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Abstract. In this paper, we investigate the existence of positive solutions for a system of fourth

order p-Laplacian boundary value problems
−((−x′′′)p−1)′ = f(t, x, x′, y, y′), t ∈ [0, 1],

−((−y′′′)p−1)′ = g(t, x, x′, y, y′), t ∈ [0, 1],

x(0) = x′(1) = x′′(0) = x′′′(1) = 0,

y(0) = y′(1) = y′′(0) = y′′′(1) = 0,

where p > 1, f, g ∈ C([0, 1] × R+ × R+ × R+ × R+,R+)(R+ := [0,∞)). Under some new general

conditions on f and g, we use the fixed point index to establish two existence theorems for the above
system. The interesting point lies in the fact that the nonlinear term f, g can be allowed to depend

on the first derivative of the unknown functions, and this derivative dependence in systems is seldom

considered in the literature.
Key Words and Phrases: p-Laplacian equation; positive solution; fixed point index; derivative

dependence.
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1. Introduction

The paper mainly concerns the existence of positive solutions for a system of fourth
order p-Laplacian boundary value problems

−((−x′′′)p−1)′ = f(t, x, x′, y, y′), t ∈ [0, 1],

−((−y′′′)p−1)′ = g(t, x, x′, y, y′), t ∈ [0, 1],

x(0) = x′(1) = x′′(0) = x′′′(1) = 0,

y(0) = y′(1) = y′′(0) = y′′′(1) = 0,

(1.1)

where p > 1, f, g ∈ C([0, 1]× R+ × R+ × R+ × R+,R+).
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Systems for nonlinear boundary value problems arise in many applications in en-
gineering, science, economy, and other fields and some results have been established
in the literature; see [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] and the references therein.

In [1, 2], the authors use the coincidence degree theory of Mawhin to study the
existence of solutions for the two coupled systems of fractional differential equations

Dγ
0+φp(D

α
0+u(t)) = f(t, v(t)),

Dγ
0+φp(D

β
0+v(t)) = g(t, u(t)),

Dα
0+u(0) = Dα

0+u(1) = Dβ
0+v(0) = Dβ

0+v(1) = 0,

and {
Dαu(t) = f(t, u(t), v(t)), u(0) = 0, Dγu(t)|t=1 =

∑n
i=1 aiD

γu(t)|t=ξi ,
Dβv(t) = g(t, u(t), v(t)), v(0) = 0, Dδv(t)|t=1 =

∑m
i=1 biD

δv(t)|t=ηi .

In [3], the authors studied the existence of positive solutions of the singular fourth-
order boundary value system with integral boundary conditions

(φp1(u′′(t)))′′ = λp1−1a1(t)f1(t, u(t), v(t)), 0 < t < 1,

(φp2(v′′(t)))′′ = µp2−1a2(t)f2(t, u(t), v(t)), 0 < t < 1,

u(0) = u(1) =
∫ 1

0
u(s)dξ1(s),

v(0) = v(1) =
∫ 1

0
v(s)dξ2(s),

φp1(u′′(0)) = φp1(u′′(1)) =
∫ 1

0
φp1(u′′(s))dη1(s),

φp2(v′′(0)) = φp2(v′′(1)) =
∫ 1

0
φp2(v′′(s))dη2(s).

In [4], the authors studied the existence of positive solutions for the coupled system
of mixed higher-order nonlinear singular fractional differential equations with integral
boundary conditions

Dα1
0+u(t) + a1(t)f1(t, u(t), v(t)) = 0, 0 < t < 1,

Dα2
0+v(t) + a2(t)f2(t, u(t)) = 0, 0 < t < 1,

u(j)(0) = v(k)(0) = 0,

u(1) =
∫ 1

0
h1(t)u(t)dt, v(1) =

∫ 1

0
h2(t)v(t)dt.

However we note that in most of these studies the nonlinear terms considered do
not involve derivatives of the dependent variable. The papers [9, 10] tackle nonlinear
terms that involve even order derivatives. In our paper, the nonlinear terms f, g in
(1.1) depend on the first derivative of the unknown functions and our results extend
and complement the rich literature on systems of boundary value problems.

2. Preliminaries

Let E := C[0, 1], ‖u‖ := maxt∈[0,1] |u(t)|, P := {u ∈ E : u(t) ≥ 0,∀t ∈ [0, 1]}.
Then (E, ‖ · ‖) is a real Banach space and P is a cone on E. Furthermore, the norm
on E×E is defined by ‖(u, v)‖ := max{‖u‖, ‖v‖}, (u, v) ∈ E×E, and E×E is a real
Banach space and P × P is a cone on E × E.



