, intA 6= ∅). For every
t ∈ T denote the set of all generalized coincidence points of the mappings G1(·, t) and
G2(·, t) by Ξ(t), i.e.

Ξ(t) := {ξ ∈ A : distY (G1(ξ, t), G2(ξ, t)) = 0} ∀ t ∈ T.

We will say that the set-valued mapping G : A × T ⇒ Y is continuous in t at
a point t0 ∈ T uniformly in x, if for every ε > 0 there exists δ > 0 such that
hY (G(x, t0), G(x, t)) < ε for all t ∈ BT (t0, δ), for all x ∈ A. We will say that the set-
valued mapping G : A × T ⇒ Y is continuous in t uniformly in x, if it is continuous
in t at every point t0 ∈ T uniformly in x.

Theorem 3.7. Let the metric space T be connected, a number k > 0 be given. Assume
that

(i) the set-valued mappings G1(·, t) and G2(·, t) are sequentially upper semi-
continuous for each t ∈ T ;
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(ii) for each t ∈ T, for each x ∈ A, if

0 < distY (G1(x, t), G2(x, t)) ≤ k distX(x, ∂A) (3.4)

then there exists x′ ∈ A such that x′ 6= x and

distY (G1(x′, t), G2(x′, t)) + kρX(x, x′) ≤ distY (G1(x, t), G2(x, t);

(iii) the set-valued mappings G1 and G2 are continuous in t uniformly in x;
(iv) Ξ(t) ∩ ∂A = ∅ for each t ∈ T ;
(v) for any point t̄ ∈ T and a subsequence {ti} convergent to t, if Ξ(ti) is non-

empty and h+(Ξ(ti), ∂A) → 0, then there exists xi ∈ Ξ(ti) such that the
sequence {xi} contains a convergent subsequence.

Then if the set Ξ(t) is non-empty for some t ∈ T, then it is non-empty for all t ∈ T.

Proof. Set U(x, t) := distY (G1(x, t), G2(x, t)), γ(t) := 0, t ∈ T, x ∈ A. Let us show
that the function U satisfies all the conditions of Theorem 2.1.

Lemma 3.3 and sequential upper semi-continuity of the functions G1 and G2 with
respect to the variable x imply that condition (i) of Theorem 2.1 holds. The definition
of the functions U and γ imply that condition (ii) of Theorem 2.1 holds. The definition
of the functions U and γ and assumption (ii) imply that condition (iii) holds. Let us
verify condition (iv). Assumption (iii) imply that for arbitrary t0 ∈ T and ε > 0, there
exists δ > 0 such that hY (G1(x, t0), G1(x, t)) < ε/2, hY (G2(x, t0), G2(x, t)) < ε/2
hold for every x ∈ A, t ∈ BT (t0, δ). Therefore, by the definition of functions hY and
distY , we have

distY (G1(x, t), G2(x, t))− distY (G1(x, t0), G2(x, t0))

≤ hY (G1(x, t), G1(x, t0)) + hY (G2(x, t), G2(x, t0)) < ε,

distY (G1(x, t0), G2(x, t0))− distY (G1(x, t), G2(x, t))

≤ hY (G1(x, t), G1(x, t0)) + hY (G2(x, t), G2(x, t0)) < ε.

Therefore, |U(x, t) − U(x, t0)| < ε for every t ∈ BT (t0, δ) and x ∈ A. So, condition
(iv) holds. Assumptions (iv) and (v) imply that conditions (v) and (vi) of Theorem
2.1 hold. Thus, all the conditions of Theorem 2.1 hold.

Theorem 2.1 implies that for each t ∈ T there exists a point ξ(t) ∈ T such that
U(t, ξ(t)) = γ(t) = 0. Therefore, ξ(t) ∈ Ξ(t) for every t ∈ T. �

Let us show that assumption (v) in Theorem 3.7 is essential.

Example 3.8. Let T = [0, 1/3], X = [3,∞) × R, A = [3,∞) × [0, 1/2] ⊂ X, the
metric ρX is defined by (2.5), U : A× T → R is the function from Example 2.10. In
Example 2.10, it was shown that all the conditions of Theorem 2.1 hold true, except
condition (vi), and the function U(·, t) has points of minimum for every t ∈ T except
t = 0.

Let G1, G2 : A × T ⇒ R, G1(x, t) := {y ∈ R : y ≥ U(x, t)}, G2(x, t) := {0}.
It is obvious that the set-valued mappings G1 and G2 satisfy all the assumptions of
Theorem 3.7 except (v), while the mappings G1(·, 0) and G2(·, 0) have no generalized
coincidence points.
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The corollary of the obtained result is the elementary implicit function theorem for
single-valued contractive mappings (see [8], Chapter I, §1.3). Let us formulate and
prove a proposition of greater generality.

