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1. Introduction

Let C be a nonempty closed convex subset of a real Hilbert space H and F : C →
H be a nonlinear operator. The class of all proper, lower semicontinuous, convex
functions from H to (−∞,∞] is denoted by Γ0(H). The normal cone for C at a point
u ∈ C is

NC(u) = {z ∈ H : 〈u− v, z〉 ≥ 0 for all v ∈ C}.
Let A : H → 2H with Dom(A) ⊆ C and B : C → H be monotone operators. The

inclusion problem is to find z ∈ C such that

0 ∈ (A+B)z. (1.1)
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Many nonlinear problems arising in applied areas such as image recovery, signal
processing, and machine learning can be mathematically modeled in form of inclusion
problem (1.1). For instance, a stationary solution to the initial value problem of the
evolution equation

0 ∈ ∂u

∂t
+ Fu, u0 = u(0)

can be recast as (1.1) when the governing maximal monotone operator F is of the
form F = A+B, see, for example, [5].

Consider ψ ∈ Γ0(H), and set A = ∂ψ. Then, the inclusion problem (1.1) is
equivalent to the mixed variational inequality problem (in short, MVI) of finding
x∗ ∈ C such that

〈Bx∗, v − x∗〉+ ψ(v)− ψ(x∗) ≥ 0 for all v ∈ C. (1.2)

The central problem is to iteratively find the solution of the inclusion problem
(1.1) when A and B are two monotone operators on H. One method for finding
solutions of problem (1.1) is splitting method, for which each iteration involves only
the individual operators A and B, but not the sum A + B. Splitting methods for
linear equations were introduced by Peaceman and Rachford [9] and Douglas and
Rachford [2]. Extensions to nonlinear equations in Hilbert spaces were carried out by
Lions and Mercier [5] (see also [13, 16]). Recenlty, in [8, 10, 11], the authors studied
computation of zeros of accretive operators by using different approaches.

For ψ = 0, the mixed variational inequality problem (1.2) reduces to the variational
inequality problem:

Find x∗ ∈ C such that 〈Bx∗, x− x∗〉 ≥ 0 for all x ∈ C, (1.3)

which is denoted by V I(C,B).
In [17], Verma introduced a new system of monotone variational inequalities, and

studied the approximation solvability of this system by using two-step projection
method. In [12], the authors studied convergence of an iterative algorithm for systems
of variational inequalities in 2−uniformly smooth Banach space in view of extra-
gradient technique. Recently, by using retraction technique, Yao, Liou and Kang [19]
extended two-step projection method from the Hilbert space H to a uniformly convex
and 2−uniformly smooth Banach space X for computation of the unique solution
of a system of variational inequality problems involving strongly accretive operators
defined on a closed convex subset of X.

On the other hand, Fang and Huang [4] introduced a class of H−monotone opera-
tors and proposed a one-step iterative algorithm for finding a solution of variational
inclusion problems. They showed that the sequence generated by this one-step it-
erative algorithm converges strongly to a solution of a variational inclusion problem
for H−monotone and Lipschitz continuous operators. Later, Zeng, Guu and Yao [20]
generalized this iterative method by introducing a two-step iterative algorithm.

The aim of this paper is to deal with a system of variational inclusion problems
concerning two closed convex subsets C and D of a Banach space X. Let G,H : X →
X be strongly accretive and Lipschitz continuous operators. Let A : X → 2X be a H-
accretive operator with Dom(A) ⊆ C and B : X → 2X be a G-accretive operator with
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Dom(B) ⊆ D. Moreover, let S : C → X (resp. T : D → X) be a strongly accretive
with respect to H (resp. with respect to G) and Lipschitz continuous operator.
We consider the following system of variational inclusion problem (abbreviated as
SGVInclPB):

Find (x∗, y∗) ∈ C ×D such that{
0 ∈ Gy∗ −Hx∗ + η(Sx∗ +By∗),

0 ∈ Hx∗ −Gy∗ + ρ(Ty∗ +Ax∗).
(1.4)

Concrete definitions for the notation will be given in Section 2. Many practical
problems including problem SGVInclPB (1.4) can be formulated as an altering point
problem ([14]):

Find (x∗, y∗) ∈ C ×D such that{
T1(x∗) = y∗,

T2(y∗) = x∗,
(1.5)

where T1 : C → D and T2 : D → C are nonlinear operators.
Inspired and motivated by the results in [14, 15, 19], we will establish the existence

of solutions and convergence results for problem (1.5) in a Banach space. Furthermore,
we obtain some strong convergence theorems for system of variational inequalities and
system of variational inclusion problems.

The paper is organized as follows. The next section includes some necessary prelim-
inaries. In Section 3, we propose our iterative algorithms for altering point problem
(1.5) and prove convergence results for the proposed algorithms. Section 4 contains
applications of the convergence results of Section 3 in system of variational inequal-
ities and system of variational inclusion problems. Our mathematical model (1.5)
contains the mathematical models studied in [4, 17, 19, 20] as special cases. The
results obtained in this paper significantly improve and extend the results of Verma
[17] and Yao, Liou and Kang [19] in several aspects.

2. Preliminaries

Let X be a Banach space with norm ‖ · ‖. Define the norm ‖ · ‖1 on X ×X by

‖(x, y)‖1 = ‖x‖+ ‖y‖ for all (x, y) ∈ X ×X. (2.1)

Note that (X ×X, ‖ · ‖1) is also a Banach space.

Lemma 2.1. Let {an} and {bn} be two sequences of nonnegative real numbers satis-
fying the inequality:

an+1 ≤ kan + bn for all n ∈ N,
where k ∈ (0, 1) and lim

n→∞
bn = 0. Then lim

n→∞
an = 0.

Lemma 2.2. [7] Let {an} and {cn} be two sequences of nonnegative real numbers
and let {bn} be a sequence in R satisfying the inequality:

an+1 ≤ (1− αn)an + bn + cn for all n ∈ N,



804 XIAOPENG ZHAO, D.R. SAHU AND CHING-FENG WEN

where {αn} is a sequence in (0, 1]. Assume that

∞∑
n=1

cn < ∞. Then, the following

statements hold:
(a) If bn ≤ Kαn for all n ∈ N and for some K ≥ 0, then

an+1 ≤ δna1 + (1− δn)K +

n∑
j=1

cj for all n ∈ N,

where δn =

n∏
j=1

(1− αj) and hence {an} is bounded.