POSITIVE SOLUTIONS FOR p-LAPLACIAN BOUNDARY VALUE PROBLEMS 825

In what follows, we first convert the system (1.1) into equivalent integral equations.
Let u := −x′′, v := −y′′. Then, together with the boundary conditions

x(0) = x′(1) = y(0) = y′(1) = 0,

we have

x(t) =

∫ 1

0

G1(t, s)u(s)ds := (L1u)(t), y(t) =

∫ 1

0

G1(t, s)v(s)ds := (L1v)(t),

where

G1(t, s) =

{
t, 0 ≤ t ≤ s ≤ 1,

s, 0 ≤ s ≤ t ≤ 1.

Let

G2(t, s) =

{
1, 0 ≤ t ≤ s ≤ 1,

0, 0 ≤ s ≤ t ≤ 1.

Then

x′(t) =

∫ 1

0

G2(t, s)u(s)ds := (L2u)(t), y′(t) =

∫ 1

0

G2(t, s)v(s)ds := (L2v)(t).

Consequently, we see that (1.1) is equivalent to
− ((u′)p−1)′ = f (t, (L1u)(t), (L2u)(t), (L1v)(t), (L2v)(t)) ,

− ((v′)p−1)′ = g (t, (L1u)(t), (L2u)(t), (L1v)(t), (L2v)(t)) ,

u(0) = u′(1) = v(0) = v′(1) = 0.

Therefore, we obtain
u(t) =

∫ t

0

(∫ 1

s

f (τ, (L1u)(τ), (L2u)(τ), (L1v)(τ), (L2v)(τ)) dτ

) 1
p−1

ds,

v(t) =

∫ t

0

(∫ 1

s

g (τ, (L1u)(τ), (L2u)(τ), (L1v)(τ), (L2v)(τ)) dτ

) 1
p−1

ds.

Let

A1(u, v)(t) :=

∫ t

0

(∫ 1

s

f (τ, (L1u)(τ), (L2u)(τ), (L1v)(τ), (L2v)(τ)) dτ

) 1
p−1

ds,

A2(u, v)(t) :=

∫ t

0

(∫ 1

s

g (τ, (L1u)(τ), (L2u)(τ), (L1v)(τ), (L2v)(τ)) dτ

) 1
p−1

ds,

A(u, v)(t) = (A1(u, v), A2(u, v))(t).

Note that if f, g ∈ C([0, 1]×R+×R+×R+×R+,R+), thenAi : P×P → P (i = 1, 2) and
A : P × P → P × P are continuous and compact (completely continuous) operators,
and the existence of positive solutions for (1.1) is equivalent to that of positive fixed
points of A.
Remark 2.1. (i) Ai(i = 1, 2) is nonnegative and increasing about t ∈ [0, 1];
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(ii)
(∫ 1

s
f (·) dτ

) 1
p−1

and
(∫ 1

s
g (·) dτ

) 1
p−1

are nonnegative and nonincreasing on

s ∈ [0, 1].
Lemma 2.2. (see [13, Lemma 2.1]) Let κ := 1− 2/e and ψ(t) := tet, t ∈ [0, 1]. Then
ψ(t) is nonnegative on [0, 1] and

κψ(s) ≤
∫ 1

0

G1(t, s)ψ(t)dt ≤ ψ(s). (2.1)

Lemma 2.3. Let P0 = {u ∈ P : u(t) ≥ t‖u‖, ∀t ∈ [0, 1]}. Then A(P ×P ) ⊂ P0×P0.
Proof. Recall if h is nonnegative and nonincreasing on [0, 1] then for any t ∈ [0, 1], we
have ∫ t

0

h(s)ds ≥ t
∫ 1

0

h(s)ds.

If (u, v) ∈ P × P , then

‖A1(u, v)‖ = A1(u, v)(1)

=

∫ 1

0

(∫ 1

s

f (τ, (L1u)(τ), (L2u)(τ), (L1v)(τ), (L2v)(τ)) dτ

) 1
p−1

ds.

