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1. Introduction

Fixed point theory is one of the well known traditional theories in mathematics
that has a broad set of applications. Existence of fixed point of mappings satisfying
certain contractive conditions can be employed to prove the existence of solution to
nonlinear equations. The Banach’s contraction principle, the most widely used fixed
point theorem in all of mathematical analysis, is constructive in nature and is one of
the most useful tools in solving existence problems in many branches of mathematics.
This theorem, which has been extended in many directions, has many applications
in mathematics and other related disciplines as well. These generalizations were ob-
tained either by improving the contractive conditions or by imposing some additional
conditions on the ambient space. There have been a number of generalizations of

751



752 SATISH SHUKLA, ROSANA RODRÍGUEZ-LÓPEZ AND MUJAHID ABBAS

metric spaces such as, rectangular metric spaces, pseudo metric spaces, fuzzy metric
spaces, quasi metric spaces, quasi semi metric spaces, probabilistic metric spaces, D-
metric spaces and cone metric spaces. Recently, Azam et al. [1] have introduced a
new approach in metric fixed point theory by replacing the set of positive real num-
bers with complex number system endowed with an order structure. In this way, they
have introduced the concept of complex valued metric space.

On the other hand, Zadeh [19] introduced the concept of fuzzy sets. This fact
initiated an intense research activity leading to the development of the interesting
theory of fuzzy sets and systems. The notion of fuzzy metric space was initiated
by Kramosil and Michálek [11]. George and Veeramani [7] modified the concept of
fuzzy metric space given in [11] to obtain a Hausdorff topology induced by such fuzzy
metric. Grabiec [8] initiated the fixed point theory in fuzzy metric spaces. For the
definitions, examples and some basic properties of fuzzy metric spaces necessary to
this work, we refer to [7, 8, 10, 11] and the references mentioned therein.

In this paper, we extend the concept of fuzzy metric space to complex valued fuzzy
metric space. We also obtain some fixed point results in complex valued fuzzy metric
spaces.

2. Complex valued fuzzy metric spaces

In this section, complex valued fuzzy metric spaces are defined and some properties
of such spaces are proved.

In what follows, C denotes the complex number system over the field of real num-
bers. We set P = {(a, b) : 0 ≤ a < ∞, 0 ≤ b < ∞} ⊂ C. The elements (0, 0),
(1, 1) ∈ P are denoted by θ and `, respectively.

Define a partial ordering � on C by c1 � c2 (or, equivalently, c2 � c1) if and
only if c2 − c1 ∈ P. We write c1 ≺ c2 (or, equivalently, c2 � c1) to indicate that
Re(c1) < Re(c2) and Im(c1) < Im(c2) (see, also, [1]). A sequence {cn} in C is said to
be monotonic with respect to � if either cn � cn+1 for all n ∈ N or cn+1 � cn for all
n ∈ N.

We define the closed unit complex interval by I = {(a, b) : 0 ≤ a ≤ 1, 0 ≤ b ≤ 1},
and the open unit complex interval by IO = {(a, b) : 0 < a < 1, 0 < b < 1}. Pθ denotes
the set {(a, b) : 0 < a < ∞, 0 < b < ∞}. It is obvious that, for c1, c2 ∈ C, c1 ≺ c2 if
and only if c2 − c1 ∈ Pθ.

For A ⊂ C, if there exists an element inf A ∈ C such that it is a lower bound of A,
that is, inf A � a for all a ∈ A and u � inf A for every lower bound u ∈ C of A, then
inf A is called the greatest lower bound or infimum of A. Similarly, we define supA,
the least upper bound or supremum of A, in usual manner.

Remark 2.1. Let cn ∈ P for all n ∈ N then:

(a) If the sequence {cn} is monotonic with respect to � and there exists α, β ∈ P
such that α � cn � β, for all n ∈ N, then there exists c ∈ P such that
limn→∞ cn = c.

(b) Although the partial ordering � is not a linear (total) order on C, the pair
(C,�) is a lattice.
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(c) If S ⊂ C is such that

there exist α, β ∈ C with α � s � β for all s ∈ S,
then inf S and supS both exist.

Definition 2.2. Let X be a nonempty set. A complex fuzzy set M is characterized
by a mapping with domain X and values in the closed unit complex interval I.

Definition 2.3. A binary operation ∗ : I × I → I is called a complex valued t−norm
if:

(1) c1 ∗ c2 = c2 ∗ c1;
(2) c1 ∗ c2 � c3 ∗ c4 whenever c1 � c3, c2 � c4;
(3) c1 ∗ (c2 ∗ c3) = (c1 ∗ c2) ∗ c3;
(4) c ∗ θ = θ, c ∗ ` = c;

for all c, c1, c2, c3, c4 ∈ I.

The following are some examples of complex valued t−norms.

Example 2.4. Let the binary operations ∗1, ∗2, ∗3 : I×I → I be defined, respectively,
by

(1) c1 ∗1 c2 = (a1a2, b1b2), for all c1 = (a1, b1), c2 = (a2, b2) ∈ I;
(2) c1 ∗2 c2 = (min{a1, a2},min{b1, b2}), for all c1 = (a1, b1), c2 = (a2, b2) ∈ I;
(3) c1 ∗3 c2 = (max{a1 + a2 − 1, 0},max{b1 + b2 − 1, 0}), for all c1 = (a1, b1),

c2 = (a2, b2) ∈ I.
Then ∗1, ∗2 and ∗3 are complex valued t−norms.

