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1. Introduction

In 1969, Nadler [21] extended the Banach contraction principle to a multi-
valued contraction mapping and proved the following theorem.

Theorem 1.1 ([21]). Let (X, d) be a complete metric space and T be a mapping from
X into CB(X). Assume that there exists k ∈ [0, 1) such that

H(Tx, Ty) ≤ kd(x, y)

for all x, y ∈ X. Then there exists z ∈ X such that z ∈ Tz.

1Corresponding author.
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In 1988, Mizoguchi and Takahashi [20] extended the Nadler’s theorem by using
some auxiliary functions. They introduced the following contractive condition,

H(Tx, Ty) ≤ ϕ(d(x, y))d(x, y)

for all x, y ∈ X, where ϕ : [0,∞)→ [0, 1) is a function satisfying

lim
r→t+

supϕ(r) < 1, for each t ∈ [0,∞) (1.1)

and proved fixed point theorem for this type of mappings. We call a function satisfying
(1) a MT-function.

After that, many authors extended and generalized Nadler’s fixed point theorem
for set-valued mappings in several directions (see [4], [5], [6], [13], [16], [23]).

In 2012, Du [14] gave characterizations of MT-functions and proved the followings
fixed point theorem for some contractive set-valued mappings in a complete metric
space.

Theorem 1.2 ([14]). Let (X, d) be a complete metric space, T : X → CB(X) be a
set-valued mapping, g : X → X be a continuous self-map and ϕ : [0,∞) → [0, 1) be
an MT-function. Assume that

(a) Tx is g-invariant (i.e. g(Tx) ⊆ Tx) for each x ∈ X;
(b) there exists a function h : X → [0,∞) such that

H(Tx, Ty) ≤ ϕ(d(x, y))d(x, y) + h(gy)d(gy, Tx) for all x, y ∈ X.

Then there exists v ∈ X such that gv ∈ Tv and v ∈ Tv.

Afterward, Pathak, Agarwal and Cho [22] introduced a concept of P -functions and
gave characterizations of the mappings in this class. By using this concept, they
proved several fixed point and coincidence point theorems for a set-valued mapping
satisfying some contractive conditions.

Recently, in 2014, Javahernia et al. [18] introduced the notion of a generalized
Mizoguchi-Takahashi function as follows.

Definition 1.3 ([18]). A function β : R × R → R is called a generalized Mizoguchi-
Takahashi function (or generalized MT-function) if the following conditions hold:

(1) 0 < β(u, v) < 1 for all u, v > 0;
(2) lim sup

n→∞
β(un, vn) < 1, for any bounded sequence {un} ⊂ (0,∞) and any non-

increasing sequence {vn} ⊂ (0,∞).

We denote by Λ the set of all generalized MT-functions. By using the concept
of generalized MT-function, they also proved some fixed point theorems for some
contractive set-valued mappings.

On the other hand, the concept of a metric space has been generalized in many
ways. In 1989, Bakhtin [2] introduced the concept of b-metric spaces which is a metric
space satisfying a relaxed form of the triangle inequality and proved Banach’s contrac-
tion principle in this space. Since Bakhtin’s results, many authors have followed this
concept and proved fixed point results for several types of single-valued and set-valued
mappings in b-metric spaces (see [2],[7]-[12]).
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On the other hand, in 2008, Jachymski [17] combined two concepts in fixed point
theory and graph theory to study fixed point theorems for G-contraction mappings
in a metric space endowed a directed graph. These results have been generalized by
some authors in several ways (see [4], [13], [16], [24], [22], [23])

Let G = (V (G), E(G)) be a directed graph, where V (G) is a set of vertices of graph
and E(G) is a set of its edges. Assume that G has no parallel edges. We denote by
G−1 the directed graph obtained from G by reversing the direction of edges, that is,

E(G−1) = {(x, y) : (y, x) ∈ E(G)}.
Let x and y be two vertices in G, a path in G from x to y of length n ∈ N ∪ {0}

is a sequence {xi}ni=0 of n + 1 vertices such that x0 = x, xn = y, (xi−1, xi) ∈ E(G)
for each i = 1, 2, · · · , n. A graph G is said to be connected if there exists a (directed)
path between any two vertices of G. We denote

[x]NG = {y ∈ X : there is a path in G of length N from x to y}.
In 2014, Sultana and Vetrivel [24] introduced the notion of a Mizoguchi-Takahashi

G-contraction as follows:

Definition 1.4 ([24]). Let (X, d) be a metric space and G = (V (G), E(G)) be a
directed graph such that V (G) = X and E(G) ⊇ ∆. A mapping T : X → CB(X)
is called a Mizoguchi-Takahashi G-contraction if, for any x, y ∈ X with x 6= y and
(x, y) ∈ E(G),

(1) H(Tx, Ty) ≤ α(d(x, y))d(x, y), where α : [0,∞)→ [0, 1) with

lim sup
s→t+

α(s) < 1

for all t ∈ [0,∞);
(2) if u ∈ Tx and v ∈ Ty are such that d(u, v) ≤ d(x, y), then (u, v) ∈ E(G).