Also note that
(∫ 1

s
f (·) dτ

) 1
p−1

is nonnegative and nonincreasing on s ∈ [0, 1], and

we find

A1(u, v)(t) =

∫ t

0

(∫ 1

s

f (τ, (L1u)(τ), (L2u)(τ), (L1v)(τ), (L2v)(τ)) dτ

) 1
p−1

ds

≥ t
∫ 1

0

(∫ 1

s

f (τ, (L1u)(τ), (L2u)(τ), (L1v)(τ), (L2v)(τ)) dτ

) 1
p−1

ds

= t‖A1(u, v)‖.
Similarly we obtain

A2(u, v)(t) ≥ t‖A2(u, v)‖.
This completes the proof. �
Lemma 2.4. (see [14]) Let Ω ⊂ E be a bounded open set and A : Ω ∩ P → P is a
continuous and compact (completely continuous) operator. If there exists v0 ∈ P \{0}
such that v −Av 6= λv0 for all v ∈ ∂Ω ∩ P and λ ≥ 0, then i(A,Ω ∩ P, P ) = 0.
Lemma 2.5. (see [14]) Let Ω ⊂ E be a bounded open set with 0 ∈ Ω. Suppose
A : Ω ∩ P → P is a continuous and compact (completely continuous) operator. If
v 6= λAv for all v ∈ ∂Ω ∩ P and 0 ≤ λ ≤ 1, then i(A,Ω ∩ P, P ) = 1.
Lemma 2.6. (Jensen’s inequalities, see [13, Lemma 2.6]) Let θ > 0 and ϕ ∈
C([0, 1],R+). Then (∫ 1

0

ϕ(t)dt

)θ
≤
∫ 1

0

(ϕ(t))θdt, if θ ≥ 1,

and (∫ 1

0

ϕ(t)dt

)θ
≥
∫ 1

0

(ϕ(t))θdt, if 0 < θ ≤ 1.
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3. Main results

For brevity, we denote by

w = (w1, w2, w3, w4) ∈ R+ × R+ × R+ × R+,

p∗ := min{1, p− 1}, p∗ := max{1, p− 1},

G(t, s) :=
1

3
[G1(t, s) + 2G2(t, s)] ∈ [0, 1].

We now list our hypotheses.
(H1) There exist a1, b1, c1, d1 ≥ 0 and l1, l2 > 0 such that

f(t, w) ≥ a1(w1+2w2)p−1+b1(w3+2w4)p−1−l1,∀(w, t) ∈ R+×R+×R+×R+× [0, 1],

g(t, w) ≥ c1(w1+2w2)p−1+d1(w3+2w4)p−1− l2,∀(w, t) ∈ R+×R+×R+×R+× [0, 1],

and
K12 > 0,K13 > 0,K1 := K11K14 −K12K13 > 0,

where

K11 := 2
p∗−p+1

p−1 3p∗−1b
p∗
p−1

1 κ, K12 := 1− 2
p∗−p+1

p−1 3p∗−1a
p∗
p−1

1 κ,

K13 := 1− 2
p∗−p+1

p−1 3p∗−1d
p∗
p−1

1 κ, K14 := 2
p∗−p+1

p−1 3p∗−1c
p∗
p−1

1 κ.

(H2) There exist a2, b2, c2, d2 ≥ 0 and r > 0 such that

f(t, w) ≤ a2(w1+2w2)p−1+b2(w3+2w4)p−1,∀(w, t) ∈ [0, r]×[0, r]×[0, r]×[0, r]×[0, 1],

g(t, w) ≤ c2(w1+2w2)p−1+d2(w3+2w4)p−1,∀(w, t) ∈ [0, r]×[0, r]×[0, r]×[0, r]×[0, 1],

and
K21 > 0,K24 > 0,K2 := K21K24 −K22K23 > 0,

where

K21 := 1− 2
p∗−p+1

p−1 3p
∗−1a

p∗
p−1

2 , K22 := 2
p∗−p+1

p−1 3p
∗−1b

p∗
p−1

2 ,

K23 := 2
p∗−p+1

p−1 3p
∗−1c

p∗
p−1

2 , K24 := 1− 2
p∗−p+1

p−1 3p
∗−1d

p∗
p−1

2 .

(H3) There exist a3, b3, c3, d3 ≥ 0 and r > 0 such that

f(t, w) ≥ a3(w1+2w2)p−1+b3(w3+2w4)p−1,∀(w, t) ∈ [0, r]×[0, r]×[0, r]×[0, r]×[0, 1],

g(t, w) ≥ c3(w1+2w2)p−1+d3(w3+2w4)p−1,∀(w, t) ∈ [0, r]×[0, r]×[0, r]×[0, r]×[0, 1],

and
K32 > 0,K33 > 0,K3 := K31K34 −K32K33 > 0,

where

K31 := 2
p∗−p+1

p−1 3p∗−1b
p∗
p−1

3 κ, K32 := 1− 2
p∗−p+1

p−1 3p∗−1a
p∗
p−1

3 κ,

K33 := 1− 2
p∗−p+1

p−1 3p∗−1d
p∗
p−1

3 κ, K34 := 2
p∗−p+1

p−1 3p∗−1c
p∗
p−1

3 κ.