(b) If

∞∑
n=1

αn =∞ and lim sup
n→∞

(bn/αn) ≤ 0, then {an}∞n=1 converges to zero.

2.1. Smoothness of Banach spaces.

The Banach space X is said to be smooth provided the limit

lim
t→0

‖x+ ty‖ − ‖x‖
t

exists for each x and y in SX , where SX = {x ∈ X : ||x|| = 1}. In this case, the
norm of X is said to be Gâteaux differentiable. It is said to be uniformly Gâteaux
differentiable if for each y ∈ SX , this limit is attained uniformly for x ∈ SX . Let
ρX : [0,∞)→ [0,∞) be the modulus of smoothness of X ([1]) defined by

ρX(t) = sup

{
1

2
(||x+ y‖+ ‖x− y‖)− 1 : x ∈ SX , ‖y‖ ≤ t

}
.

The Banach space X is said to be uniformly smooth if
ρX(t)

t
→ 0 as t → 0, and

it is said to be q-uniformly smooth if there exists a fixed constant c > 0 such that
ρX(t) ≤ ctq. It is well-known that X is uniformly smooth if and only if the norm of
X is uniformly Fréchet differentiable. If X is q-uniformly smooth, then q ≤ 2 and
X is uniformly smooth, and hence the norm of X is uniformly Fréchet differentiable,
in particular, the norm of X is Fréchet differentiable. Typical example of uniformly
smooth Banach spaces is Lp, where p > 1. More precisely, Lp is min{p, 2}-uniformly
smooth for every p > 1. It is well known that every uniformly smooth space has
uniformly Gâteaux differentiable norm (see, e.g., [1]). Concerned with the character-
istic inequalities in 2−uniformly smooth Banach spaces, Xu [18] proved the following
result.

Lemma 2.3. Let X be a real 2−uniformly smooth Banach space X. Then

‖x+ y‖2 ≤ ‖x‖2 + 2c2‖y‖2 + 2〈y, J(x)〉 for all x, y ∈ X,

where c is a positive constant and J : X → X∗ is a normalized duality mapping.
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2.2. Retractions.

A subset C of a Banach space X is said to be a retract of X if there exists a
continuous mapping QC from X onto C such that QC(x) = x for all x in C. We call
such QC a retraction of X onto C. It follows that if a mapping QC is a retraction,
then QC(y) = y for all y in the range of QC . A retraction QC is said to be sunny if
QC(QC(x) + t(x−QC(x))) = QC(x) for each x in X and t ≥ 0. If a sunny retraction
QC is also nonexpansive, then C is said to be a sunny nonexpansive retract of X.

Let C be a nonempty subset of X and x ∈ X. An element y0 ∈ C is said to be a
best approximation to x if ‖x − y0‖ = d(x,C), where d(x,C) = infy∈C ‖x − y‖. The
set of all best approximations from x to C is denoted by

PC(x) = {y ∈ C : ‖x− y‖ = d(x,C)}.

This defines a mapping PC from X into 2C , which is called the nearest point
projection mapping (metric projection mapping) onto C. It is well known that if
C is a nonempty closed convex subset of a Hilbert space H, then the nearest point
projection PC from H onto C is the unique sunny nonexpansive retraction of H onto
C. It is also known that PC(x) ∈ C and

〈x− PC(x), PC(x)− y〉 ≥ 0 for all x ∈ H, y ∈ C.

We need the following facts for proving our main results.

Lemma 2.4. [3, Lemma 13.1] Let C be a convex subset of a smooth Banach space
X, D be a nonempty subset of C and P be a retraction from C onto D. Then, the
following statements are equivalent:

(a) P is sunny and nonexpansive.
(b) 〈x− Px, J(z − Px)〉 ≤ 0 for all x ∈ C, z ∈ D.
(c) 〈x− y, J(Px− Py)〉 ≥ ‖Px− Py‖2 for all x, y ∈ C.

From (b), one can see that

P (x) = y ⇐⇒ 〈x− y, J(y − u)〉 ≥ 0 for all u ∈ D.

2.3. Altering points.

The notion of altering points has been introduced by Sahu [14] as follows:

Definition 2.5. Let C and D be two nonempty subsets of a metric space X and let
S : C → D and T : D → C be mappings. If there exist x∗ ∈ C and y∗ ∈ D such that{

S(x∗) = y∗,

T (y∗) = x∗,

then x∗ ∈ C and y∗ ∈ D are called altering points of mappings S and T.

Thus, x∗ ∈ C and y∗ ∈ D are altering points of ordered pair (S, T ) if S(x∗) = y∗

and T (y∗) = x∗. We denote the set of altering points of mappings S : C → D and
T : D → C by

Alt(S, T ) = {(x∗, y∗) ∈ C ×D : S(x∗) = y∗ and T (y∗) = x∗}.
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Remark 2.6. If S : C → D and T : D → C are mappings such that TS : C → C
has a fixed point x∗ ∈ C, then there exists y∗ ∈ D such that S(x∗) = y∗ and hence
T (y∗) = x∗.

Example 2.7. ([14, Example 3.2]) Let X = R, C = D = [0, 1] and define S, T : X →
X by Sx = Tx = 1− x. Note TS : C → C is defined by TSx = T (1− x) = x. Thus,
each point of C is a fixed point of TS . Then altering points x∗ ∈ C and y∗ ∈ D of
S and T are given by x∗ + y∗ = 1. Indeed,

Alt(S, T ) = {(x∗, y∗) ∈ C ×D : x∗ + y∗ = 1}.

Remark 2.8. From Example 2.7, we conclude that the element (x∗, y∗) ∈ Alt(S, T )
is not necessarily the point of the intersection of line segments y = 1− x, x ∈ [0, 1/2]
and y = 1− x, x ∈ [1/2, 1] (e.g. (x∗, y∗) = (0, 1)).

Example 2.9. Let X = R, C = [0, 1], D = [1, 2]. Define S : C → D by Sx = 1 + x,
x ∈ C, and T : D → C by Tx = x2/4, x ∈ D. Note TSx = T (1 + x) = (1 + x)2/4,
x ∈ C and STx = S(x2/4) = 1 + x2/4 for all x ∈ D. Then (1, 2) ∈ Alt(S, T ). The
graphical representation of altering points of mappings S and T are given in Figure 1.