They obtained some fixed point theorems for a Mizoguchi-Takahashi G-contraction
in a metric space as follows.

Theorem 1.5 ([24]). Let (X, d) be a complete metric space and G = (V (G), E(G))
be a directed graph such that V (G) = X and E(G) ⊇ ∆. Let T : X → CB(X) be
a Mizoguchi-Takahashi G-contraction. Assume that there exist N ∈ N and x0 ∈ X
such that:

(1) [x0]NG ∩ Tx0 6= ∅;
(2) for any sequence {xn} ⊂ X, if xn → x and xn ∈ [xn−1]NG ∩ Txn−1 for all

n ∈ N, then there exists a subsequence {xkn
}k∈N such that (xnk

, x) ∈ E(G) for all
k ∈ N.
Then there exists a sequence {xn} in X with xn ∈ [x0]NG ∩ T (xn−1) for all n ∈ N
converging to a fixed point of T .

Motivated by the result of Jachymski, Javahernia et al. and Sultana et al., we
introduced the concept of a new generalized Mizoguchi-Takahashi G-contraction in b-
metric spaces and establish some fixed point theorems for this contraction in b-metric
spaces endowed with a directed graph. Also, we give some examples to illustrate our
main results and apply our main result to obtain some fixed point theorems for some
contractions in ε-chainable metric spaces.



788 JUKRAPONG TIAMMEE, SUTHEP SUANTAI AND YEOL JE CHO

2. Preliminaries

Now, we give some basic definitions, lemmas and notations concerning b-metric
spaces.

Definition 2.1. Let X be a nonempty set and s ≥ 1 be a given real number. A
function d : X ×X → R+ is said to be a b-metric if, for all x, y, z ∈ X, the following
conditions are satisfied:

(1) d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x);
(3) d(x, y) ≤ s[d(x, z) + d(z, y)].

Then (X, d) is called a b-metric space with coefficient s.

It is noted that every metric space is a b-metric space with s = 1, but the converse
in not generally true.

Example 2.2. Let X = [0, 1] and a mapping d : X ×X → R+ be defined by

d(x, y) = |x− y|2

for all x, y ∈ X. Clearly, (X, d) is a b-metric space with coefficient s = 2.

Example 2.3. Let 0 < p < 1 and Lp[0, 1] be the set of all real functions x on [0, 1]

such that
∫ 1

0
|x(t)|pdt < 1. Define a mapping d : Lp[0, 1]× Lp[0, 1]→ R+ by

d(x, y) =

∫ 1

0

|x(t)− y(t)|pdt

for all x, y ∈ Lp[0, 1]. Then (X, d) is a b-metric space with coefficient s = 2p.

Definition 2.4. Let (X, d) be a b-metric space.
(1) A sequence {xn} is said to be convergent to a point x ∈ X if

lim
n→∞

d(xn, x) = 0;

(2) A sequence {xn} is called a Cauchy sequence if, for any ε > 0, there exists
N ∈ N such that

d(xm, xn) < ε

for all m,n > N ;
(3) A b-metric space (X, d) is said to be complete if every Cauchy sequence in X

converges to a point x ∈ X.

Next, we give some notions and lemmas concerning set-valued mappings on b-metric
spaces. We denote by CB(X) the class of all nonempty closed and bounded subsets of
X and CL(X) the class of all nonempty closed subset of X. For any A,B ∈ CB(X),
define the function H : CB(X)× CB(X)→ R+ by

H(A,B) = max{δ(A,B), δ(B,A)},
where

δ(A,B) = sup{d(a,B) : a ∈ A},
δ(B,A) = sup{d(b, A) : b ∈ B},
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d(a,C) = inf{d(a, x) : x ∈ C}.
Note that H is called the Hausdorff b-metric induced by the b-metric d.
Now, we recall the following properties from ([10], [11], [12]).

Lemma 2.5 ([10]). Let (X, d) be a b-metric space with coefficient s ≥ 1. For any
A,B,C ∈ CB(X) and x, y ∈ X, one has the following:

(1) d(x,B) ≤ d(x, b) for any b ∈ B;
(2) δ(A,B) ≤ H(A,B);
(3) d(x,B) ≤ H(A,B) for any x ∈ A;
(4) H(A,A) = 0;
(5) H(A,B) = H(B,A);
(6) H(A,C) ≤ s[H(A,B) +H(B,C)];
(7) d(x,A) ≤ s[d(x, y) + d(y,A)].