(H4) There exist a4, b4, c4, d4 ≥ 0 and l3, l4 > 0 such that

f(t, w) ≤ a4(w1+2w2)p−1+b4(w3+2w4)p−1+l3,∀(w, t) ∈ R+×R+×R+×R+× [0, 1],

g(t, w) ≤ c4(w1+2w2)p−1+d4(w3+2w4)p−1+ l4,∀(w, t) ∈ R+×R+×R+×R+× [0, 1],

and
K41 > 0,K44 > 0,K4 := K41K44 −K42K43 > 0,
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where

K41 := 1− 4
p∗−p+1

p−1 3p
∗−1a

p∗
p−1

4 , K42 := 4
p∗−p+1

p−1 3p
∗−1b

p∗
p−1

4 ,

K43 := 4
p∗−p+1

p−1 3p
∗−1c

p∗
p−1

4 , K44 := 1− 4
p∗−p+1

p−1 3p
∗−1d

p∗
p−1

4 .

We let Bρ := {u ∈ E : ‖u‖ < ρ} for ρ > 0 in the sequel.
Theorem 3.1. Suppose that (H1) and (H2) are satisfied. Then (1.1) has at least one
positive solution.
Proof. Let

M1 := {(u, v) ∈ P × P : (u, v) = A(u, v) + λ(ϕ,ϕ) for some λ ≥ 0},

where ϕ(t) ∈ P0 is a fixed element. Clearly, Lemma 2.3 implies u, v ∈ P0. Next
we claim M1 is bounded. Indeed, (u, v) ∈ M1 implies u = A1(u, v) + λϕ, v =
A2(u, v) +λϕ and thus u(t) ≥ A1(u, v)(t), v(t) ≥ A2(u, v)(t),∀t ∈ [0, 1]. By definition
we obtain

u(t) ≥
∫ t

0

(∫ 1

s

f (τ, (L1u)(τ), (L2u)(τ), (L1v)(τ), (L2v)(τ)) dτ

) 1
p−1

ds, ∀(u, v) ∈M1.

Note that p∗,
p∗
p−1 ∈ [0, 1]. Now, by Jensen’s inequality and (H1), we find

up∗(t) ≥

[∫ t

0

(∫ 1

s

f (τ, (L1u)(τ), (L2u)(τ), (L1v)(τ), (L2v)(τ)) dτ

) 1
p−1

ds

]p∗

≥
∫ t

0

∫ 1

s

f
p∗
p−1 (τ, (L1u)(τ), (L2u)(τ), (L1v)(τ), (L2v)(τ)) dτds

=

∫ 1

0

G1(t, s)f
p∗
p−1 (s, (L1u)(s), (L2u)(s), (L1v)(s), (L2v)(s)) ds

≥
∫ 1

0

G1(t, s)[a1((L1u)(s) + 2(L2u)(s))p−1 + b1((L1v)(s) + 2(L2v)(s))p−1 − l1]
p∗
p−1 ds

=

∫ 1

0

G1(t, s)
[
a1

(∫ 1

0

[G1(s, τ) + 2G2(s, τ)]u(τ)dτ

)p−1
+b1

(∫ 1

0

[G1(s, τ) + 2G2(s, τ)]v(τ)dτ

)p−1
− l1

] p∗
p−1

ds

≥2
p∗−p+1

p−1 3p∗
∫ 1

0

G1(t, s)

[
a

p∗
p−1

1

(∫ 1

0

G(s, τ)u(τ)dτ

)p∗
+b

p∗
p−1

1

(∫ 1

0

G(s, τ)v(τ)dτ

)p∗]
ds

− l
p∗
p−1

1

2

≥ 2
p∗−p+1

p−1 3p∗
∫ 1

0

G1(t, s)

[
a

p∗
p−1

1

∫ 1

0

G(s, τ)up∗(τ)dτ + b
p∗
p−1

1

∫ 1

0

G(s, τ)vp∗(τ)dτ

]
ds

− l
p∗
p−1

1

2
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= 2
p∗−p+1

p−1 3p∗−1
∫ 1

0

G1(t, s)

∫ 1

0

[G1(s, τ) + 2G2(s, τ)]
[
a

p∗
p−1

1 up∗(τ) + b
p∗
p−1

1 vp∗(τ)
]

dτds

− l
p∗
p−1

1

2
. (3.1)

Let

z1(τ) := a
p∗
p−1

1 up∗(τ) + b
p∗
p−1

1 vp∗(τ).