Figure 1. Graphical representation of altering points.

We remark that in Example 2.9, S and T are nonexpansive.
The following result plays a key role in the proof of our results.

Lemma 2.10. Let C and D be nonempty closed convex subsets of a real smooth
Banach space X. Let QC be the sunny nonexpansive retraction from X onto C and
let QD be the sunny nonexpansive retraction from X onto D. Let S : C → X and
T : D → X be nonlinear operators and let η and ρ be positive real numbers. Then the
following statements are equivalent:

(a) x∗ and y∗ are altering points of QD(I − ηS) and QC(I − ρT ).
(b) (x∗, y∗) ∈ C ×D is a solution of the following problem:
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Find (x∗, y∗) ∈ C ×D such that{
〈ηS(x∗) + y∗ − x∗, J(x− y∗)〉 ≥ 0 for all x ∈ D,
〈ρT (y∗) + x∗ − y∗, J(x− x∗)〉 ≥ 0 for all x ∈ C.

(2.2)

Proof. (a)=⇒(b). Suppose that x∗ and y∗ are altering points of QD(I − ηS) and
QC(I − ρT ). Note QD(I − ηS)(x∗) = y∗. It follows from Lemma 2.4 that

〈(I − ηS)(x∗)− y∗, J(y∗ − x)〉 ≥ 0 for all x ∈ D,

i.e.,

〈ηS(x∗) + y∗ − x∗, J(x− y∗)〉 ≥ 0 for all x ∈ D.

On the other hand, QC(I − ρT )(y∗) = x∗. Then, one can see that

〈ρT (y∗) + x∗ − y∗, J(x− x∗)〉 ≥ 0 for all x ∈ C.

(b)=⇒(a). Let (x∗, y∗) ∈ C ×D be a solution of the problem (2.2). Note

〈(I − ηS)(x∗)− y∗, J(y∗ − x)〉 ≥ 0 for all x ∈ D.

It follows from Lemma 2.4 that QD(I − ηS)(x∗) = y∗. Similarly, we can show that
QC(I − ρT )(y∗) = x∗. Therefore, x∗ and y∗ are altering points of QD(I − ηS) and
QC(I − ρT ). �

2.4. Accretive operators.

Definition 2.11. Let C be a nonempty subset of a real smooth Banach space X and
let T,H : C → X be operators. Then T is said to be

(i) accretive if

〈Tx− Ty, J(x− y)〉 ≥ 0 for all x, y ∈ C;

(ii) strictly accretive if

〈Tx− Ty, J(x− y)〉 ≥ 0

and the equality holds if and only if y = x;
(iii) strongly accretive if there exists a positive constant γ such that

〈Tx− Ty, J(x− y)〉 ≥ γ‖x− y‖2 for all x, y ∈ C;

(iv) strongly accretive with respect to H if there exists a positive constant γ such
that

〈Tx− Ty, J(Hx−Hy)〉 ≥ γ‖x− y‖2 for all x, y ∈ C.

It is well known that when X = H is a real Hilbert space, the concept of accretive
operator is identical with monotone operator.

Definition 2.12. Let B : X → 2X be a multi-valued mapping and H : X → X be a
mapping. We say that B is H−accretive if B is accretive and (H+λB)X = X holds,
for all λ > 0.
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Let H : X → X be a strongly accretive and Lipschitz continuous operator and let
B : X → 2X be an H−accretive operator. For the H−accretive operator B, we can
associate its resolvent JBr,H defined by

JBr,H ≡ (H + rB)−1 : X → Dom(B),

where r > 0. We give some elementary properties of JBr,H .

Proposition 2.13. [6, Proposition 4.1] Let X be a real Banach space. Let H : X → X
be a strongly accretive and L−Lipschitz continuous operator and let B : X → 2X be an
H−accretive operator. Let L, r > 0. Then the resolvent operator JBr,H : X → Dom(B)
has the following properties:

(i) ‖JBr,H(x)− JBr,H(y)‖ ≤ 1
L‖x− y‖ for all x, y ∈ R(H + rB);

(ii) ‖HJBr,H(x)−HJBr,H(y)‖ ≤ ‖x− y‖ for all x, y ∈ X;

(iii) ‖JBr,HH(x)− JBr,HH(y)‖ ≤ ‖x− y‖ for all x, y ∈ X.

Let C be a nonempty closed convex subset of X such that Dom(B) is contained in
C. Then:

(i) JBr,H ≡ (H + rB)−1 : X →Dom(B) ⊆ C.
(ii) JBr,H ≡ (H + rB)−1 : C →Dom(B) ⊆ C.
If H = I, then the H−accretive operator B : X → 2X is called m−accretive. For

a m−accretive operator B, we can associate its resolvent JBr defined by JBr : X →
Dom(B), where r > 0.

Proposition 2.14. Let C and D be nonempty closed convex subsets of a real
2−uniformly smooth Banach space X. Let FC : X → C be a L−Lipschitz contin-
uous operator with L > 0 and let T : D → X be a κ−Lipschitzian and γ−strongly
accretive operator. Suppose that there exists a positive constant ρ such that

|ρ− γ

2c2κ2
| < 1

2c2κ2

√
γ2 −

(
1− 1

L

)
2c2κ2 and γ2 >

(
1− 1

L

)
2c2κ2. (2.3)

Then FC(I − ρT ) : D → C is a contraction with Lipschitz constant

L
√

1− 2ργ + 2c2κ2ρ2.

Proof. Let x, y ∈ D. Then, from Lemma 2.3, we have

‖(I − ρT )x− (I − ρT )y‖2 ≤ ‖x− y‖2 + 2c2ρ2‖Tx− Ty‖2 − 2ρ〈Tx− Ty, J(x− y)〉
≤ ‖x− y‖2 + 2c2κ2ρ2‖x− y‖2 − 2ργ‖x− y‖2

= (1− 2ργ + 2c2κ2ρ2)‖x− y‖2.

Thus,

‖FC(I − ρT )x− FC(I − ρT )x‖ ≤ L
√

1− 2ργ + 2c2κ2ρ2‖x− y‖.

From (2.3), one sees that 0 ≤ L
√

1− 2ργ + 2c2κ2ρ2 < 1.
Therefore, FC(I − ρT ) : D → C is a contraction with Lipschitz constant

L
√

1− 2ργ + 2c2κ2ρ2. �
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Remark 2.15. If FC is nonexpansive, then, for ρ ∈ (0, γ
c2κ2 ), the operator

FC(I − ρT ) : D → C

is a contraction with Lipschitz constant
√

1− 2ργ + 2c2κ2ρ2.