Remark 2.6 ([10]). The function H : CL(X) × CL(X) → R+ is a generalized
Pompeiu-Hausdorff b-metric, that is, H(A,B) = +∞ if max{δ(A,B), δ(B,A)} does
not exist.

Lemma 2.7 ([11]). Let (X, d) be a b-metric space with coefficient s ≥ 1. For any
A ∈ CL(X) and x ∈ X, one has

d(x,A) = 0 ⇐⇒ x ∈ Ā = A,

where Ā denote the closure of the set A.

Lemma 2.8 ([12]). Let (X, d) be a b-metric space with coefficient s ≥ 1 and A,B ∈
CL(X) with H(A,B) > 0. Then, for each h > 1 and a ∈ A, there exists b ∈ B such
that d(a, b) ≤ hH(A,B).

3. Main results

We first need the following class of functions for our main results.

Definition 3.1. Let s ≥ 1. A function β : R × R → R is called a s-generalized
Mizoguchi-Takahashi function (or s-generalized MT-function) if the following condi-
tions hold:

(1) 0 < β(u, v) < 1 for all u, v > 0;
(2) for any bounded sequence {un} ⊂ (0,∞) and any non-increasing sequence

{vn} ⊂ (0,∞), we have

lim sup
n→∞

β(un, vn) <
1

s
.

We denote by Λs the set of all s-generalized MT-functions.

Example 3.2. Let β : R × R → R be a generalized MT-function, then β is 1-
generalized MT-function.

Example 3.3. Let s ≥ 1 and g(x) =
ln(x+ 5)

s(x+ 4)
for all x > −4. Define a function

β : R× R→ R by

β(u, v) =


u

s(v2 + 1)
, 1 < u < v,

g(v), otherwise.
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It is easily to see that β is a s-generalized MT-function.

Definition 3.4. Let (X, d) be a b-metric space with coefficient s ≥ 1 and G =
(V (G), E(G)) be a directed graph such that V (G) = X. A mapping T : X → CB(X)
is called a s-generalized Mizoguchi-Takahashi G-contraction if there exists β ∈ Λs

such that, for any x, y ∈ X with x 6= y and (x, y) ∈ E(G),
(1) H(Tx, Ty) ≤ β(H(Tx, Ty), d(x, y)) · d(x, y);
(2) if u ∈ Ty and v ∈ Ty are such that d(u, v) ≤ d(x, y), then (u, v) ∈ E(G).

Now, we prove our main results.

Theorem 3.5. Let (X, d) be a b-metric space with coefficient s ≥ 1 and G =
(V (G), E(G)) be a directed graph such that V (G) = X. Suppose that T : X → CB(X)
is a s-generalized Mizoguchi-Takahashi G-contraction. Assume that there exist N ∈ N
and x0 ∈ X such that

(1) [x0]NG ∩ Tx0 6= ∅;
(2) for any sequence {xn} in X, if xn → x and xn ∈ [xn−1]NG ∩ Txn−1 for all

n ∈ N, then there is a subsequence {xnk
} of {xn} such that (xnk

, x) ∈ E(G) for all
k ∈ N.
Then there exists x ∈ X such that x ∈ Tx.

Proof. By (1), there exists x1 ∈ [x0]NG ∩ Tx0. Then there is a path (yi)Ni=0 in G from
x0 to x1, i.e., y0 = x0, yN = x1 and (yi−1, yi) ∈ E(G) for each i = 1, 2, · · · , N . We
can choose k11 > 0 such that

βk1
1 (H(Ty0, Ty1), d(y0, y1)) + β(H(Ty0, Ty1), d(y0, y1)) · d(y0, y1)

< d(y0, y1). (3.1)

Since (y0, y1) ∈ E(G), we obtain

H(Ty0, T y1) ≤ β(H(Ty0, T y1), d(y0, y1)) · d(y0, y1). (3.2)

Since x1 ∈ Ty0, by Lemma 2.8, there exists y11 ∈ Ty1 such that

d(x1, y
1
1) ≤ H(Ty0, T y1) + βk1

1 (H(Ty0, T y1), d(y0, y1)),

which implies, by (3.2), that

d(x1, y
1
1)

≤ β(H(Ty0, T y1), d(y0, y1)) · d(y0, y1) + βk1
1 (H(Ty0, T y1), d(y0, y1)). (3.3)

From (3.1), it follows that d(x1, y
1
1) < d(y0, y1) and (x1, y

1
1) ∈ E(G).