Indeed, if IR = [0, 1] is the closed unit real interval and ?1, ?2 : IR × IR → IR are
two t−norms, then ∗ : I × I → I defined by

c1 ∗ c2 = (a1 ?1 a2, b1 ?2 b2), for all c1 = (a1, b1), c2 = (a2, b2) ∈ I,
is a complex valued t−norm.

Example 2.5. Define ∗ : I × I → I as follows:

c1 ∗ c2 =

 (a1, b1), if (a2, b2) = `;
(a2, b2), if (a1, b1) = `;
θ, otherwise,

for all c1 = (a1, b1), c2 = (a2, b2) ∈ I. Then ∗ is a complex valued t−norm.

Note that, in the example above, c1 ∗ c2 cannot be expressed as (a1 ?1 a2, b1 ?2 b2),
where ?1, ?2 : IR × IR → IR are two t−norms.

Definition 2.6. Let X be a nonempty set, ∗ a continuous complex valued t−norm
and M a complex fuzzy set on X2 × Pθ satisfying the following conditions:

(1) θ ≺M(x, y, c);
(2) M(x, y, c) = ` for every c ∈ Pθ if and only if x = y;
(3) M(x, y, c) = M(y, x, c);
(4) M(x, y, c) ∗M(y, z, c′) �M(x, z, c+ c′);
(5) M(x, y, ·) : Pθ → I is continuous;
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for all x, y, z ∈ X and c, c′ ∈ Pθ.
Then the triplet (X,M, ∗) is called a complex valued fuzzy metric space and M is
called a complex valued fuzzy metric on X. A complex valued fuzzy metric can be
thought of as the degree of nearness between two points of X with respect to a complex
parameter c ∈ Pθ.

Example 2.7. Let (X, d) be any metric space. Define ∗ by c1 ∗ c2 = (a1a2, b1b2), for
all c1 = (a1, b1), c2 = (a2, b2) ∈ I. Let the complex fuzzy set M be given by

M(x, y, c) =
a+ b

a+ b+ d(x, y)
`

for all x, y ∈ X, c = (a, b) ∈ Pθ. Then (X,M, ∗) is a complex valued fuzzy metric
space.

Indeed, if (X, d) is a metric space and f : Pθ → (0,∞) is a continuous and nonde-
creasing function, that is, c1 � c2 implies f(c1) ≤ f(c2), then (X,M, ∗) is a complex
valued fuzzy metric space, where c1 ∗ c2 = (a1a2, b1b2) for all c1 = (a1, b1), c2 =
(a2, b2) ∈ I and

M(x, y, c) =
f(c)

f(c) + d(x, y)
`

for all x, y ∈ X, c ∈ Pθ.
Similarly, it is obvious that, for any metric space (X, d), the triplet (X,M, ∗) is a
complex valued fuzzy metric space, where

M(x, y, c) =

[
exp

(
d(x, y)

f(c)

)]−1

`

for all x, y ∈ X, c ∈ Pθ, c1 ∗ c2 = (a1a2, b1b2) for all c1 = (a1, b1), c2 = (a2, b2) ∈ I and
f : Pθ → (0,∞) is a continuous and nondecreasing function.

The following example is inspired by [6] and Example 4.6 [9].

Example 2.8. Let X = N (the set of all natural numbers). Define ∗ by c1 ∗ c2 =
(a1a2, b1b2), for all c1 = (a1, b1), c2 = (a2, b2) ∈ I. Let the complex fuzzy set M be
given by

M(x, y, c) =


x

y
`, if x ≤ y;

y

x
`, if y ≤ x,

for all x, y ∈ X, c ∈ Pθ. Then (X,M, ∗) is a complex valued fuzzy metric space.

Lemma 2.9. Let (X,M, ∗) be a complex valued fuzzy metric space. If c, c′ ∈ Pθ and
c ≺ c′, then M(x, y, c) �M(x, y, c′) for all x, y ∈ X.

Proof. Suppose that c, c′ ∈ Pθ are such that c ≺ c′. It follows that c′ − c ∈ Pθ and

M(x, y, c) ∗M(y, y, c′ − c) �M(x, y, c′).

Hence M(x, y, c) �M(x, y, c′). �



FIXED POINT RESULTS FOR CONTRACTIVE MAPPINGS 755

Let (X,M, ∗) be a complex valued fuzzy metric space. An open ball B(x, r, c) with
center x ∈ X and radius r, r ∈ IO, c ∈ Pθ is defined by

B(x, r, c) = {y ∈ X : `− r ≺M(x, y, c)}.

The collection {B(x, r, c) : x ∈ X, r ∈ IO, c ∈ Pθ} is a neighborhood system for the
topology τ on X induced by the complex valued fuzzy metric M.

Definition 2.10. Let (X,M, ∗) be a complex valued fuzzy metric space. A sequence
{xn} in X converges to x ∈ X if for each r ∈ IO and c ∈ Pθ there exists n0 ∈ N such
that

`− r ≺M(xn, x, c) for all n > n0.

Lemma 2.11. Let (X,M, ∗) be a complex valued fuzzy metric space. A sequence
{xn} in X converges to x ∈ X if and only if lim

n→∞
M(xn, x, c) = ` holds for all c ∈ Pθ.

Proof. Suppose that lim
n→∞

M(xn, x, c) = ` for all c ∈ Pθ. Let c ∈ Pθ be fixed. For

r ∈ IO, there exists a real number ε > 0 such that z ∈ C, |z| < ε implies that z ≺ r.
For this ε > 0, there exists n0 ∈ N such that

|`−M(xn, x, c)| < ε for all n > n0.