Proposition 2.16. Let C and D be nonempty closed convex subsets of a real
2−uniformly smooth Banach space X. Let H : X → X be a strongly accretive and
L1−Lipschitz continuous operator and let G : X → X be a strongly accretive and
L2−Lipschitz continuous operator. Let T : D → X be a γ-strongly accretive with
respect to G and κ−Lipschitzian operator. Let A : X → 2X be an H−accretive
operator such that Dom(A) ⊆ C. Suppose that L1 > 0 and that there exists a positive
constant ρ such that

|ρ− γ

2c2κ2
| < 1

2c2κ2

√
γ2 + 2c2κ2(L2

1 − L2
2) and γ2 + 2c2κ2(L2

1 − L2
2) > 0. (2.4)

Then JAρ,H(G− ρT ) : D → C is a contraction with Lipschitz constant

1

L1

√
L2
2 − 2ργ + 2c2κ2ρ2.

Proof. Set

θ :=
1

L1

√
L2
2 − 2ργ + 2c2κ2ρ2.

Proposition 2.13 implies that JAρ,H : X → Dom(A) ⊆ C is 1
L1
−Lipschitz continuous.

Let x, y ∈ D. Then, from Lemma 2.3, we have

‖(G− ρT )x− (G− ρT )y‖2

≤ ‖Gx−Gy‖2 + 2c2ρ2‖Tx− Ty‖2 − 2ρ〈Tx− Ty, J(Gx−Gy)〉
≤ L2

2‖x− y‖2 + 2c2κ2ρ2‖x− y‖2 − 2ργ‖x− y‖2

= (L2
2 − 2ργ + 2c2κ2ρ2)‖x− y‖2.

Thus,

‖JAρ,H(G− ρT )x− JAρ,H(G− ρT )x‖ ≤ θ‖x− y‖.
From (2.4), one sees that 0 ≤ θ < 1. Therefore, JAρ,H(G−ρT ) : D → C is a contraction
with Lipschitz constant θ. �

2.5. General system of variational inclusions in Banach spaces.
Let C and D be nonempty closed convex subsets of a real smooth Banach space X,

FC : X → C, FD : X → D be operators, and G,H : X → X be strongly accretive and
Lipschitz continuous operators. Let S : C → X be strongly accretive with respect to
H and Lipschitz continuous and let T : D → X be strongly accretive with respect to
G and Lipschitz continuous. Let η, ρ > 0. We consider the following altering point
problem:

Find an element (x∗, y∗) ∈ C ×D such that{
FD(H − ηS)(x∗) = y∗,

FC(G− ρT )(y∗) = x∗.
(2.5)
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If H = G = I, then (2.5) reduces to the following altering point problem for
operators FD(I − ηS) and FC(I − ρT ):

Find an element (x∗, y∗) ∈ C ×D such that{
FD(I − ηS)(x∗) = y∗,

FC(I − ρT )(y∗) = x∗.
(2.6)

The operators FC and FD play a key role in our mathematical modeling (2.5) and
(2.6). Some special cases of the altering point problem (2.5) are as below:

(I) If A : X → 2X is H-accretive such that Dom(A) ⊆ C and B : X → 2X is
G-accretive such that Dom(B) ⊆ D, then for operators FC = JAρ,H and FD = JBη,G,

the system (2.5) reduces to the following system of generalized variational inclusion
problem involving accretive operators A,B,G,H, S and T (abbreviated as SGVIn-
clPB):

Find (x∗, y∗) ∈ C ×D such that{
0 ∈ Gy∗ −Hx∗ + η(Sx∗ +By∗),

0 ∈ Hx∗ −Gy∗ + ρ(Ty∗ +Ax∗).
(2.7)

(II) If A,B : X → 2X are m-accretive operators such that Dom(A) ⊆ C and
Dom(B) ⊆ D, then for operators FC = JAρ and FD = JBη , the system (2.6) reduces
to the following system of variational inclusion problem involving accretive operators
A,B, S and T (abbreviated as SVInclPB):

Find (x∗, y∗) ∈ C ×D such that{
0 ∈ y∗ − x∗ + η(Sx∗ +By∗),

0 ∈ x∗ − y∗ + ρ(Ty∗ +Ax∗).
(2.8)

If X = H is a real Hilbert space, φ, ψ ∈ Γ0(H), and A = ∂φ, B = ∂ψ, where
∂φ (resp. ∂ψ) is the subdifferential of φ (resp. ψ), then SVInclPB (2.8) reduces
to a system of variational inclusion problem involving monotone operators S, T and
functions φ, ψ (abbreviated as SVInclPH):

Find (x∗, y∗) ∈ C ×D such that{
0 ∈ y∗ − x∗ + η(Sx∗ + ∂ψ(y∗)),

0 ∈ x∗ − y∗ + ρ(Ty∗ + ∂φ(x∗)).

(III) If operators FC = QC and FD = QD are sunny nonexpansive retractions
onto C and D, respectively, then, from Proposition 2.14, altering point problem (2.6)
reduces to the following general system of nonlinear variational inequalities in Banach
space X (abbreviated as GSNVIB(C,D;S, T ; η, ρ)):

Find (x∗, y∗) ∈ C ×D such that{
〈ηS(x∗) + y∗ − x∗, J(x− y∗)〉 ≥ 0 for all x ∈ D,
〈ρT (y∗) + x∗ − y∗, J(x− x∗)〉 ≥ 0 for all x ∈ C.

(2.9)

We denote by Ω[GSNVIB(C,D;S, T ; η, ρ)] the set of solution of GSNVIB (2.9).
Yao, Liou and Kang [19] studied the following system of variational inequalities

(abbreviated as SNVIB(S, T )) in Banach spaces:
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Find (x∗, y∗) ∈ C × C such that{
〈ηS(x∗) + y∗ − x∗, J(x− y∗)〉 ≥ 0 for all x ∈ C,
〈ρT (y∗) + x∗ − y∗, J(x− x∗)〉 ≥ 0 for all x ∈ C.