In the same argument, set y01 = x1, for each i = 1, 2, · · · , N , we can choose ki1 with
ki−11 < ki1 and yi1 ∈ Tyi such that

d(yi−11 , y11)

≤ H(Tyi−1, T yi) + βki
1(H(Tyi−1, T yi), d(yi−1, yi))

≤ β(H(Tyi−1, Tyi), d(yi−1, yi)) · d(yi−1, yi) + βki
1(H(Tyi−1, T yi), d(yi−1, yi))

< d(yi−1, yi)
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and so (yi−11 , yi) ∈ E(G) for each i = 2, 3, · · · , N . If we denote x2 = yN1 ∈ TyN , then
(yi1)Ni=0 is a path from x1 to x2. Hence x2 ∈ [x1]NG ∩ Tx1.

Next, we can choose k12 > k11 such that

βk1
2 (H(Ty01 , Ty

1
1), d(y01 , y

1
1)) + β(H(Ty01 , Ty

1
1), d(y01 , y

1
1)) · d(y01 , y

1
1)

< d(y01 , y
1
1). (3.4)

Since (y01 , y
1
1) ∈ E(G), we obtain

H(Ty01 , T y
1
1) ≤ β(H(Ty01 , T y

1
1), d(y01 , y

1
1)) · d(y01 , y

1
1). (3.5)

By Lemma 2.8, there exists y12 ∈ Ty11 such that

d(x2, y
1
2) ≤ H(Ty01 , T y

1
1) + βm1

1(H(Ty01 , T y
1
1), d(y01 , y

1
1)),

which implies, by (3.5), that

d(x2, y
1
2)

≤ β(H(Ty01 , Ty
1
1), d(y01 , y

1
1)) · d(y01 , y

1
1) + βk1

2 (H(Ty01 , T y
1
1), d(y01 , y

1
1)). (3.6)

From (3.4), it follows that d(x2, y
1
2) < d(y01 , y

1
1) and (x2, y

1
2) ∈ E(G).

In the same argument, set y02 = x2, for each i = 1, 2, · · · , N , we can choose ki2 > 0
and yi2 ∈ Tyi1 such that

d(yi−12 , y12)

≤ H(Tyi−11 , Tyi1) + βki
2(H(Tyi−11 , T yi1), d(yi−11 , yi1))

≤ β(H(Tyi−11 , T yi1), d(yi−11 , yi1)) · d(yi−11 , yi1) + βki
2(H(Tyi−11 , T yi1), d(yi−11 , yi1))

< d(yi−11 , yi1).

Then (yi−12 , yi2) ∈ E(G) for each i = 2, 3, · · · , N . If we denote x3 = yN2 ∈ TyN1 = Tx2,
then (yi2)Ni=0 is a path from x2 to x3. Hence x3 ∈ [x2]NG ∩ Tx2.

Continuing this process for each n ∈ N, we get xn+1 ∈ [xn]NG ∩ Txn by producing
a path (yin)Ni=0 from xn to xn+1, i.e., y0n = xn, yNn = xn+1 and yin ∈ Tyin−1 and

d(yi−1n , yin)

≤ H(Tyi−1n−1, Ty
i
n−1) + βki

n(H(Tyi−1n−1, T y
i
n−1), d(yi−1n−1, y

i
n−1))

≤ β(H(Tyi−1n−1, T y
i
n−1), d(yi−1n−1, y

i
n−1)) + βki

n(H(Tyi−1n−1, T y
i
n−1), d(yi−1n−1, y

i
n−1))

< d(yi−1n−1, y
i
n−1),

where kin > kin−1 for each i = 1, 2, · · · , N .

For each i = 1, 2, · · · , N , we denote di0 = d(yi−1, yi) and din = d(yi−1n , yin) for each
n ≥ 1. From the above inequality, it follows that, for each i = 1, 2, · · · , N , {din}n∈N is
a monotone non-increasing sequence of nonnegative real numbers. Then din → ri ≥ 0
as n→∞. From (1) of Definition 3.1 and

H(Tyi−1n−1, T y
i
n−1) ≤ β(H(Tyi−1n−1, Ty

i
n−1), d(yi−1n−1, y

i
n−1)) · d(yi−1n−1, y

i
n−1),
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it follows that {H(Tyi−1n−1, T y
i
n−1)}n∈N is a bounded sequence. By (2) of Definition

3.1, we obtain

lim sup
n→∞

β(H(Tyi−1n−1, T y
j
n−1), d(yi−1n , yin)) <

1

s
. (3.7)

We denote πi
n = H(Tyi−1n−1, y

i
n−1) for each i = 1, 2, · · · , N . Then there exist positive

integer ni0 and γi ∈ [0, 1) such that β(πi
n, d

i
n) < γi for all n ≥ ni0, where

lim sup
n→∞

β(πi
n, d

i
n) < γi <

1

s
.