Therefore `−M(xn, x, c) ≺ r, that is, `− r ≺M(xn, x, c) for all n > n0.
Conversely, consider c ∈ Pθ fixed. Let ε > 0 be given and for all r ∈ IO there exists

n0 ∈ N such that `− r ≺M(xn, x, c) for all n > n0. Choose r ∈ IO such that |r| < ε,
then we have |` −M(xn, x, c)| < |r| < ε for all n > n0. Thus lim

n→∞
M(xn, x, c) = `

holds for all c ∈ Pθ. �

Definition 2.12. Let (X,M, ∗) be a complex valued fuzzy metric space. A sequence
{xn} in X is called a Cauchy sequence if

lim
n→∞

inf
m>n

M(xn, xm, c) = ` for all c ∈ Pθ. (2.1)

The complex valued fuzzy metric space (X,M, ∗) is called complete if every Cauchy
sequence in X converges in X.

Remark 2.13. Usually, two definitions of Cauchy sequence are used in the framework
of fuzzy metric spaces. One is due to Grabiec [8] and the other is due to George and
Veeramani [6]. Similarly, Grabiec [8] and George and Veeramani [6] used different def-
initions of completeness of fuzzy metric spaces (for details, see [18] and the references
mentioned therein). Our definitions of a Cauchy sequence and completeness can be
viewed as extensions of the corresponding definitions due to George and Veeramani
[6] to the complex valued fuzzy metric spaces.

Lemma 2.14. Let (X,M, ∗) be a complex valued fuzzy metric space. A sequence
{xn} in X is a Cauchy sequence if and only if for each r ∈ IO and c ∈ Pθ there exists
n0 ∈ N such that

`− r ≺M(xn, xm, c) for all n, m > n0. (2.2)
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Proof. Suppose that (2.1) holds and let c ∈ Pθ be fixed. Similarly to the proof of
Lemma 2.11, for each r ∈ IO, there exists n0 ∈ N such that `− infm>nM(xn, xm, c) ≺
r, for all n > n0, that is, ` − r ≺ infm>nM(xn, xm, c) for all n > n0. This implies
that ` − r ≺ infm>nM(xn, xm, c) � M(xn, xm, c) for all n > n0 and m > n. On the
other hand, if m = n > n0, ` − r ≺ ` = M(xn, xm, c) and, if n0 < m < n, ` − r ≺
infn>mM(xm, xn, c) � M(xm, xn, c) = M(xn, xm, c). Hence, ` − r ≺ M(xn, xm, c)
for all n,m > n0 and (2.2) holds.

Conversely, consider c ∈ Pθ fixed. Let ε > 0 be given. We know that, for all r ∈ IO
there exists n0 ∈ N such that `− r ≺M(xn, xm, c) for all n,m > n0. Thus, `− 2r ≺
`− r � infm>nM(xn, xm, c) for all n > n0, i.e., `− infm>nM(xn, xm, c) ≺ 2r for all
n > n0. We choose r ∈ IO such that |r| < ε

2 , then we have |`−infm>nM(xn, xm, c)| <
2|r| < ε for all n > n0, and (2.1) holds. �

The proof of the following remark is straightforward.

Remark 2.15. Let cn, c
′
n, z ∈ P , for all n ∈ N, then:

(1) If cn � c′n � ` for all n ∈ N and lim
n→∞

cn = `, then lim
n→∞

c′n = `.

(2) If cn � z for all n ∈ N and lim
n→∞

cn = c ∈ P , then c � z.
(3) If z � cn for all n ∈ N and lim

n→∞
cn = c ∈ P , then z � c.

Let (X,M, ∗) be a complex valued fuzzy metric space. A self mapping T on X is
called a fuzzy Banach contraction if

`−M(Tx, Ty, c) � k [`−M(x, y, c)] (2.3)

for all x, y ∈ X, c ∈ Pθ, where k is a real number such that k ∈ [0, 1). Here, k is called
the fuzzy contractive constant of T.

3. Fixed point theorems

In this section, we prove some fixed point results for self-mappings on complex
valued fuzzy metric spaces satisfying certain contractive conditions.

Theorem 3.1. Let (X,M, ∗) be a complete complex valued fuzzy metric space and
T : X → X a fuzzy Banach contraction with fuzzy contractive constant k. Then T has
a unique fixed point in X.

Proof. Let x0 ∈ X. Define a sequence {xn} in X by

xn = Txn−1 for all n ∈ N.

If xn = xn−1 for some n ∈ N, then xn is a fixed point of T. Suppose that xn 6= xn−1

for all n ∈ N. First, we show that {xn} is a Cauchy sequence.
For n ∈ N and fixed c ∈ Pθ, define

An := {M(xn, xm, c) : m > n} ⊂ I.
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Since θ ≺ M(xn, xm, c) � ` for all n ∈ N, by Remark 2.1, the infimum, inf An = αn
(say) exists for all n ∈ N. For c ∈ Pθ and n,m ∈ N with m > n, by (2.3), we have

`−M(xn+1, xm+1, c) = `−M(Txn, Txm, c)

� k [`−M(xn, xm, c)] (3.1)

� `−M(xn, xm, c),

which implies that

M(xn, xm, c) �M(xn+1, xm+1, c) for all n ∈ N, m > n.