Then multiplying both sides of (3.1) by ψ(t), note (2.1), and we obtain∫ 1

0

up∗(t)ψ(t)dt

≥ 2
p∗−p+1

p−1 3p∗−1κ

∫ 1

0

ψ(s)

[∫ 1

0

[G1(s, τ) + 2G2(s, τ)]z1(τ)dτ

]
ds− l

p∗
p−1

1

2

= 2
p∗−p+1

p−1 3p∗−1κ

∫ 1

0

∫ s

0

sesτz1(τ)dτds+ 2
p∗−p+1

p−1 3p∗−1κ

∫ 1

0

∫ 1

s

ses(s+ 2)z1(τ)dτds

− l
p∗
p−1

1

2

= 2
p∗−p+1

p−1 3p∗−1κ

∫ 1

0

∫ 1

τ

sesτz1(τ)dsdτ + 2
p∗−p+1

p−1 3p∗−1κ

∫ 1

0

∫ τ

0

ses(s+ 2)z1(τ)dsdτ

− l
p∗
p−1

1

2

= 2
p∗−p+1

p−1 3p∗−1κ

∫ 1

0

[
a

p∗
p−1

1 up∗(τ) + b
p∗
p−1

1 vp∗(τ)
]
ψ(τ)dτ − l

p∗
p−1

1

2
.

Similarly,∫ 1

0

vp∗(t)ψ(t)dt ≥ 2
p∗−p+1

p−1 3p∗−1κ

∫ 1

0

[
c

p∗
p−1

1 up∗(τ) + d
p∗
p−1

1 vp∗(τ)
]
ψ(τ)dτ − l

p∗
p−1

2

2
.

Hence,

[
K11 −K12

−K13 K14

]
∫ 1

0

vp∗(t)ψ(t)dt∫ 1

0

up∗(t)ψ(t)dt

 ≤

l

p∗
p−1

1

2

l
p∗
p−1

2

2

 .
Also we have 

∫ 1

0

vp∗(t)ψ(t)dt∫ 1

0

up∗(t)ψ(t)dt

 ≤ 1

K1

[
K14 K12

K13 K11

]
l

p∗
p−1

1

2

l
p∗
p−1

2

2

 .
This implies there exist N1, N2 > 0 such that∫ 1

0

up∗(t)ψ(t)dt ≤ N1,

∫ 1

0

vp∗(t)ψ(t)dt ≤ N2.
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Recall that u, v ∈ P0, and then∫ 1

0

up∗(t)ψ(t)dt ≥
∫ 1

0

‖u‖p∗tp∗ψ(t)dt := δ1‖u‖p∗ ,

where δ1 =
∫ 1

0
tp∗ψ(t)dt > 0. Consequently,

‖u‖ ≤ p∗

√
δ−11 N1, ‖v‖ ≤ p∗

√
δ−11 N2 (3.2)

for all (u, v) ∈M1, which implies the boundedness of M1, as claimed.
Taking R > sup{‖(u, v)‖ : (u, v) ∈M1} and R > r(r is defined in (H2)), we have

(u, v) 6= A(u, v) + λ(ϕ,ϕ), ∀v ∈ ∂BR ∩ (P × P ), λ ≥ 0.

Now by virtue of Lemma 2.4, we obtain

i(A,BR ∩ (P × P ), P × P ) = 0. (3.3)

Let

M2 := {(u, v) ∈ Br ∩ (P × P ) : (u, v) = λA(u, v) for some λ ∈ [0, 1]}.
We shall prove M2 = {0}. Indeed, if (u, v) ∈ M2, we have u = λA1(u, v), v =
λA2(u, v) and thus u(t) ≤ A1(u, v)(t), v(t) ≤ A2(u, v)(t), ∀t ∈ [0, 1]. Hence

u(t) ≤
∫ t

0

(∫ 1

s

f (τ, (L1u)(τ), (L2u)(τ), (L1v)(τ), (L2v)(τ)) dτ

) 1
p−1

ds, ∀(u, v) ∈M2.