Thus, for each i = 1, 2, · · · , N , we have

β(πi
n, d

i
n) < γ <

1

s

for all n ≥ n0, where γ = max1≤i≤N γi and n0 = max1≤i≤N ni0. For each i =
1, 2, · · · , N and n ≥ n0 + 1, we obtain

din ≤ β(πi
n−1d

i
n−1) · din−1 + βki

n(πi
n−1, d

i
n−1)

≤ · · ·

≤
n−1∏
j=0

β(πi
j , d

i
j) · di0 +

n−1∑
m=1

n∏
j=m+1

β(πi
j−1, d

i
j−1)βki

m(πi
j−1, d

i
j−1) + βmi

n(πi
n−1, d

i
n−1)

≤ γn−n0

n0∏
j=0

β(πi
j , d

i
j) · di0

+

n−1∑
m=1

n∏
j=max{n0+1,m+1}

β(πi
j−1, d

i
j−1)βki

m(πi
j−1, d

i
j−1) + γn.

We denote by B the second term of the last inequality and so

B =

n−1∑
m=1

n∏
j=max{n0+1,m+1}

β(πi
j−1, d

i
j−1)βki

m(πi
m−1, d

i
m−1)

≤ γn−n0

n0∑
m=1

βki
m(πi

m−1) +

n−1∑
m=n0+1

γn−mβki
m(πi

m−1, d
i
m−1)

≤ Qi
1γ

n +

n−1∑
m=n0+1

γn−m+ki
m

≤ Qi
1γ

n + γn
γk

i
n0
−n0−1

1− γ
≤ Qi

2γ
n,

where Qi
1 and Qi

2 are nonnegative real numbers. Thus we have

din ≤ γn−n0

n0∏
j=0

β(πi
j , d

i
0) · di0 +Qi

2γ
n + γn ≤ Qiγn, (3.8)
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where Qi is a nonnegative real number. Hence it follows that, for any n ≥ n0 + 1,

d(xn, xn+1) = d(y0n, y
N
n ) ≤

N∑
i=1

din ≤
N∑
i=1

Qiγn.

This implies from sγ < 1 that, for any n ≥ n0 + 1 and m ∈ N,

d(xn, xn+m) ≤ s · d(xn, xn+1) + s2 · d(xn+1, xn+2) + · · ·
+ sn+m−1 · d(xn+m−2, xn+m−1) + sn+m · d(xn+m−1, xn+m)

≤
N∑
i=1

Qi
[
sγn + s2γn+1 + · · ·+ sn+mγn+m−1

]
=

N∑
i=1

Qi sγ
n(1− (sγ)m)

1− sγ

≤
N∑
i=1

Qi sγn

1− sγ
.

Since sγn → 0 and n→∞, {xn} is a b-Cauchy sequence in X. By the b-completeness
of X, there exists x∗ ∈ X such that xn → x∗. We now denote

E = {n ∈ N : xn = x∗} and card(E) = the cardinal number of E.

If card(E) =∞, then there exists a subsequence {xnk
} of {xn} such that {xnk

} ⊂
E i.e., xnk

= x∗ for all k ∈ N. Since {xnk+1} is a sequence in Tx∗ and xnk+1 → x∗,
it follows that x∗ ∈ Tx∗.

If card(E) < ∞, then there exists l ∈ N such that xn 6= x∗ for all n ∈ N with
n ≥ l, which implies that H(Txn, Tx

∗) > 0 and d(xn, x
∗) > 0 for any n ≥ l. Since

xn → x∗ and xn ∈ [xn−1]NG ∩Txn−1, by (2), there exists a subsequence {xnk
} of {xn}

such that (xnk
, x∗) ∈ E(G) for any k ∈ N. Hence we have

d(x∗, Tx∗) ≤ s
[
d(x∗, xnk+1) + d(xnk+1, Tx

∗)
]

≤ sd(x∗, xnk+1) + sH(Txnk
, Tx∗)

≤ sd(x∗, xnk+1) + sβ(H(Txnk
, Tx∗), d(xnk

, x∗)) · d(xnk
, x∗).

Taking the limit supremum as k →∞, we have d(x∗, Tx∗) = 0. Since Tx∗ is b-closed,
it follows that x∗ ∈ Tx∗. This complete the proof. �

Since every metric space is b-metric space with s = 1, following result is directly
obtained by Theorem 3.5.

Corollary 3.6. Let (X, d) be a complete metric space and G = (V (G), E(G)) be a
directed graph such that V (G) = X. Suppose that T : X → CB(X) is a generalized
Mizoguchi-Takahashi G-contraction. Assume that there exist N ∈ N and x0 ∈ X such
that

(1) [x0]NG ∩ Tx0 6= ∅;
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(2) for any sequence {xn} in X, if xn → x and xn ∈ [xn−1]NG ∩ Txn−1 for all
n ∈ N, then there is a subsequence {xnk

} of {xn} such that (xnk
, x) ∈ E(G) for all

k ∈ N.
Then there exists x ∈ X such that x ∈ Tx.