Therefore, by definition, we have

θ � αn � αn+1 � `, for all n ∈ N. (3.2)

Thus, {αn} is a monotonic sequence in P and, using Remark 2.1 and (3.2), there
exists `1 ∈ P such that

lim
n→∞

αn = `1. (3.3)

The inequality (3.1) implies that

(1− k)`+ kM(xn, xm, c) �M(xn+1, xm+1, c)

for all m > n, and so (1− k)`+ kαn � αn+1, for every n ∈ N, which with (3.3) gives

(1− k)` � (1− k)`1.

Because k ∈ [0, 1) and using Remark 2.15, we must have `1 = `. Thus,

lim
n→∞

αn = `.

Hence,

lim
n→∞

inf
m>n

M(xn, xm, c) = `, for all c ∈ Pθ. (3.4)

Thus, from (3.4), we have proved that {xn} is a Cauchy sequence in X. By com-
pleteness of X and Lemma 2.11, there exists u ∈ X such that

lim
n→∞

M(xn, u, c) = ` for all c ∈ Pθ. (3.5)

For any c ∈ Pθ, n ∈ N, it follows from (2.3) that

`−M(Txn, Tu, c) � k [`−M(xn, u, c)] ,

that is

`(1− k) + kM(xn, u, c) �M(Txn, Tu, c). (3.6)

Now, for any c ∈ Pθ,
M(u, Tu, c) � M(u, xn+1, c/2) ∗M(xn+1, Tu, c/2)

= M(u, xn+1, c/2) ∗M(Txn, Tu, c/2).

By taking the limit as n→∞ and using (3.5), (3.6) and Remark 2.15, we obtain that
M(u, Tu, c) = ` for all c ∈ Pθ, that is, Tu = u.

If v ∈ X is another fixed point of T and there exists c ∈ Pθ such that M(u, v, c) 6= `,
then it follows from (2.3) that

`−M(u, v, c) = `−M(Tu, Tv, c) � k [`−M(u, v, c)] , (3.7)
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where at least one component of M(u, v, c) is less than one. For that c ∈ Pθ, denote
M(u, v, c) = (a, b), then, if a < 1, from (3.7), we have that 1− a ≤ k(1− a) < 1− a,
which is a contradiction and, if b < 1, we have 1−b ≤ k(1−b) < 1−b, a contradiction
again. Hence M(u, v, c) = ` for all c ∈ Pθ, that is, u = v. �

Remark 3.2. In Theorem 3.1, the contraction condition for the mapping T , i.e.,
(2.3), can be replaced by the following one, with analogous proof:

`−M(Tx, Ty, c) � k(c) [`−M(x, y, c)]

for all x, y ∈ X, c ∈ Pθ, where k is a real function k : Pθ → [0, 1).

The following example illustrates the applicability of Theorem 3.1.

Example 3.3. Let IR = [0, 1] and X = IR × {0} ∪ {0} × IR. Define ∗ by

c1 ∗ c2 = (max{a1 + a2 − 1, 0},max{b1 + b2 − 1, 0})

for all c1 = (a1, b1), c2 = (a2, b2) ∈ I. Define d : X ×X → C as follows:

d((x, 0), (y, 0)) = |x− y|(α, 1), d((0, x), (0, y)) = |x− y|(1, β)

and d((x, 0), (0, y)) = d((0, y), (x, 0)) = (αx+ y, x+ βy),

where α, β are fixed nonnegative real constants. Then (X, d) is a complex valued
metric space. Furthermore, it is possible to define

M(p, q, c) = `− d(p, q)

1 + α+ β + ab
for all p, q ∈ X, c = (a, b) ∈ Pθ.

Then (X,M, ∗) is a complete complex valued fuzzy metric space. Let γ, δ ∈ [0, 1] be
fixed real constants and T : X → X be a mapping defined by

T (x, 0) = (0, γx), and T (0, x) = (δx, 0).

Moreover, suppose that the constants α, β, γ, δ are chosen in such a way that it is

possible to take the constant k ≥ 0 with k = max

{
γ

α
, γβ, δα,

δ

β

}
< 1. Then T

satisfies the condition (2.3). Here, we are considering α, β > 0. In the case where

α = 0 and β 6= 0, for the validity of (2.3), we have to select γ = 0 and 0 ≤ k =
δ

β
< 1;

in the case β = 0 and α 6= 0, we have to select δ = 0 and 0 ≤ k =
γ

α
< 1; and, if

α = β = 0, then we have to select γ = δ = 0 and any 0 ≤ k < 1.
Thus, all the conditions in Theorem 3.1 are satisfied. Hence, T has a unique fixed

point, which is u = (0, 0) ∈ X.

Corollary 3.4. Let (X,M, ∗) be a complete complex valued fuzzy metric space. Sup-
pose that T : X → X satisfies

`−M(Tnx, Tny, c) � k [`−M(x, y, c)]

for all x, y ∈ X, c ∈ Pθ, where k ∈ [0, 1) is a constant and n is some positive integer.
Then T has a unique fixed point in X.
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Proof. As Tn satisfies all the conditions of Theorem 3.1, so Tn has a unique fixed
point u in X. But TnTu = TTnu = Tu gives that Tu is another fixed point of Tn.
By uniqueness, we have Tu = u. Since a fixed point of T is also a fixed point of Tn,
therefore the fixed point of T is unique. �

For given r ∈ IO, c ∈ Pθ and x0 ∈ X, we set B[x0, r, c] = {x ∈ X : ` − r �
M(x0, x, c)}. In the following, we prove the existence of a fixed point for a mapping
which satisfies a restricted contraction condition.