Note that p∗, p∗

p−1 ≥ 1. Now by (H2) and Jensen’s inequality, we obtain

up
∗
(t)

≤

[∫ t

0

(∫ 1

s

f (τ, (L1u)(τ), (L2u)(τ), (L1v)(τ), (L2v)(τ)) dτ

) 1
p−1

ds

]p∗

≤
∫ t

0

∫ 1

s

f
p∗
p−1 (τ, (L1u)(τ), (L2u)(τ), (L1v)(τ), (L2v)(τ))dτds

=

∫ 1

0

G1(t, s)f
p∗
p−1 (s, (L1u)(s), (L2u)(s), (L1v)(s), (L2v)(s))ds

≤
∫ 1

0

G1(t, s)[a2((L1u)(s) + 2(L2u)(s))p−1 + b2((L1v)(s) + 2(L2v)(s))p−1]
p∗
p−1 ds

≤2
p∗−p+1

p−1

∫ 1

0

G1(t, s)[a
p∗
p−1

2 ((L1u)(s)+2(L2u)(s))p
∗
+ b

p∗
p−1

2 ((L1v)(s)+2(L2v)(s))p
∗
]ds

≤2
p∗−p+1

p−1
3p

∗
∫ 1

0

G1(t, s)

[
a

p∗
p−1

2

(∫ 1

0

G(s, τ)u(τ)dτ

)p∗
+b

p∗
p−1

2

(∫ 1

0

G(s, τ)v(τ)dτ

)p∗]
ds

≤ 2
p∗−p+1

p−1
3p

∗
∫ 1

0

G1(t, s)

[
a

p∗
p−1

2

∫ 1

0

G(s, τ)up
∗
(τ)dτ + b

p∗
p−1

2

∫ 1

0

G(s, τ)vp
∗
(τ)dτ

]
ds

=2
p∗−p+1

p−1
3p

∗−1
∫ 1

0

G1(t, s)

[∫ 1

0

[G1(s, τ)+2G2(s, τ)]

[
a

p∗
p−1

2 up
∗
(τ)+b

p∗
p−1

2 vp
∗
(τ)

]
dτ

]
ds.
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Multiplying both sides of the above by ψ(t) and integrating over [0, 1], note (2.1) we
get∫ 1

0

up
∗
(t)ψ(t)dt

≤ 2
p∗−p+1

p−1 3p
∗−1

∫ 1

0

ψ(s)

∫ 1

0

[G1(s, τ) + 2G2(s, τ)]

[
a

p∗
p−1

2 up
∗
(τ) + b

p∗
p−1

2 vp
∗
(τ)

]
dτds

= 2
p∗−p+1

p−1 3p
∗−1

∫ 1

0

[
a

p∗
p−1

2 up
∗
(t) + b

p∗
p−1

2 vp
∗
(t)

]
ψ(t)dt.

Similarly,∫ 1

0

vp
∗
(t)ψ(t)dt ≤ 2

p∗−p+1
p−1 3p

∗−1
∫ 1

0

[
c

p∗
p−1

2 up
∗
(t) + d

p∗
p−1

2 vp
∗
(t)

]
ψ(t)dt.

Hence,

[
K21 −K22

−K23 K24

]
∫ 1

0

up
∗
(t)ψ(t)dt∫ 1

0

vp
∗
(t)ψ(t)dt

 ≤
[

0

0

]
.

Consequently, 
∫ 1

0

up
∗
(t)ψ(t)dt∫ 1

0

vp
∗
(t)ψ(t)dt

 ≤ 1

K2

[
K24 K22

K23 K21

] [
0

0

]
=

[
0

0

]
.

Therefore, ∫ 1

0

up
∗
(t)ψ(t)dt = 0,

∫ 1

0

vp
∗
(t)ψ(t)dt = 0,

whence u(t), v(t) ≡ 0,∀(u, v) ∈M2. As a result, M2 = {0}, as claimed.
Consequently,

(u, v) 6= λA(u, v),∀(u, v) ∈ ∂Br ∩ (P × P ), λ ∈ [0, 1].

Now Lemma 2.5 yields

i(A,Br ∩ (P × P ), P × P ) = 1. (3.4)

Combining this with (3.3) gives

i(A, (BR\Br) ∩ (P × P ), P × P ) = 0− 1 = −1.

Hence the operator A has at least one fixed point on (BR\Br)∩(P×P ) and therefore
(1.1) has at least one positive solution. This completes the proof. �
Theorem 3.2. Suppose that (H3) and (H4) are satisfied. Then (1.1) has at least one
positive solution.
Proof. Let

M3 := {(u, v) ∈ Br ∩ (P × P ) : (u, v) = A(u, v) + λ(ϕ,ϕ) for some λ ≥ 0},
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where ϕ ∈ P is a given element. Next we claim M3 ⊂ {0}. Indeed, if (u, v) ∈ M3,
then we have u ≥ A1(u, v), v ≥ A2(u, v) by definition. Consequently,

u(t) ≥
∫ t

0

(∫ 1

s

f (τ, (L1u)(τ), (L2u)(τ), (L1v)(τ), (L2v)(τ)) dτ

) 1
p−1

ds, ∀(u, v) ∈M3.