Remark 3.7. If we put β(u, v) = α(v) in Corollary 3.6, then we have Theorem 1.5
(Sultana et al. [24]).

Remark 3.8. If we put β(u, v) = α(v), E(G) = X ×X and N = 1, then we obtain
Mizoguchi’s Theorem (Mizoguchi et al. [20]) as a corollary.

By putting β(u, v) = ϕ(v)
v in Theorem 3.5, we obtain the following.

Corollary 3.9. Let (X, d) be a complete b-metric space with coefficient s ≥ 1 and
G = (V (G), E(G)) be a directed graph such that V (G) = X. Suppose that T : X →
CB(X) is a set-valued mapping such that

(1) for all x, y ∈ X, x 6= y and (x, y) ∈ E(G)

H(Tx, Ty) ≤ ϕ(d(x, y)),

where ϕ : [0,∞) → [0, 1) such that ϕ(v) < v and lim sup
v→u+

ϕ(v)
v < 1 for all v ∈ [0,∞),

and if u ∈ Tx and v ∈ Ty are such that d(u, v) ≤ d(x, y), then (u, v) ∈ E(G).
Assume that there exist N ∈ N and x0 ∈ X such that
(2) [x0]NG ∩ Tx0 6= ∅;
(3) for any sequence {xn} in X, if xn → x and xn ∈ [xn−1]NG ∩ Txn−1 for all

n ∈ N, then there is a subsequence {xnk
} of {xn} such that (xnk

, x) ∈ E(G) for all
k ∈ N.
Then there exists x ∈ X such that x ∈ Tx.

Definition 3.10 ([18]). A function φ : [0,∞) → [0,∞) is said to be a weakly lower
semi-continuous function (shortly, a w.l.s.c. function) if, for any bounded sequence
{un} ⊂ (0,∞), we have

lim inf
n→∞

φ(un) > 0.

We denote by Wlsc(R) the collection of all w.l.s.c. function.

Corollary 3.11. Let (X, d) be a complete b-metric space with coefficient s ≥ 1 and
G = (V (G), E(G)) be a directed graph such that V (G) = X. Suppose that T : X →
CB(X) is a set-valued mapping such that

(1) for all x, y ∈ X, x 6= y and (x, y) ∈ E(G)

H(Tx, Ty) ≤ d(x, y)− φ(d(x, y)),

where φ ∈Wlsc(R) and φ(0) = 0, φ(v) < sv for all v ∈ (0,∞);
(2) if u ∈ Tx and v ∈ Ty are such that d(u, v) ≤ d(x, y), then (u, v) ∈ E(G).
Assume that there exist N ∈ N and x0 ∈ X such that
(3) [x0]NG ∩ Tx0 6= ∅;
(4) for any sequence {xn} in X, if xn → x and xn ∈ [xn−1]NG ∩ Txn−1 for all

n ∈ N, then there is a subsequence {xnk
} of {xn} such that (xnk

, x) ∈ E(G) for all
k ∈ N.
Then there exists x ∈ X such that x ∈ Tx.



EXISTENCE THEOREMS OF A NEW SET-VALUED MT-CONTRACTION 795

Proof. Define β(u, v) =
1

s
− φ(u)

u
for all u, v > 0 and let {un} ⊆ [0,∞) be a bounded

sequence. Then we have lim inf
n→∞

φ(un) > 0 and so lim inf
n→∞

φ(un)

un
> 0. This implies that

lim sup
n→∞

(1

s
− φ(un)

un

)
=

1

s
− lim inf

n→∞

φ(un)

un
<

1

s
,

which means that β ∈ Λs. Also, we obtain

H(Tx, Ty) ≤ β(H(Tx, Ty), d(x, y)) · d(x, y).

Therefore, all conditions of Theorem 3.5 are satisfied and so T has a fixed point. This
completes the proof. �

By using Theorem 3.5, we get the following results for single-valued mappings.

Corollary 3.12. Let (X, d) be a b-metric space with coefficient s ≥ 1 and G =
(V (G), E(G)) be a directed graph such that V (G) = X. Suppose that f : X → X
satisfies the following condition: there exists β ∈ Λs such that, for any x, y ∈ X,
x 6= y with (x, y) ∈ E(G),

(f(x), f(y)) ∈ E(G), d(f(x), f(y)) ≤ β(d(f(x), f(y)), d(x, y))d(x, y).

Assume that there exist N ∈ N and x0 ∈ X such that
(1) Tx0 ∈ [x0]NG ;
(2) if fn(x0) → x and fn(x0) ∈ [xn−1]NG for all n ∈ N, then there exists a subse-

quence {fnk(x0)} of {fn(x0)} such that (fnk(x0), x) ∈ E(G) for all k ∈ N.
Then {fn(x0)} converges to a fixed point of f .