Given a mapping g : A× T → X, denote the set of all fixed points of the mapping
g(·, t) by Ξ(t), i.e.

Ξ(t) := {ξ ∈ A : ξ = g(t, ξ)} ∀ t ∈ T.

Corollary 3.9. Let T be a connected metric space, β ∈ [0, 1) be given. Assume that
the mapping g is uniformly continuous, for every fixed t ∈ T the mapping g(·, t) is
contractive with the constant β, and Ξ(t) ∩ ∂A = ∅ for every t ∈ T. Then if the set
Ξ(t) is non-empty for some t ∈ T, then Ξ(t) is non-empty and singleton for each
t ∈ T.

Proof. Let us show that the mappings G1(x, t) := {g(x, t)} and G2(x, t) := {x},
(x, t) ∈ A× T satisfy all the conditions of Theorem 3.7 with the constant k := 1− β.

Condition (i) holds, since g is continuous. Let us verify (ii). Let inequality (3.4)
hold for some (x, t) ∈ X × T. Set x′ := g(x, t).
We have x′ 6= x, since 0 < ρX(x, g(x, t)); x′ ∈ A, since

ρX(x, x′) = ρX(x, g(x, t)) ≤ βdistX(x, ∂A) < (1− β)distX(x, ∂A)

and

distY (G1(x′, t), G2(x′, t)) + kρX(x, x′) = ρX(g(x, t), g(g(x, t), t))

+(1− β)ρX(x, g(t, x)) ≤ βρX(x, g(t, x)) + (1− β)ρX(x, g(t, x))

= ρX(x, g(t, x)) = distY (G1(x, t), G2(x, t)).

Thus, condition (ii) holds. Conditions (iii) and (iv) by the assumptions.
Let us verify condition (v). Assume that there exists a sequence {ti} ⊂ T such

that ti → t̄, Ξ(ti) 6= ∅ for every i and h+
X(Ξ(ti), ∂A)→ 0 as i→∞. Take an arbitrary

sequence {xi} ⊂ X such that xi ∈ Ξ(ti) for every i. Since the set valued mapping g
is contractive in x, we have

ρX(x, xi) ≤
ρX(g(x, ti), xi)

1− β
∀x ∈ A. (3.5)

Let us prove that {xi} is a Cauchy sequence. Take an arbitrary ε > 0.
The uniform continuity of the mapping g implies that there exists a number N such
that ρX(g(x, ti), g(x, t)) < ε(1− β)/2 for every i > N, x ∈ X. Thus, inequality (3.5)
implies that

ρX(xi, xj) ≤
ρX(xi, g(xi, tj))

1− β
=
ρX(g(xi, ti), g(xi, tj))

1− β

≤ ρX(g(xi, ti), g(xi, t)) + ρX(g(xi, t), g(xi, tj))

1− β
< ε

for every i, j > N. Thus, {xi} is a Cauchy sequence. Completeness ofX and closedness
of A imply that {xi} converges to some point x̄ ∈ A. Since h+

X(Ξ(ti), ∂A) → 0, we
have x̄ ∈ ∂A. Since the mapping g is continuous, passing to the limit as i → ∞ in
the equation xi = g(ti, xi), we obtain x̄ = g(t̄, x̄). Since x̄ ∈ ∂A, the last equality
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contradicts the assumption Ξ(t̄) ∩ ∂A = ∅. Therefore, the considered sequence {ti}
does not exist, so, condition (v) of the theorem holds.

Theorem 3.7 implies that Ξ(t) 6= ∅ for all t. The fact that the set Ξ(t) is singleton
directly follows from the fact that g is a contraction in x. �

4. Comparison of fixed point theorems

Everywhere in this section X is a complete metric space with a metric ρX .
Let us start with an example in which the assumptions of Theorem 3.2′ hold, while

it is onerous to verify the assumptions of the other fixed point theorems.

Example 4.1. Given continuously differentiable functions σ1, σ2 : R2 → R of the
variable x = (x1, x2) ∈ R2, assume that there exists µ < 1 such that

∂σ1

∂x1
(x) ≤ µ, ∂σ1

∂x2
(x) ≥ 0,

∂σ2

∂x1
(x) ≤ 0,

∂σ2

∂x2
(x) ≤ µ,

for every x ∈ R2, and both functions σ1, σ2 are bounded.
Define a mapping g : R2 → R2 as follows:

g(x) =
(
x3

2 + σ1(x),−x3
1 + σ2(x)

)
, x ∈ R2.