Corollary 3.5. Let (X,M, ∗) be a complete complex valued fuzzy metric space such
that c � c ∗ c for all c ∈ IO. Suppose that T : X → X satisfies:

i) There exist x0 ∈ X and r ∈ IO such that `− r �M(x0, Tx0, c) for all c ∈ Pθ.
ii) There exists k ∈ [0, 1) such that, for all x, y ∈ B[x0, r, c], c ∈ Pθ

`−M(Tx, Ty, c) � k [`−M(x, y, c)] . (3.8)

Then T has a unique fixed point in B[x0, r, c].

Proof. We only need to prove that B[x0, r, c] is complete and Tx ∈ B[x0, r, c] for all
x ∈ B[x0, r, c], c ∈ Pθ.

Suppose that {xn} is a Cauchy sequence in B[x0, r, c]. Then, by completeness of
X and by Lemma 2.11, there exists u ∈ X such that

lim
n→∞

M(xn, u, c) = ` for all c ∈ Pθ.

Now, for all m ∈ N and n ∈ N,

M
(
x0, u, c+

c

m

)
�M(x0, xn, c) ∗M

(
xn, u,

c

m

)
.

As xn ∈ B[x0, r, c], for every n ∈ N, and limn→∞M(xn, u, c) = ` for all c ∈ Pθ, and
using the properties of the complex valued t−norm and Remark 2.15, we have

M
(
x0, u, c+

c

m

)
� (`− r) ∗ ` = `− r, for every m ∈ N.

Taking the limit as m → ∞ and by Remark 2.15, we obtain M(x0, u, c) � ` − r.
Therefore, u ∈ B[x0, r, c].

For every x ∈ B[x0, r, c], it follows from (3.8) that

`−M(Tx0, Tx, c) � k[`−M(x0, x, c)],

that is,

`(1− k) + kM(x0, x, c) �M(Tx0, Tx, c).

Therefore, for all m ∈ N, we have

M
(
x0, Tx, c+

c

m

)
� M

(
x0, Tx0,

c

m

)
∗M(Tx0, Tx, c)

� (`− r) ∗ [`(1− k) + kM(x0, x, c)]

� (`− r) ∗ [`(1− k) + k(`− r)]
= (`− r) ∗ (`− kr) � (`− r) ∗ (`− r)
� `− r.
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Taking the limit as m → ∞ and by Remark 2.15, we obtain M(x0, Tx, c) � ` − r.
Hence Tx ∈ B[x0, r, c]. �

Remark 3.6. In Corollary 3.5, condition ii) can be replaced by the following weaker
one:

ii*) There exists k ∈ [0, 1) such that, for all x, y ∈ B[x0, r, c], c ∈ Pθ.

`−M(Tx0, Tx, c) � k [`−M(x0, x, c)] . (3.9)

Let {cn} be a sequence in P, then the sequence {cn} is said to diverge to ∞ as
n → ∞, and we write lim

n→∞
cn = ∞, if for all c ∈ P there exists n0 ∈ N such that

c � cn for all n > n0.

Theorem 3.7. Let (X,M, ∗) be a complete complex valued fuzzy metric space such
that, for any sequence {cn} in Pθ with lim

n→∞
cn =∞, we have lim

n→∞
inf
y∈X

M(x, y, cn) = `,

for all x ∈ X. If T : X → X satisfies that

M(Tx, Ty, λc) �M(x, y, c) (3.10)

for all x, y ∈ X and c ∈ Pθ, where λ ∈ (0, 1), then T has a unique fixed point in X.

Proof. Let x0 ∈ X be arbitrarily fixed. Define a sequence {xn} in X by

xn = Txn−1 for all n ∈ N.

If xn = xn−1 for some n ∈ N, then xn is a fixed point of T. Suppose that xn 6= xn−1

for all n ∈ N. We show that {xn} is a Cauchy sequence.
For n ∈ N and c ∈ Pθ fixed, we define

An := {M(xn, xm, c) : m > n} ⊂ I.

Since θ ≺ M(xn, xm, c) � ` for all m ∈ N with m > n, by Remark 2.1, the infimum,
inf An = αn (say) exists for all n ∈ N. For c ∈ Pθ and n,m ∈ N with m > n, we have,
by (3.10) and Lemma 2.9,

M(xn+1, xm+1, c) = M(Txn, Txm, c) �M(xn, xm, c/λ) �M(xn, xm, c), (3.11)

which implies that

M(xn, xm, c) �M(xn+1, xm+1, c) for all n, m ∈ N with m > n.

Therefore, by definition, we have

θ � αn � αn+1 � `, for all n ∈ N. (3.12)

Thus, {αn} is a monotonic sequence in P and, using Remark 2.1 and (3.12), there
exists `1 ∈ P such that

lim
n→∞

αn = `1. (3.13)

Again, by (3.11), we have, for c ∈ Pθ and n ∈ N,

αn+1 = inf
m>n

M(xn+1, xm+1, c) � inf
m>n

M(xn, xm, c/λ).
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Similarly, we get, for c ∈ Pθ and n,m ∈ N with m > n,

M(xn+1, xm+1, c) �M(xn, xm, c/λ) = M(Txn−1, Txm−1, c/λ)

�M(xn−1, xm−1, c/λ
2)

= M(Txn−2, Txm−2, c/λ
2) �M(xn−2, xm−2, c/λ

3)

� · · · �M(x0, xm−n, c/λ
n+1),

hence, for all c ∈ Pθ and n ∈ N,

αn+1 = inf
m>n

M(xn+1, xm+1, c) � inf
m>n

M(x0, xm−n, c/λ
n+1) � inf

y∈X
M(x0, y, c/λ

n+1).