Next, we give an example to illustrate Theorem 3.5.

Example 3.13. Let X = [0,∞) and a b-metric d : X × X → [0,∞) be defined by
d(x, y) = |x− y|2 for all x, y ∈ X. It is easy to see that (X, d) be a complete b-metric
space with coefficient s = 2. Let G = (V (G), E(G)) be a directed graph such that
V (G) = X and

E(G) =
{( 1

2n
,

1

2n+1

)
: n ∈ N

}
∪
{(

0,
1

2n

)
: n ∈ N

}
∪ {(0, 0)}.

Define a mapping T : X → X by

Tx =

{
{0, x2} if 0 ≤ x < 1;

{x, x+ 1} if x > 0.

Choosing x0 =
1

4
and x1 =

1

8
∈ Tx0, we have (x0, x1) =

(
1

4
,

1

8

)
. We choose

β(u, v) =
1

2
, then β ∈ Λs. To prove that T is a s-generalized MT G-contraction, let

x, y ∈ X be such that (x, y) ∈ E(G).
If (x, y) = (0, 0), it is obvious that T satisfies (1) and (2) of Definition 3.1.
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If (x, y) =

(
1

2n
,

1

2n+1

)
, then we obtain

H(Tx, Ty) =
| 12n −

1
2n+1 |2

4
≤ 1

2
d(x, y) = β(H(Tx, Ty), d(x, y))d(x, y)

and, for any y ∈ Tx and v ∈ Ty, we have (u, v) ∈ E(G).

If (x, y) =

(
1

2n
, 0

)
, then we obtain

H(Tx, Ty) =
| 12n − 0|2

4
≤ 1

2
d(x, y) = β(H(Tx, Ty), d(x, y))d(x, y)

and, for any y ∈ Tx and v ∈ Ty, we have (u, v) ∈ E(G). Hence T is a s-generalized
Mizoguchi-Takahashi G-contraction. It is easy to see that the condition (2) of Theo-
rem 3.5 are satisfied with N = 1. Therefore, all conditions of Theorem 3.5 are satisfied
and we see that 0 is a fixed point of T .

Remark 3.14. It is noted that Nadler’s Theorem [21] cannot be applied in Example
3.13 with usual metric space, because for any k ∈ [0, 1)],

H(T0, T2) = 3 � kd(0, 2).

4. Applications to ε-chainable b-metric spaces

In 1961, Eldelstein [15] introduced a uniformly locally contractive mapping on
an ε-chainable metric space and prove some fixed point theorems for this type of
mappings.

In this section, we show the existence of fixed points for generalized Mizoguchi-
Takahashi contractions on an ε-chainable b-metric space. The following definitions
are needed.

Definition 4.1. A b-metric space (X, d) with coefficient s ≥ 1 is said to be ε-chainable
if, for any a, b ∈ X, there exist N ∈ N and a sequence {yi}Ni=0 such that y0 = a and
yN = b and d(yi−1, yi) < ε for each i with 1 ≤ i ≤ N .

Now, we establish the following theorem for set-valued mappings on ε-chainable
b-metric spaces as an application of Theorem 3.5.

Theorem 4.2. Let (X, d) be a complete ε-chainable b-metric space with coefficient
s ≥ 1 and T : X → CB(X) be a set-valued mapping such that there exists β ∈ Λs

satisfying

H(Tx, Ty) ≤ β(H(Tx, Ty), d(x, y)) · d(x, y)

for all x, y ∈ X with x 6= y and d(x, y) < ε. Then T has a fixed point.

Proof. We define G = (V (G), E(G)) by V (G) = X and

E(G) = {(x, y) ∈ X ×X : d(x, y) < ε}.
Then E(G) ⊇ ∆ andG has no parallel edges. It is easily to see that T is a s-generalized
Mizoguchi-Takahasji G-contraction. Let x0 ∈ X and x1 ∈ Tx0. Since (X, d) is an
ε-chainable, there exists a path (yi)Ni=0 from x0 to x1, i.e., y0 = x0, yN = x1 and



EXISTENCE THEOREMS OF A NEW SET-VALUED MT-CONTRACTION 797

(yi−1, yi) ∈ E(G) for each i = 1, 2, · · · , N . This implies that there exists N ∈ N such
that [x0]NG ∩ Tx1 6= ∅.

Next, let {xn} be a sequence in X such that xn → z ∈ X. Then there exists a
positive integer M such that

d(xn, z) < ε

for all n ≥M . Thus we can obtain a subsequence {xnk
} of {xn} such that (xnk

, z) ∈
E(G) for all k ∈ N. So all the conditions of Theorem 3.5 are satisfied. Therefore, T
has a fixed point. This completes the proof. �

The following result is obtained immediately by Theorem 4.2.