(2.10)

Remark 2.17. Due to the generality of GSNVIB (2.9), the two-step projection
method studied by Yao, Liou and Kang [19] is not applicable for computation of
solution of (2.9) if its solution exists.

If X = H is a real Hilbert space, then problem (2.9) reduces to the following system
of variational inequality problem (abbreviated as SNVIH(C,D;S, T ; η, ρ)):

Find (x∗, y∗) ∈ C ×D such that{
〈ηS(x∗) + y∗ − x∗, x− y∗〉 ≥ 0 for all x ∈ D,
〈ρT (y∗) + x∗ − y∗, x− x∗〉 ≥ 0 for all x ∈ C.

(2.11)

If C = D, then problem (2.11) reduces to the following system of variational
inequality problem (abbreviated as SNVIH(S, T )):

Find (x∗, y∗) ∈ C × C such that{
〈ηS(x∗) + y∗ − x∗, x− y∗ 〉 ≥ 0 for all x ∈ C,
〈ρT (y∗) + x∗ − y∗, x− x∗ 〉 ≥ 0 for all x ∈ C.

(2.12)

In [17], Verma proved the strong convergence of the two-step projection methods
for solving the problem SNVIH(S, T ) (2.12).

3. Convergence theorems for altering point problems

As we have seen in Section 2.5 that various system of variational inequality prob-
lems and system of variational inclusion problems can be modeled as altering point
problems. In this section, we first propose Mann type iteration process and a parallel
iteration process for altering point problem (3.1), and then we establish the conver-
gence theorems for the proposed iteration processes in Banach spaces without uniform
convexity.

Let C andD be nonempty closed convex subsets of a Banach spaceX. Let T1 : C →
D and T2 : D → C be contractions with Lipschitz constants θ1 and θ2, respectively.
Since T2T1 : C → C is a contraction, there exists a unique element (x∗, y∗) ∈ C ×D
of the following altering point problem for operators T1 and T2:

Find (x∗, y∗) ∈ C ×D such that{
T1(x∗) = y∗,

T2(y∗) = x∗.
(3.1)

We now introduce Mann iteration and parallel S-iteration process for computation
of (x∗, y∗) :

(I) For arbitrary x0 ∈ C, a sequence {(xn, yn)} in C ×D is generated by Mann
iteration process:{

yn = T1(xn),

xn+1 = (1− αn)xn + αnT2(yn) for all n ∈ N0,
(3.2)
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where {αn} is a sequence in [0, 1] satisfying appropriate conditions.
(II) For arbitrary (x0, y0) ∈ C ×D, a sequence {(xn, yn)} in C ×D is generated

by the parallel S-iteration process:{
xn+1 = T2[(1− αn)yn + αnT1(xn)],

yn+1 = T1[(1− βn)xn + βnT2(yn)] for all n ∈ N0,
(3.3)

where {(αn, βn)} is a sequence in (0, 1)× (0, 1) satisfying the suitable condi-
tions.

For approximation of altering points of mappings T1 : C → D and T2 : D →
C, motivated by normal S-iteration process ([15]), the following parallel S-iteration
process was introduced by Sahu [14]:{

xn+1 = T2[(1− α)yn + αT1xn],

yn+1 = T1[(1− α)xn + αT2yn] for all n ∈ N0,
(3.4)

where α ∈ (0, 1). Thus, the parallel S-iteration process (3.3) is a natural generalization
of parallel S-iteration process (3.4).

First we establish strong convergence of the sequence {(xn, yn)} generated by Mann
iteration process (3.2) to the unique solution (x∗, y∗) ∈ C×D of altering point problem
(3.1).

Theorem 3.1. Let C and D be nonempty closed convex subsets of a Banach space X.
Let T1 : C → D and T2 : D → C be contractions with Lipschitz constants θ1 and θ2,
respectively. For arbitrary x0 ∈ C, let {(xn, yn)} be a sequence in C×D generated by

Mann iteration process (3.2), where {αn} is a sequence in [0, 1] satisfying

∞∑
n=0

αn =∞.

Then we have the following:
(a) There exists a unique solution (x∗, y∗) ∈ C×D of altering point problem (3.1).
(b) {(xn, yn)} converges strongly to (x∗, y∗) with the following error estimates:

‖xn+1 − x∗‖ ≤
n∏
j=0

(1− (1− θ1θ2)αj)‖x0 − x∗‖ for all n ∈ N0

and

‖yn − y∗‖ ≤ θ1
n−1∏
j=0

(1− (1− θ1θ2)αj)‖x0 − x∗‖ for all n ∈ N.

Proof. (a) Note T2T1 : C → C is a contraction with Lipschitz constant θ1θ2. Then,
there exists a unique point (x∗, y∗) ∈ C ×D such that x∗ and y∗ are altering points
of mappings T1 and T2.

(b) Without loss of generality, we may assume that θ1, θ2 ∈ (0, 1). From (3.2), we
have

‖xn+1 − x∗‖ = ‖(1− αn)xn + αnT2(yn)− x∗‖
≤ (1− αn)‖xn − x∗‖+ αn‖T2(yn)− T2(y∗)]‖
≤ (1− αn)‖xn − x∗‖+ θ2αn‖yn − y∗‖ for all n ∈ N0.
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Note

‖yn − y∗‖ = ‖T1(xn)− T1(x∗)‖ ≤ θ1‖xn − x∗‖ for all n ∈ N0. (3.5)

Hence

‖xn+1 − x∗‖ ≤ (1− (1− θ1θ2)αn)‖xn − x∗‖ for all n ∈ N0.

It follows from Lemma 2.2 that {xn} converges strongly to x∗. From (3.5), one sees
that {yn} converges strongly to y∗. Note

‖xn+1 − x∗‖ ≤ (1− (1− θ1θ2)αn)‖xn − x∗‖

≤
n∏
j=0

(1− (1− θ1θ2)αj)‖x0 − x∗‖ for all n ∈ N0. (3.6)

Hence, from (3.5) and (3.6), we have

‖yn − y∗‖ ≤ θ1‖xn − x∗‖

≤ θ1

n−1∏
j=0

(1− (1− θ1θ2)αj)‖x0 − x∗‖ for all n ∈ N.

�
In construction of the parallel S-iteration process (3.3), our approach is fundamen-

tally different from the iteration processes in existing literature. We now establish
strong convergence of sequence {(xn, yn)} generated by the parallel S-iteration process
(3.3) to the unique solution (x∗, y∗) ∈ C ×D of altering point problem (3.1).