Since lim
n→∞

c/λn+1 =∞, by (3.13) and the hypothesis, we have

`1 � lim
n→∞

inf
y∈X

M(x0, y, c/λ
n+1) = `. (3.14)

By (3.13) and (3.14), we have that

lim
n→∞

αn = `.

Thus, {xn} is a Cauchy sequence in X. By completeness of X and Lemma 2.11, there
exists u ∈ X such that

lim
n→∞

M(xn, u, c) = ` for all c ∈ Pθ. (3.15)

For any c ∈ Pθ, it follows, from (3.10), that

M(u, Tu, c) � M(u, xn+1, c/2) ∗M(xn+1, Tu, c/2)

= M(u, xn+1, c/2) ∗M(Txn, Tu, c/2)

� M(u, xn+1, c/2) ∗M(xn, u, c/2λ).

Taking the limit as n → ∞ and using (3.15) and Remark 2.15, we obtain that
M(u, Tu, c) = ` for all c ∈ Pθ, that is, Tu = u.

If v ∈ X is another fixed point of T and there exists c ∈ Pθ such that M(u, v, c) 6= `,
then it follows from (3.10) that

M(u, v, c) = M(Tu, Tv, c) �M(u, v, c/λ) = M(Tu, Tv, c/λ)

� M(u, v, c/λ2) � · · · �M(u, v, c/λn),

for all n ∈ N. Using that lim
n→∞

c/λn = ∞ and M(u, v, c/λn) � inf
y∈X

M(u, y, c/λn), it

follows from the above inequality that M(u, v, c) � `, which is a contradiction. Hence,
M(u, v, c) = ` for all c ∈ Pθ, that is, u = v, and the uniqueness follows. �

Note that, in the proof of Theorem 3.7, for the uniqueness of fixed point it is enough
that, for any sequence {cn} in Pθ with lim

n→∞
cn = ∞, we have lim

n→∞
M(x, y, cn) = `

for all x, y ∈ X. This condition is trivially derived from the assumptions of Theorem
3.7 since, for any sequence {cn} in Pθ with lim

n→∞
cn = ∞ and for all x, y ∈ X,

lim
n→∞

M(x, y, cn) ≥ lim
n→∞

inf
z∈X

M(x, z, cn) = `. Notice that the converse of this fact is

not true in general. This remark and the rest of the proof of Theorem 3.7 suggest
that we can give a more general statement for this fixed point result, as follows.
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Theorem 3.8. Let (X,M, ∗) be a complete complex valued fuzzy metric space such
that, for any sequence {cn} in Pθ with lim

n→∞
cn =∞, we have lim

n→∞
M(x, y, cn) = ` for

all x, y ∈ X. Moreover, suppose that there exists x0 ∈ X such that, for any sequence
{cn} in Pθ with lim

n→∞
cn =∞, we have

lim
n→∞

inf
y∈Cx0

M(x0, y, cn) = `, (3.16)

where Cx0
represents the set of T -iterates of x0, that is, Cx0

= {T k(x0) : k ∈ N}.
If T : X → X satisfies that M(Tx, Ty, λc) �M(x, y, c) for all x, y ∈ X and c ∈ Pθ,

where λ ∈ (0, 1), then T has a unique fixed point in X.

Proof. We define the sequence {xn} by xn = Txn−1 for all n ∈ N, where x0 ∈ X
is the element given by the statement. The condition (3.16) helps to guarantee that
{xn} is a Cauchy sequence, since, for c ∈ Pθ and n ∈ N,

αn+1 = inf
m>n

M(xn+1, xm+1, c) � inf
m>n

M(x0, xm−n, c/λ
n+1)

= inf
m>n

M(x0, T
m−n(x0), c/λn+1) = inf

y∈Cx0
M(x0, y, c/λ

n+1)

and, then,

lim
n→∞

αn+1 � lim
n→∞

inf
y∈Cx0

M(x0, y, c/λ
n+1) = `.

The proof is finished similarly to that of Theorem 3.7. �

Proceeding similarly to the proofs of Theorems 3.7 and 3.8, we deduce the following
result.

Theorem 3.9. Let (X,M, ∗) be a complete complex valued fuzzy metric space and
T : X → X be such that:
•M(Tx, Ty, λ(c)·c) �M(x, y, c) for all x, y ∈ X and c ∈ Pθ, where λ : Pθ → (0, 1).

• lim
n→∞

M

(
x, y,

c

(λ(c))n

)
= ` for all x, y ∈ X and c ∈ Pθ.

• There exists x0 ∈ X such that

lim
n→∞

inf
y∈Cx0

M

(
x0, y,

c

(λ(c))n

)
= ` ∀c ∈ Pθ,

where Cx0
represents the set of T -iterates of x0, that is, Cx0

= {T k(x0) : k ∈ N}.
Then T has a unique fixed point in X.