Let us show that the mapping g satisfies all the assumptions of Theorem 3.2′. Set
U(x) := ‖g(x) − x‖, x ∈ R2. Here ‖x‖ is the Euclidean norm of a vector x ∈ R2.
Let us prove that for every d ≥ 0, the set Ld := {x ∈ R2 : U(x) ≤ d} is bounded.
For every x ∈ Ld, we have |x3

2 + σ1(x) − x1| ≤ d and | − x3
1 + σ2(x) − x2| ≤ d, so

|x3
2| ≤ d+ |σ1(x)|+ |x1| and |x3

1| ≤ d+ |σ2(x)|+ |x2|. Summing up these inequalities
we obtain

|x1|3 + |x2|3 ≤ 2d+ |x1|+ |x2|+ |σ1(x)|+ |σ2(x)|
1

2
‖x‖3 ≤ 2d+ 2‖x‖+ |σ1(x)|+ |σ2(x)| ⇒ 1

2
‖x‖3 − 2‖x‖ − (a+ 2d) ≤ 0,

where a > 0 is such that |σ1(x)|+ |σ2(x)| ≤ a for every x. Thus, we have

1

2
‖x‖3 − 2‖x‖ − (a+ 2d) ≤ 0 ∀x ∈ Ld. (4.1)

Denote by R = R(d) the maximal solution of the inequality 1
2r

3−2r−(a+2d) ≤ 0. In
virtue of (4.1) we have ‖x‖ ≤ R for each x ∈ Ld and, therefore, the set Ld is bounded.

Set f(x) := x− g(x). Let us prove that for every d ≥ 0 there exists c(d) > 0 such
that ∥∥∥∥(∂f∂x (x)

)−1∥∥∥∥ ≤ c(d) for every x ∈ Ld.

Since

det

(
∂f

∂x
(x)

)
= det

(
1− ∂σ1

∂x1
(x) −3x2

2 − ∂σ1

∂x2
(x)

3x2
1 − ∂σ2

∂x1
(x) 1− ∂σ2

∂x2
(x)

)
≥ (1−µ)2+9x2

1x
2
2 ≥ (1−µ)2,

the matrix
∂f

∂x
(x) is non-degenerate for x ∈ R2. So, the desired value c(d) exists in

virtue of compactness of the set Ld.
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Let us verify the assumptions of Theorem 3.2′. Take arbitrary x̄ ∈ R2.

Set d := U(x̄)+1. For arbitrary x from the open set X̃ := {x ∈ R2 : 0 < U(x) < d+1}
denote e := f(x)

‖f(x)‖ , A := ∂f
∂x (x). Since ‖e‖ = 1, we have∥∥∥∥∂U∂x (x)

∥∥∥∥ =

∥∥∥∥eA∥∥∥∥ =
‖A−1‖‖eA‖
‖A−1‖

≥ ‖eAA
−1‖

‖A−1‖
=

1

‖A−1‖
≥ 1

c(d+ 1)
.

Therefore, in virtue of Remark 1.10 to Lemma 1.9, the function U satisfy Carisiti-like

condition (1.1) on the set X̃ with arbitrary k < (c(d+1))−1. Therefore, (3.3) holds for

all x ∈ X̃ and specifically, for all x such that 0 < ‖x− g(x)‖ ≤ ‖x̄− g(x̄)‖. So, all the
assumptions of Theorem 3.2′ hold. Hence there exists a fixed point of the mapping g.

Let us discuss the Caristi’s theorem and Theorem 3.2′ and compare them.
The Caristi’s theorem is not only a sufficient condition but also a necessary con-

dition for the existence of a fixed point for a mapping g : X → X, in the case when
the set of fixed points of this mapping is closed. Indeed, let the set of fixed points
of the mapping g be non-empty and closed. Set U(x) := 0 for x ∈ X such that
x = g(x) and U(x) := +∞ for x ∈ X such that x 6= g(x). Obviously, this function
is lower semi-continuous, bounded from below and satisfies condition (3.1). So, the
assumptions of the Caristi’s theorem hold if for the mapping g : X → X the set
of fixed points is closed (for example, if g is continuous) and non-empty. Therefore,
only those mappings are of interest for which there exists a function U such that not
only condition (3.1) holds but also x 6= g(x) for a certain x ∈ domU. Let us give an
example of a corresponding mapping for which function U with the desired property
exists, although there exists no function U that is finite on X satisfying condition
(3.1).

Example 4.2. Let g : [−1, 1]→ [−1, 1], g(x) ≡ −x3. Set

Ũ(−1) = Ũ(1) = +∞, Ũ(x) =
2

1− |x|
∀x ∈ (−1, 1).