Corollary 4.3. Let (X, d) be a complete ε-chainable metric space and T : X →
CB(X) be a set-valued mapping such that there exists β ∈ Λ satisfying

H(Tx, Ty) ≤ β(H(Tx, Ty), d(x, y)) · d(x, y)

for all x, y ∈ X with x 6= y and d(x, y) < ε. Then T has a fixed point.

The following results is obtained by setting the function β in Corollary 4.3 to be
β(u, v) = α(u).

Corollary 4.4 ([24]). Let (X, d) be a complete ε-chainable metric space and T : X →
CB(X) be a set-valued mapping such that there exists α : [0,∞) → [0, 1) such that
lim sup
r→t+

α(r) < 1 for all t ≥ 0 satisfying

H(Tx, Ty) ≤ α(d(x, y)) · d(x, y)

for all x, y ∈ X with x 6= y and d(x, y) < ε. Then T has a fixed point.

5. Applications to integral equations

In this section, we give an application of fixed point method to study the existence
of solutions for some integral equations.

Let X = C([0, I],R) be the set of real continuous functions defined on closed
interval [0, I] where I > 0, and define d : X ×X → [0,∞) by

d(x, y) = ‖(x− y)2‖∞ = sup
t∈[0,I]

(x(t)− y(t))2

for all x, y ∈ X. Then (X, d) is a complete b-metric space with coefficient s = 2.
Consider the integral equation

x(t) = p(t) +

∫ t

0

S(t, u)f(u, x(u))du, (9.1)

where f : [0, I] × R → R and p : [0, I] → R are two continuous functions and
S : [0, I]× [0, I]→ [0,∞) is a function such that S(t, ·) ∈ L1([0, I]) for all t ∈ [0, I].

Let T : X → X be the operator defined by

T (x)(t) = p(t) +

∫ t

0

S(t, u)f(u, x(u))du. (9.2)

Now, we prove the existence of a solution of the integral equation (9.1) by using
Corollary 3.12.
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Theorem 5.1. Let X = C([0, I],R) and G = (V (G), E(G)) be a directed graph with
V (G) = X. Suppose that the following conditions hold:

(1) for all u ∈ [0, I] and x, y ∈ X with (x, y) ∈ E(G), we have

|f(u, x(u))− f(u, y(u))| ≤ η(x, y)|x(u)− y(u)| (9.3)

where ∥∥∥ ∫ I

0

S(t, u)η(x, y)du
∥∥∥
∞
≤
√
ϕ(‖(x− y)2‖∞)

and ϕ : [0,∞)→ [0, 1) such that lim sup
r→t+

ϕ(r) < 1
s for all t ∈ [0,∞);

(2) for any x, y ∈ X with (x, y) ∈ E(G), (Tx, Ty) ∈ E(G);
(3) there exists x0 ∈ X such that (x0, Tx0) ∈ E(G);
(4) if {xn} is a sequence in X such that (xn, xn+1) ∈ E(G) for all n ∈ N ∪ {0}

and xn → x as n→∞, then (xn, xn+1) ∈ E(G) for all n ∈ N ∪ {0}.
Then the integral equation (9.1) has a solution in X.

Proof. We see that a fixed point of (9.2) is a solution of (9.1). Let x, y ∈ X be such
that (x, y) ∈ E(G). From the condition (1), it follows that, for all t ∈ [0, I],

|T (x)(t)− T (y)(t)|2 =
[∣∣∣ ∫ I

0

S(t, u)[f(u, x(u))− f(u, y(u))]du
∣∣∣]2

≤
[ ∫ I

0

S(t, u)
∣∣∣f(u, x(u))− f(u, y(u))

∣∣∣du]2
≤
[ ∫ I

0

S(t, u)η(x, y)
√
|x(u)− y(u)|2du

]2
≤
[ ∫ I

0

S(t, u)η(x, y)
√
‖(x(u)− y(u))2‖∞du

]2
= ‖(x(u)− y(u))2‖∞

[ ∫ I

0

S(t, u)η(x, y)du
]2
.

Then we have∥∥∥(T (x)− T (y))2
∥∥∥
∞
≤ ‖(x− y)2‖∞

∥∥∥∫ I

0

S(t, u)η(x, y)du
∥∥∥2
∞

and so, for all x, y ∈ X with (x, y) ∈ E(G), we obtain

d(Tx, Ty) ≤ ϕ(d(x, y))d(x, y),

where ϕ ∈ Λs. Therefore, all the conditions of Corollary 3.12 are satisfied and hence
the operator T has a fixed point, that is, a solution of the integral equation (9.1)
exists in X. This completes the proof. �
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b-metrics, Stud. Univ. Babeş-Bolyai Math., 54(2009), no. 3, 3-14.
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