Example 3.10. Let X = [0, 1]. Define ∗ by

c1 ∗ c2 = (a1a2, b1b2)

for all c1 = (a1, b1), c2 = (a2, b2) ∈ I. Let the complex fuzzy set M be given by

M(x, y, c) =
ab

ab+ |x− y|
`

for all x, y ∈ X, c = (a, b) ∈ Pθ. Then (X,M, ∗) is a complete complex valued
fuzzy metric space. Besides, for any sequence {cn} in Pθ, cn = (an, bn), such that
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lim
n→∞

cn = ∞ and for each x ∈ X fixed, we have, using that |x − y| ≤ 1, for all

y ∈ [0, 1], that

` � inf
y∈X

M(x, y, cn) = inf
y∈X

anbn
anbn + |x− y|

` = inf
y∈X

1

1 + |x−y|
anbn

`

=
1

1 +
supy∈X |x−y|

anbn

` � 1

1 + 1
anbn

`,

so that

` � lim
n→∞

inf
y∈X

M(x, y, cn) � lim
n→∞

1

1 + 1
anbn

` = `.

Define a mapping T : X → X by Tx = a0x
2 +b0 for all x ∈ X, where a0, b0 ∈

(
0,

1

2

)
.

Note that T satisfies (3.10) with λ =
√

2a0 ∈ (0, 1), and all the conditions of Theorem

3.7 hold. Moreover, u =
1−
√

1− 4a0b0
2a0

is the unique fixed point of T in X.

The following example shows that the assumption “for any sequence {cn} in Pθ
with lim

n→∞
cn = ∞, we have lim

n→∞
inf
y∈X

M(x, y, cn) = `, for all x ∈ X” of Theorem 3.7

is not superfluous.

Example 3.11. Let X = {n` : n ∈ N}. Define ∗ by c1 ∗ c2 = (a1a2, b1b2) for all
c1 = (a1, b1), c2 = (a2, b2) ∈ I and the complex valued fuzzy set M by

M(n`,m`, c) =


n

m
`, if n ≤ m;

m

n
`, if m ≤ n,

for all n,m ∈ N, c ∈ Pθ. Then (X,M, ∗) is a complete complex valued fuzzy metric
space. Consider the mapping T : X → X defined by T (n`) = (n + 1)` for all n ∈ N.
Consider the sequence {cn} in Pθ such that cn = (n, n) for all n ∈ N. It is obvious
that lim

n→∞
cn = ∞ and lim

n→∞
M(x, y, cn) 6= ` for all x, y ∈ X with x 6= y. Moreover,

for each x = k`, y = m` ∈ X fixed and n ∈ N, we get

M(x, y, cn) = M(k`,m`, cn) =

{
k
m` if k ≤ m,
m
k ` if m ≤ k,

,

then, for each x = k` ∈ X and n ∈ N,

inf
y∈X

M(x, y, cn) = inf
m∈N

M(k`,m`, cn) = θ,

so that

lim
n→∞

inf
y∈X

M(x, y, cn) = θ 6= `.

Note that (3.10) is satisfied for arbitrary λ ∈ (0, 1), but T has no fixed point in X.
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For this example, conditions in Theorem 3.8 are not satisfied either since, for the
same choice of {cn} and for every x0 = k0` ∈ X,

lim
n→∞

inf
y∈Cx0

M(x0, y, cn) = inf
m>k0

M(k0`,m`, cn) = θ 6= `,

due to Cx0
= {m` : m > k0}.

If (X, ρ) is a bounded metric space, that is, there exists K > 0 such that d(x, y) <
K for all x, y ∈ X, and ? is the  Lukasiewicz t−norm, then (X,Mρ, ?) is a fuzzy

metric space (see [10]), where Mρ(p, q, t) = 1 − ρ(p, q)

g(t)
for all p, q ∈ X, t > 0 and

g : R+ → (K,∞) is a nondecreasing continuous function.
Similarly, suppose that (X, dc) is a complex valued metric space such that there

exists C = (k1, k2) ∈ Pθ with dc(p, q) ≺ C for all p, q ∈ X. If G : Pθ → (L,∞) is
a nondecreasing continuous function, where L = max{k1, k2}, and ∗ is defined by
c1 ∗ c2 = (a1 ? a2, b1 ? b2) for all c1 = (a1, b1), c2 = (a2, b2) ∈ I, then (X,Mdc , ∗) is a

complex valued fuzzy metric space, where Mdc(p, q, c) = ` − dc(p, q)

G(c)
for all p, q ∈ X

and c ∈ Pθ.
The complex valued fuzzy metric Mdc is an extension of the fuzzy metric Mρ to

complex values. Besides, if the complex valued metric space (X, dc) is complete, then
the complex valued fuzzy metric space (X,Mdc , ∗) is complete. Indeed, suppose that
(X, dc) is complete and consider {xn} a Cauchy sequence in (X,Mdc , ∗), then

lim
n→∞

inf
m>n

Mdc(xn, xm, c1) = lim
n→∞

inf
m>n

(
`− dc(xn, xm)

G(c1)

)
= `, for all c1 ∈ Pθ.

This implies that

lim
n→∞

(
`−

supm>n dc(xn, xm)

G(c1)

)
= `, for all c1 ∈ Pθ,

that is,
lim
n→∞

sup
m>n

dc(xn, xm) = θ.

For a given ε > 0, there exists n0 ∈ N such that, for every n > n0,∣∣∣∣ sup
m>n

dc(xn, xm)− θ
∣∣∣∣ < ε.

Since θ � dc(xn, xm) � supm>n dc(xn, xm), for n,m ∈ N with m > n, we have

|dc(xn, xm)− θ| ≤
∣∣∣∣ sup
m>n

dc(xn, xm)− θ
∣∣∣∣ < ε, for every n,m ∈ N, m > n > n0.