Then condition (3.1) holds for U = Ũ , Ũ(x) is finite for all x ∈ (−1, 1) and the only
fixed point of g is zero.

At the same time, if a function U satisfies condition (3.1), we have U(−1) = U(1) =
+∞. Indeed, if U(−1) is finite, then (3.1) implies U(1) < U(−1) and U(−1) < U(1).
If U(1) is finite we obtain the contradiction also.

Generally speaking, the class of mappings g such that there fixed points set is non-
empty and closed and any aforementioned function U satisfy the relation U(x) = +∞
for each x such that g(x) 6= x, is quite wide. It includes all expanding mappings g.
Recall that the mapping g : X → X is said to be an expanding map, if for some λ > 1
the following inequality holds

ρX(g(x), g(u)) ≥ λρX(x, u) ∀x, u ∈ X. (4.2)

It is known that a surjective expanding mapping of a complete metric space has a
unique fixed point.
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Proposition 4.3. Let g : X → X be an expanding mapping, a function U be bounded
below, k > 0, and (3.1) hold. Then U(x) = +∞ for each x such that g(x) 6= x. If, in
addition, the mapping g is surjective then (3.3) holds for some k > 0.

Proof. Assume that for a certain λ > 1, inequality (4.2) holds and U satisfies
(3.1). Let g(x) 6= x. Inequality (3.1) implies kρX(x, g(x)) ≤ U(x) − U(g(x)) and
kρX(g(n)(x), g(n+1)(x)) ≤ U(g(n)(x)) − U(g(n+1)(x)). Here n is an arbitrary non-
negative integer, gi is the i-th iteration of the mapping g, g0(x) ≡ x. Summing up
these inequalities, we have

k

n−1∑
i=0

ρX(gi−1(x), gi(x)) ≤ U(x)− U(gn(x)) ≤ U(x)− γ ∀n ≥ 2, (4.3)

where γ = inf
x∈X

U(x).

At the same time, (4.2) implies ρX(gi−1(x), gi(x)) ≥ λi−1ρX(x, g(x)) for every i ≥ 2.
Since λ > 1 and ρX(x, g(x)) > 0 the obtained inequality implies U(x) = +∞.

Let us additionally assume that the mapping g is surjective. It is a straightforward
task to ensure that (3.3) holds for x′ := g−1(x) and k := λ− 1. �

Thus, Theorem 3.2′ can be substantially applied to the class of surjective expanding
mappings, whereas the Caristi’s theorem is non-applicable. The following example
shows that there exist continuous mappings for which the Caristi’s theorem can be
substantially applied unlike Theorem 3.2′.

Example 4.4. Let

g : R+ → R+, g(x) ≡ x

1 + x
, U(x) ≡ x, k = 1.

Then U(x) < +∞ for every x ∈ R+ and condition (3.1) holds, since

U(g(x)) + ρX(x, g(x)) =
x

1 + x
+ x− x

1 + x
= x = U(x).

At the same time, condition (3.3) fails for any k > 0. In fact, if (3.3) holds, then for
every x 6= 0 there exists x′ < x, such that

x′ − x′

1 + x′
+ k(x− x′) ≤ x− x

1 + x
.

Then

k ≤ 1− 1

x− x′

(
x

1 + x
− x′

1 + x′

)
= 1− 1

(1 + x)(1 + x′)
.

Passing to the limit as x→ 0, since x′ < x, we obtain k ≤ 0.

Consider general corollaries of the Caristi’s theorem and Theorem 3.2′.

Corollary 4.5. Let there exist β ∈ [0, 1), such that

ρX(g2(x), g(x)) ≤ βρX(g(x), x) ∀x ∈ X.
Then for every x ∈ X, there exists ξ ∈ X such that

ξ = g(ξ) and ρX(x, ξ) ≤ ρX(x, g(x))/(1− β).
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This proposition directly follows from the Caristi’s theorem and Theorem 3.2′. For
derivation of Corollary 4.5 from the Caristi’s theorem, it is enough to apply it to the
mapping g and the function U(x) ≡ ρX(x, g(x)). For derivation of Corollary 4.5 from
Theorem 3.2′ it is enough to apply it to the mapping g, assuming that x′ := g(x) for
all x ∈ X.

Note that unlike the contraction mapping principle, the assumptions of the Caristi’s
theorem and Theorem 3.2′ are not sufficient for the uniqueness of the fixed point. Let
us provide a corresponding example.