Theorem 3.2. Let C and D be nonempty closed convex subsets of a Banach space
X. Let T1 : C → D and T2 : D → C be contractions with Lipschitz constants θ1 and
θ2, respectively. For arbitrary (x0, y0) ∈ C×D, let {(xn, yn)} be a sequence in C×D
generated by the parallel S-iteration process (3.3), where {(αn, βn)} is a sequence in
(0, 1)× (0, 1) satisfying the condition:

αn − θ1βn, βn − θ2αn ∈ [0, 1) for all n ∈ N0. (3.7)

Then we have the following:
(a) There exists a unique solution (x∗, y∗) ∈ C ×D of the altering point problem

(3.1).
(b) {(xn, yn)} converges strongly to (x∗, y∗) with the following error estimate:

‖(xn+1, yn+1)− (x∗, y∗)‖1 ≤ max{θ1, θ2}‖(xn, yn)− (x∗, y∗)‖1 for all n ∈ N0.

Proof. (a) It follows from Theorem 3.1(a).
(b) Set λ := max{θ1, θ2}. From (3.3), we have

‖yn+1 − y∗‖ = ‖T1[(1− βn)xn + βnT2(yn)]− T1(x∗)]‖
≤ θ1‖(1− βn)xn + βnT2(yn)− x∗‖
≤ θ1[(1− βn)‖xn − x∗‖+ βn‖T2(yn)− T2(y∗)‖]
≤ θ1[(1− βn)‖xn − x∗‖+ θ2βn‖yn − y∗‖].

Similarly, we have

‖xn+1 − x∗‖ ≤ θ2[(1− αn)‖yn − y∗‖+ θ1αn‖xn − x∗‖].
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Adding the above two inequalities, we get

‖xn+1 − x∗‖+ ‖yn+1 − y∗‖
≤ θ1[(1− βn)‖xn − x∗‖+ θ2βn‖yn − y∗‖] + θ2[(1− αn)‖yn − y∗‖+ θ1αn‖xn − x∗‖]
= θ1[1− (βn − θ2αn)]‖xn − x∗‖+ θ2[1− (αn − θ1βn)]‖yn − y∗‖
≤ λ(‖xn − x∗‖+ ‖yn − y∗‖). (3.8)

From (2.1) and (3.8), we have

‖(xn+1, yn+1)− (x∗, y∗)‖1 ≤ λ‖(xn, yn)− (x∗, y∗)‖1.
Noting that λ ∈ (0, 1), it follows from Lemma 2.1 that

lim
n→∞

‖(xn, yn)− (x∗, y∗)‖1 = 0.

Thus, we obtain
lim
n→∞

‖xn − x∗‖ = lim
n→∞

‖yn − y∗‖ = 0.

Therefore, {xn} and {yn} converge to x∗ and y∗, respectively. �

4. Applications

To demonstrate the wide application of our convergence theory, a few examples
are detailed below.

4.1. To approximate solutions of SGVInclPB(2.7) and SVInclPB (2.8).

Theorem 4.1. Let C and D be nonempty closed convex subsets of a real 2−uniformly
smooth Banach space X. Let H : X → X be a strongly accretive and L1−Lipschitz
continuous operator and let G : X → X be a strongly accretive and L2−Lipschitz
continuous operator, where L1 > 0, L2 > 0. Let S : C → X be a κ1−Lipschitzian and
γ1-strongly accretive operator and let T : D → X be a κ2-Lipschitzian and γ2-strongly
accretive operator. Let A : X → 2X be H-accretive and B : X → 2X be G-accretive
operators such that Dom(A) ⊆ C and Dom(B) ⊆ D. Suppose that there exist positive
constants η and ρ such that∣∣∣∣η − γ1

2c2κ21

∣∣∣∣ < 1

2c2κ21

√
γ21 + 2c2κ21(L2

2 − L2
1), γ21 + 2c2κ21(L2

2 − L2
1) > 0

and ∣∣∣∣ρ− γ2
2c2κ22

∣∣∣∣ < 1

2c2κ22

√
γ22 + 2c2κ22(L2

1 − L2
2), γ2 + 2c2κ22(L2

1 − L2
2) > 0.

Then we have the following:
(a) SGVIncIPB (2.7) has a unique solution (x∗, y∗) ∈ C ×D.
(b) For arbitrary (x0, y0) ∈ C ×D, if {(xn, yn)} is a sequence in C ×D generated

by the parallel S-iteration process:{
xn+1 = JA,Hρ (G− ρT )[(1− αn)yn + αnJ

B,G
η (H − ηS)(xn)],

yn+1 = JB,Gη (H − ηS)[(1− βn)xn + βnJ
A,H
ρ (G− ρT )(yn)] for all n ∈ N0,

where {(αn, βn)} is a sequence in (0, 1) × (0, 1) satisfying the condition (3.7), then
{(xn, yn)} converges strongly to (x∗, y∗).
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Proof. (a) Define T1 = JBη,G(H−ηS) and T2 = JAρ,H(G−ρT ). From Proposition 2.13,

JAρ,H : X → Dom(A) ⊆ C is 1
L1
−Lipschitz continuous. It follows from Proposition

2.16 that T2 : D → C is a contraction with Lipschitz constant

1

L1

√
L2
2 − 2ργ2 + 2c2κ22ρ

2.

Similarly, T1 : C → D is a contraction with Lipschitz constant

1

L2

√
L2
1 − 2ργ1 + 2c2κ21ρ

2.

Thus, T2T1 : C → C is a contraction. By the Banach contraction principle, there
exists a unique point (x∗, y∗) ∈ C × D such that x∗ and y∗ are altering points of
mappings T1 and T2.