Note that p∗,
p∗
p−1 ∈ [0, 1]. Now by (H3) and Jensen’s inequality, we obtain

up∗(t)

≥

[∫ t

0

(∫ 1

s

f (τ, (L1u)(τ), (L2u)(τ), (L1v)(τ), (L2v)(τ)) dτ

) 1
p−1

ds

]p∗

≥
∫ 1

0

G1(t, s)[a3((L1u)(s) + 2(L2u)(s))p−1 + b3((L1v)(s) + 2(L2v)(s))p−1]
p∗
p−1 ds

≥ 2
p∗−p+1

p−1
3p∗
∫ 1

0

G1(t, s)

[
a

p∗
p−1

3

∫ 1

0

G(s, τ)up∗(τ)dτ + b
p∗
p−1

3

∫ 1

0

G(s, τ)vp∗(τ)dτ

]
ds

= 2
p∗−p+1

p−1
3

p∗−1

∫ 1

0

G1(t, s)

∫ 1

0

[G1(s, τ) + 2G2(s, τ)]
[
a

p∗
p−1

3 u
p∗

(τ) + b
p∗
p−1

3 v
p∗

(τ)
]
dτds.

We multiply both sides of the above by ψ(t) and integrate over [0, 1], and use (2.1)
to obtain∫ 1

0

up∗(t)ψ(t)dt

≥ 2
p∗−p+1

p−1 3p∗−1κ

∫ 1

0

ψ(s)

∫ 1

0

[G1(s, τ) + 2G2(s, τ)]
[
a

p∗
p−1

3 up∗(τ) + b
p∗
p−1

3 vp∗(τ)
]

dτds

= 2
p∗−p+1

p−1 3p∗−1κ

∫ 1

0

ψ(t)
[
a

p∗
p−1

3 up∗(t) + b
p∗
p−1

3 vp∗(t)
]

dt.

Similarly,∫ 1

0

vp∗(t)ψ(t)dt ≥ 2
p∗−p+1

p−1 3p∗−1κ

∫ 1

0

ψ(t)
[
c

p∗
p−1

3 up∗(t) + d
p∗
p−1

3 vp∗(t)
]

dt.

Consequently,

[
K31 −K32

−K33 K34

]
∫ 1

0

vp∗(t)ψ(t)dt∫ 1

0

up∗(t)ψ(t)dt

 ≤
[

0

0

]
.

Also we have 
∫ 1

0

vp∗(t)ψ(t)dt∫ 1

0

up∗(t)ψ(t)dt

 ≤ 1

K3

[
K34 K32

K33 K31

] [
0

0

]
=

[
0

0

]
.
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Therefore, ∫ 1

0

up∗(t)ψ(t)dt = 0,

∫ 1

0

vp∗(t)ψ(t)dt = 0,

whence u(t), v(t) ≡ 0,∀(u, v) ∈M3. Therefore, we claim M3 ⊂ {0}.
As a result, we have

(u, v)−A(u, v) 6= λ(ϕ,ϕ),∀(u, v) ∈ ∂Br ∩ (P × P ), λ ≥ 0.

Now Lemma 2.4 gives

i(A,Br ∩ (P × P ), P × P ) = 0. (3.5)

Let

M4 := {(u, v) ∈ P × P : (u, v) = λA(u, v) for some λ ∈ [0, 1]}.

It follows from Lemma 2.3 that u, v ∈ P0. Next we assert M4 is bounded. Indeed, if
(u, v) ∈M4, then

u ≤ A1(u, v), v ≤ A2(u, v).

Hence

u(t) ≤
∫ t

0

(∫ 1

s

f (τ, (L1u)(τ), (L2u)(τ), (L1v)(τ), (L2v)(τ)) dτ

) 1
p−1

ds, ∀(u, v) ∈M4.