Example 4.6. Let g : R2 → R2, g(x) = (x1, 0), x = (x1, x2) ∈ R2. Then the
assumptions of the Caristi’s theorem and Theorem 3.2′ hold, since the assumptions
of Corollary 4.5 hold for β = 0. The set of fixed points is {x : x2 = 0}.

As it was noted above the Caristi’s theorem holds true without prior assumption
of continuity of the mapping g. However, if g is continuous then for the function U

we can take the function Û , defined by the equality

Û(x) =

∞∑
n=0

ρX(gn(x), gn+1(x)). (4.4)

Here we assume that Û(x) = +∞ if the series in (4.4) diverges. Function Û was
considered in ([4], Chapter 5, §3) as a minimal function, satisfying condition (3.1).

Elements of the functional series (4.4) are non-negative continuous functions, since

g is continuous. Thus, the function Û is lower semi-continuous. It also follows from

(4.4) that Û(g(x)) ≡ Û(x) − ρX(x, g(x)) and, therefore, (3.1) holds with U = Û

and k = 1. Thus, the function Û defined by the relationship (4.4) is non-negative,
lower semi-continuous, it satisfies condition (3.1), and if x is a fixed point of g then

Û(x) = 0.
Let us show that if the mapping g is continuous then the condition of the Caristi’s

theorem is equivalent to the fact that the series in (4.4) converges for a certain x ∈ X.

Proposition 4.7. If the mapping g is continuous, then the series in (4.4) converges
at a point x ∈ X if and only if there exists a lower semi-continuous proper function
U, that is bounded from below and satisfies (3.1).

Proof. Let such a function U exist. Then (4.3) implies that the series in (4.4) converges
for every x ∈ domU 6= ∅. Conversely, if the series in (4.4) converges at a point x then

the function Û defined by the relationship (4.4) is the desired one. �

Thus, if the mapping g is continuous, then the condition in the Caristi’s theorem
is equivalent to the fact that the sequence in (4.4) converges for a certain x ∈ X.
Conversely the convergence of this series guarantees that the sequence of iterations
{gn(x)} is a Cauchy sequence and, therefore, converges to a certain point ξ ∈ X. It
is obvious that g(ξ) = ξ.

Proposition 4.7 demonstrates that if the mapping g is continuous, then for the

function U in the Caristi’s theorem it is natural to take Û , defined by formula (4.4).
For discontinuous mappings g the statement of Proposition 4.7 might fail, since the



56 A.V. ARUTYUNOV, B.D. GEL’MAN, E.S. ZHUKOVSKIY AND S.E. ZHUKOVSKIY

function Û may be not lower semi-continuous. Let us demonstrate this fact by the

following examples. In these examples, the function Û is finite at every point x but
is not lower semi-continuous. At the same time in the first example the mapping
g has a unique fixed point, however the estimate of the distance to the fixed point
from Theorem 3.2′ does not hold. In the second example, the mapping g has no fixed
points.

Example 4.8. Let g : [0, 2]→ [0, 2],

g(x) =
x

2
, if x ∈ [0, 1], g(x) =

1

2
+
x

2
, if x ∈ (1, 2].

Then the function Û , defined by the equality (4.4), has the form

Û(x) =

∞∑
n=0

ρX(gn(x), gn+1(x)) =

∞∑
n=0

x− 1

2n+1
= x− 1 if x ∈ (1, 2],

Û(x) =

∞∑
n=0

ρX(gn(x), gn+1(x)) =

∞∑
n=0

x

2n+1
= x if x ∈ [0, 1].

It is obvious that the function Û is not lower semi-continuous at the point x = 1. The
Caristi condition (3.1) holds for it by the construction. However, the propositions of
Theorem 3.2′ and specifically the estimate of the distance to a fixed point does not
hold for it for any k > 0. Let us show this. Set x̄n := 1 + n−1, n 6= 1, γ := 0. The

only fixed point of g is ξ = 0. Therefore, if ρX(x̄n, ξ) ≤
Û(x̄n)− γ

k
, then 1 +

1

n
≤ 1

nk

and thus k ≤ 1

n+ 1
for every n. So, the estimate in Theorem 3.2′ does not hold for

any k > 0.

Example 4.9. Let g : R→ R, g(x) =
x

2
+
j

2
for x ∈ (j, j + 1], j ∈ Z.

When x ∈ (j, j + 1], we have

Û(x) =

∞∑
n=0

ρX(gn(x), gn+1(x)) =

∞∑
n=0

(
x

2n+1
− j

2n+1

)
= x− j.

It is obvious that the function Û is not lower semi-continuous at the points x ∈ Z.
Note that there exists no function U satisfying all the conditions of Caristi’s Theorem,
since g does not have fixed points.
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