(b) It follows from Theorem 3.2. �

Theorem 4.2. Let C and D be nonempty closed convex subsets of a real 2−uniformly
smooth Banach space X. Let A,B : X → 2X be m−accretive operators such that
Dom(A) ⊆ C and Dom(B) ⊆ D. Let S : C → X be a κ1-Lipschitzian and γ1-
strongly accretive operator and let T : D → X be a κ2-Lipschitzian and γ2-strongly
accretive operator. Assume that 0 < η < γ1

cκ2
1

and 0 < ρ < γ2
cκ2

2
. Then we have the

following:
(a) SVInclPB (2.8) has a unique solution (x∗, y∗) ∈ C ×D.
(b) For arbitrary x0 ∈ C, if {(xn, yn)} is a sequence in C ×D generated by Mann

iteration process:{
yn = JBρ (I − ηS)(xn),

xn+1 = (1− αn)xn + αnJ
A
η (I − ρT )(yn) for all n ∈ N0,

where {αn} is a sequence in [0, 1] satisfying

∞∑
n=0

αn = ∞, then it converges strongly

to (x∗, y∗).
(c) For arbitrary (x0, y0) ∈ C ×D, if {(xn, yn)} is a sequence in C ×D generated

by the parallel S-iteration process:{
xn+1 = JAη (I − ρT )[(1− αn)yn + αnJ

B
ρ (I − ηS)(xn)],

yn+1 = JBρ (I − ηS)[(1− βn)xn + βnJ
A
η (I − ρT )(yn)] for all n ∈ N0,

where {(αn, βn)} is a sequence in (0, 1) × (0, 1) satisfying the condition (3.7), then
{(xn, yn)} converges strongly to (x∗, y∗).

Proof. Define T1 = JAη (I − ηS) and T2 = JBρ (I − ρT ). Since JBρ : X →Dom(B) ⊆ D
is nonexpansive, it follows from Remark 2.15 that T1 : C → D is a contraction with
Lipschitz constant

√
1− 2ηγ1 + 2c2η2κ21. Similarly, T2 : D → C is a contraction with

Lipschitz constant
√

1− 2ργ2 + 2c2ρ2κ22. Thus, Theorem 4.2 follows from Theorems
3.1 and 3.2. �
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4.2. To approximate solutions of GSNVIB(2.9).

Theorem 4.3. Let C and D be nonempty closed convex subsets of a real 2−uniformly
smooth Banach space X. Let FC : X → C be a L1-Lipschitz continuous operator and
let FD : X → D be a L2-Lipschitz continuous operator such that L1 > 0, L2 > 0. Let
S : C → X be a κ1-Lipschitz continuous and γ1-strongly accretive operator and let
T : D → X be a κ2-Lipschitz continuous and γ2-strongly accretive operator. Suppose
that there exist positive constants η and ρ such that

|η − γ1
2c2κ21

| < 1

2c2κ21

√
γ21 − 2c2κ21

(
1− 1

L2
2

)
, γ21 > 2c2κ21

(
1− 1

L2
2

)
and

|ρ− γ2
2c2κ22

| < 1

2c2κ22

√
γ22 − 2c2κ22

(
1− 1

L2
1

)
, γ22 > 2c2κ22

(
1− 1

L2
1

)
.

Then we have the following:
(a) Altering point problem (2.5) has a unique solution (x∗, y∗) ∈ C ×D.
(b) For arbitrary x0 ∈ C, if {(xn, yn)} is a sequence in C ×D generated by Mann

iteration process:{
yn = FD(I − ηS)(xn),

xn+1 = (1− αn)xn + αnFC(I − ρT )(yn) for all n ∈ N0,

where {αn} is a sequence in [0, 1] satisfying

∞∑
n=0

αn = ∞, then it converges strongly

to (x∗, y∗).

Proof. Define T1 = FD(I − ηS) and T2 = FC(I − ρT ). Set

θ1 := L2

√
1− 2ηγ1 + 2c2η2κ21 and θ2 :=

√
1− 2ργ2 + 2c2ρ2κ22.

Since FD is L2-Lipschitz continuous, it follows from Proposition 2.14 that T1 : C → D
is θ1-Lipschitz continuous. By assumption, we have

θ1 = L2

√
1− 2ηγ1 + 2c2η2κ21 < 1.

Similarly, T2 : D → C is a contraction with Lipschitz constant θ2. Therefore, Theorem
4.3 follows from Theorem 3.1. �

Theorem 4.4. Let C and D be nonempty closed convex subsets of a real 2−uniformly
smooth Banach space X. Let QC and QD be sunny nonexpansive retractions onto C
and D, respectively. Let S : C → X be a κ1-Lipschitzian and γ1-strongly accretive
operator and let T : D → X be a κ2-Lipschitzian and γ2-strongly accretive operator.
Assume that 0 < η < γ1

c2κ2
1

and 0 < ρ < γ2
c2κ2

2
. Then we have the following:

(a) GSNVIB (2.9) has a unique solution (x∗, y∗) ∈ C ×D.
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(b) For arbitrary x0 ∈ C, if {(xn, yn)} is a sequence in C ×D generated by Mann
iteration process:{

yn = QD(I − ηS)(xn),

xn+1 = (1− αn)xn + αnQC(I − ρT )(yn) for all n ∈ N0,

where {αn} is a sequence in [0, 1] satisfying

∞∑
n=0

αn = ∞, then it converges strongly

to (x∗, y∗).

Proof. Define T1 = QD(I − ηS) and T2 = QC(I − ρT ). Since QD is nonexpansive, it
follows from Proposition 2.14 that T1 : C → D is a contraction with Lipschitz constant√

1− 2ηγ1 + 2c2η2κ21 . Similarly, T2 : D → C is a contraction with Lipschitz constant√
1− 2ργ2 + 2c2ρ2κ22 . Therefore, Theorem 4.4 follows from Theorem 4.3. �
We immediately obtain the following corollary.

Corollary 4.5. Let C be a nonempty closed convex subset of a real 2−uniformly
smooth Banach space X. Let QC be sunny nonexpansive retraction onto C. Let
S : C → X be a κ1-Lipschitzian and γ1-strongly accretive operator and let T : C → X
be a κ2-Lipschitzian and γ2-strongly accretive operator. Assume that 0 < η < γ1

c2κ2
1

and 0 < ρ < γ2
c2κ2

2
. Then we have the following:

(a) SNVIB (2.10) has a unique solution (x∗, y∗) ∈ C × C.
(b) For arbitrary x0 ∈ C, if {(xn, yn)} is a sequence in C × C generated by Mann

iteration process:{
yn = QC(I − ηS)(xn),

xn+1 = (1− αn)xn + αnQC(I − ρT )(yn) for all n ∈ N0,

where {αn} is a sequence in [0, 1] satisfying

∞∑
n=0

αn = ∞, then it converges strongly

to (x∗, y∗).