(3.6)

Note that p∗, p∗

p−1 ≥ 1. Now by (H4) and Jensen’s inequality, we obtain

up
∗
(t)

≤

[∫ t

0

(∫ 1

s

f (τ, (L1u)(τ), (L2u)(τ), (L1v)(τ), (L2v)(τ)) dτ

) 1
p−1

ds

]p∗

≤
∫ 1

0

G1(t, s)
[
a4 ((L1u)(s)+2(L2u)(s))

p−1
+b4 ((L1v)(s)+2(L2v)(s))

p−1
+l3

] p∗
p−1

ds

≤ 4
p∗−p+1

p−1 3p
∗
∫ 1

0

G1(t, s)

[
a

p∗
p−1

4

∫ 1

0

G(s, τ)up
∗
(τ)dτ + b

p∗
p−1

4

∫ 1

0

G(s, τ)vp
∗
(τ)dτ

]
ds

+ 2
p∗−2p+2

p−1 l
p∗
p−1

3

= 4
p∗−p+1

p−1 3p
∗−1
∫ 1

0

G1(t, s)

∫ 1

0

[G1(s, τ) + 2G2(s, τ)]

[
a

p∗
p−1

4 up
∗
(τ) + b

p∗
p−1

4 vp
∗
(τ)

]
dτds

+ 2
p∗−2p+2

p−1 l
p∗
p−1

3 .

(3.7)
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Multiplying both sides of (3.7) by ψ(t) and integrating over [0, 1], and (2.1) enables
us to obtain∫ 1

0

up
∗
(t)ψ(t)dt

≤ 4
p∗−p+1

p−1 3p
∗−1

∫ 1

0

ψ(s)
[ ∫ 1

0

[G1(s, τ) + 2G2(s, τ)]
[
a

p∗
p−1

4 up
∗
(τ) + b

p∗
p−1

4 vp
∗
(τ)
]
dτ
]
ds

+ 2
p∗−2p+2

p−1 l
p∗
p−1

3

= 4
p∗−p+1

p−1 3p
∗−1

∫ 1

0

[
a

p∗
p−1

4 up
∗
(t) + b

p∗
p−1

4 vp
∗
(t)

]
ψ(t)dt+ 2

p∗−2p+2
p−1 l

p∗
p−1

3 .

Similarly,∫ 1

0

vp
∗
(t)ψ(t)dt ≤ 4

p∗−p+1
p−1 3p

∗−1
∫ 1

0

[
c

p∗
p−1

4 up
∗
(t) + d

p∗
p−1

4 vp
∗
(t)

]
ψ(t)dt+2

p∗−2p+2
p−1 l

p∗
p−1

4 .

Consequently,

[
K41 −K42

−K43 K44

]
∫ 1

0

up
∗
(t)ψ(t)dt∫ 1

0

vp
∗
(t)ψ(t)dt

 ≤
 2

p∗−2p+2
p−1 l

p∗
p−1

3

2
p∗−2p+2

p−1 l
p∗
p−1

4

 .
Also we have

∫ 1

0

up
∗
(t)ψ(t)dt∫ 1

0

vp
∗
(t)ψ(t)dt

 ≤ 1

K4

[
K44 K42

K43 K41

] 2
p∗−2p+2

p−1 l
p∗
p−1

3

2
p∗−2p+2

p−1 l
p∗
p−1

4

 .
This implies there exist N3, N4 > 0 such that∫ 1

0

up
∗
(t)ψ(t)dt ≤ N3,

∫ 1

0

vp
∗
(t)ψ(t)dt ≤ N4.

Recall that u, v ∈ P0, and we see

N3 ≥
∫ 1

0

up
∗
(t)ψ(t)dt ≥

∫ 1

0

(t‖u‖)p
∗
ψ(t)dt := δ2‖u‖p

∗
,

where δ2 =
∫ 1

0
tp

∗
ψ(t)dt. Therefore,

‖u‖ ≤ p∗
√
δ−12 N3, ‖v‖ ≤ p∗

√
δ−12 N4,∀(u, v) ∈M4.

Now the boundedness of M4, as asserted. Taking R > sup{‖(u, v)‖ : (u, v) ∈ M4}
and R > r so we have

(u, v) 6= λA(u, v),∀(u, v) ∈ ∂BR ∩ (P × P ), λ ∈ [0, 1].

Now Lemma 2.5 yields

i(A,BR ∩ (P × P ), P × P ) = 1. (3.8)
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Combining this with (3.5) gives

i(A, (BR\Br) ∩ (P × P ), P × P ) = 1− 0 = 1.

Hence the operator A has at least one fixed point on (BR\Br)∩(P×P ) and therefore
(1.1) has at least one positive solution. This completes the proof. �
Remark 3.3. Using the inverse-positive matrix idea in this paper one can easily
generalize to n-equations.
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