Corollary 4.5 guarantees the existence and approximation of unique solution of
problem SNVIB (2.10) without uniform convexity. Therefore, Corollary 4.5 is a sig-
nificant improvement of the result of Yao, Liou and Kang [19].

We now apply the parallel S-iteration process for finding solution of GSNVIB (2.9).

Theorem 4.6. Let C and D be nonempty closed convex subsets of a real 2−uniformly
smooth Banach space X. Let QC and QD be sunny nonexpansive retractions onto C
and D, respectively. Let S : C → X be a κ1-Lipschitzian and γ1-strongly accretive
operator and let T : D → X be a κ2-Lipschitzian and γ2-strongly accretive operator.
Assume that 0 < η < γ1

c2κ2
1

and 0 < ρ < γ2
c2κ2

2
. Then we have the following:

(a) GSNVIB (2.9) has a unique solution (x∗, y∗) ∈ C ×D.
(b) For arbitrary (x0, y0) ∈ C ×D, if {(xn, yn)} is a sequence in C ×D generated

by the parallel S-iteration process:{
xn+1 = QC(I − ρT )[(1− αn)yn + αnQD(I − ηS)(xn)],

yn+1 = QD(I − ηS)[(1− βn)xn + βnQC(I − ρT )(yn)] for all n ∈ N0,
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where {(αn, βn)} is a sequence in (0, 1) × (0, 1) satisfying the condition (3.7), then
{(xn, yn)} converges strongly to (x∗, y∗).

Proof. Theorem 4.6(a) follows from Theorem 4.4(a). The part (b) follows from
Theorem 3.2. �

Corollary 4.7. Let C and D be nonempty closed convex subsets of a real Hilbert space
H. Let PC and PD be metric projections onto C and D, respectively. Let S : C → H
be a κ1-Lipschitzian and γ1-strongly monotone operator and let T : D → H be a
κ2-Lipschitzian and γ2-strongly monotone operator. Assume that

0 < η <
2γ1
κ21

and 0 < ρ <
2γ2
κ22

.

Define T1 = PD(I − ηS) and T2 = PC(I − ρT ). Then we have the following:
(a) SNVIH (2.11) has a unique solution (x∗, y∗) ∈ C ×D.
(b) For arbitrary (x0, y0) ∈ C×D, if {(xn, yn)} is a sequence in C×D generated by

the parallel S-iteration process (3.3), where {(αn, βn)} is a sequence in (0, 1)× (0, 1)
satisfying the condition (3.7), then it converges strongly to (x∗, y∗).

5. Numerical examples

Now, we give a real numerical example in which the conditions satisfy the ones of
Theorem 4.2 and some numerical experiment results to explain the main results in
Theorem 4.2 as follows:

Example 5.1. Let H = R, C = (−∞,−1] and D = [1,∞). Define S : C → H and
T : D → H by Sx = −15+3x, x ∈ C and Tx = 28+4x, x ∈ D. Define A,B : H → 2H

by

A(x) =

{
2x+ R+ if x = −1,

2x if x ∈ (−∞,−1)
and B(x) =

{
3x+ R− if x = 1,

3x if x ∈ (1,∞).

Take η = 1
6 and ρ = 1

8 . Then we have the following:

(a) (− 9
4 , 1) ∈ C ×D is the unique solution of the following problem:

Find (x∗, y∗) ∈ C ×D such that

{
0 ∈ y∗ − x∗ + η(Sx∗ +By∗),

0 ∈ x∗ − y∗ + ρ(Ty∗ +Ax∗).
(5.1)

(b) For arbitrary x0 ∈ C, the sequence {(xn, yn)} in C × D generated by Mann
iteration process{

yn = JBρ (I − ηS)(xn),

xn+1 = (1− 1
n+1 )xn + 1

n+1J
A
η (I − ρT )(yn) for all n ∈ N0

(5.2)

converges strongly to (x∗, y∗).
(c) For arbitrary (x0, y0) ∈ C ×D, if {(xn, yn)} is a sequence in C ×D generated

by the parallel S-iteration process:{
xn+1 = JAη (I − ρT )[(1− αn)yn + αnJ

B
ρ (I − ηS)(xn)],

yn+1 = JBρ (I − ηS)[(1− βn)xn + βnJ
A
η (I − ρT )(yn)] for all n ∈ N0,

(5.3)
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where {(αn, βn)} is a sequence in (0, 1) × (0, 1) satisfying the condition (3.7), then
{(xn, yn)} converges strongly to (x∗, y∗).

Proof. (a) It is obvious that S and T are strongly monotone and that A and B are
maximal monotone with

JAη (x) =

{
3x
4 if x ∈ (−∞,− 4

3 ),

−1 if x ∈ [− 4
3 ,∞)

and JBρ (x) =

{
1 if x ∈ (−∞, 118 ],
8x
11 if x ∈ ( 11

8 ,∞).

Hence

JAη (x− ρTx) =

{
3
8 (x− 7) if x ∈ [1, 133 ),

−1 if x ∈ [ 133 ,∞)

and

JBρ (x− ηSx) =

{
1 if x ∈ (−∞,− 9

4 ],
4
11 (x+ 5) if x ∈ (− 9

4 ,−1].

Therefore, (− 9
4 , 1) ∈ C ×D is the unique solution of the problem (5.1).

(b) Following the proof of Theorem 4.2 (b), we can easily obtain that {xn} con-
verges strongly to x∗ = − 9

4 and {yn} converges to y∗ = 1. The numerical experiment
results using software Matlab 7.0 are given in Figure 2, which show the iteration pro-
cess of the sequence {(xn, yn)} generated by the iteration process (5.2) with αn = 1/2,
and initial point x0 = −1, respectively, x0 = −1.5.

Figure 2. The iteration process of the sequence {(xn, yn)} defined by (5.2).

(c) Following the proof of Theorem 4.2 (c), we easily obtain that {xn} converges
to x∗ = − 9

4 and {yn} converges to y∗ = 1. The numerical experiment results using
software Matlab 7.0 are given in Figure 3, which show the iteration process of the
sequence {(xn, yn)} generated by the iteration process (5.3) with αn = βn = 1/2, and
initial point (x0, y0) = (−2, 2) and (x0, y0) = (−1.5, 1.5), respectively. �



820 XIAOPENG ZHAO, D.R. SAHU AND CHING-FENG WEN

Figure 3. The iteration process of the sequence {(xn, yn)} defined by (5.3)
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