Therefore, {xn} is a Cauchy sequence in (X, dc), so that there exists x ∈ X the limit
of {xn} in (X, dc). The convergence is also in (X,Mdc , ∗), since

lim
n→∞

M(xn, x, c1) = lim
n→∞

(
`− dc(xn, x)

G(c1)

)
= `, for all c1 ∈ Pθ.

In the following example, we compare our results with the corresponding fixed point
results in usual fuzzy metric spaces. It shows the effect of the complex valued fuzzy
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metric on the contractive condition of the mapping, that is, a contractive mapping
on (X,Mdc , ∗) may not be contractive in the setup of (X,Mρ, ?).

Example 3.12. Let IR = [0, 1] and X = IR × {0} ∪ {0} × IR. Let ∗ be defined by

c1 ∗ c2 = (max{a1 + a2 − 1, 0},max{b1 + b2 − 1, 0})

for all c1 = (a1, b1), c2 = (a2, b2) ∈ I. Define dc : X ×X → C by

dc((x, 0), (y, 0)) = |x− y|(2, 1), dc((0, x), (0, y)) = |x− y|
(

1,
3

5

)
and

dc((x, 0), (0, y)) = dc((0, y), (x, 0)) =

(
2x+ y, x+

3

5
y

)
.

Obviously, (X, dc) is a complex valued metric space. Let Mdc be given by

Mdc(p, q, c1) = `− 5dc(p, q)

18 + 5ab
for all p, q ∈ X, c1 = (a, b) ∈ Pθ.

Then (X,Mdc , ∗) is a complete complex valued fuzzy metric space. Let T : X → X
be a mapping defined by

T (x, 0) = (0, x), and T (0, x) =

(
2

5
x, 0

)
.

Note that T satisfies the condition (3.10) with any 1 > λ ≥
√

4

5
=

2
√

5

5
. Hence, all

the conditions of Theorem 3.7 are satisfied, since, for each x ∈ X fixed and for any
sequence {cn} in Pθ, cn = (an, bn), with lim

n→∞
cn =∞, we have

inf
y∈X

M(x, y, cn) = inf
y∈X

(
`− 5dc(x, y)

18 + 5anbn

)
=

(
`−

5 supy∈X dc(x, y)

18 + 5anbn

)
n→∞→ `,

due to dc(x, y) ≺ ( 16
5 ,

9
5 ), for every x, y ∈ X. Besides, conditions in Theorem 3.1 hold

as well since (2.3) is satisfied for 1 > k ≥ 4
5 . Indeed, (2.3) is reduced to

5dc(Tx, Ty)

18 + 5ab
� k

[
5dc(x, y)

18 + 5ab

]
,

for x, y ∈ X and c1 = (a, b) ∈ Pθ, or, equivalenly, dc(Tx, Ty) � kdc(x, y), for x, y ∈
X. By distinguishing the different cases, this condition is satisfied for 1 > k ≥ 4

5 .
Moreover, T has a unique fixed point u = (0, 0) ∈ X.
On the other hand, if ρ is the usual metric on X, then (X,Mρ, ?) is a fuzzy metric

space, where Mρ(p, q, t) = 1 − ρ(p, q)

g(t)
for all p, q ∈ X, t > 0, and g : R+ → (K,∞),

with K >
√

2, is an increasing continuous function. Then T is not a fuzzy contractive
mapping in the fuzzy metric space (X,Mρ, ?), neither in the sense of Gregori and
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Sapena [9] nor in the sense of Grabiec [8]. Indeed, the contractivity condition in
Definition 3.5 [9] is written as

1

1− ρ(Tp,Tq)
g(t)

− 1 ≤ k

 1

1− ρ(p,q)
g(t)

− 1

 , ∀p, q ∈ X and t > 0,

or also
ρ(Tp, Tq)

g(t)
≤ 1− 1

k

(
1

1− ρ(p,q)
g(t)

− 1

)
+ 1

, ∀p, q ∈ X and t > 0.

Just taking the elements p = (x, 0), q = (y, 0) ∈ X, the above inequality is reduced
to

|x− y|
g(t)

≤ 1− 1

k

(
1

1− |x−y|
g(t)

− 1

)
+ 1

=
k|x− y|

(k − 1)|x− y|+ g(t)
, ∀x, y ∈ [0, 1] and t > 0,

which is trivially true for x = y ∈ [0, 1]. However, if x 6= y in [0, 1], this inequality is
equivalent to (1−k)|x−y| ≥ (1−k)g(t) and, if k ∈ (0, 1), it leads to the contradiction

1 ≥ |x− y| ≥ g(t) >
√

2.
Finally, the contractivity condition in the sense of Grabiec is written as

1− ρ(Tp, Tq)

g(kt)
≥ 1− ρ(p, q)

g(t)
, ∀p, q ∈ X and t > 0,

that is,

ρ(Tp, Tq)

g(kt)
≤ ρ(p, q)

g(t)
, ∀p, q ∈ X and t > 0.

Taking p = (x, 0), q = (y, 0) ∈ X, with x 6= y, we get g(kt) ≥ g(t), for t > 0, which is
absurd, taking into account that k ∈ (0, 1) and the increasing character of g.

3.1. Some fixed point results for nondecreasing self-mappings in partially
ordered spaces. In this section, in the context of partially ordered spaces, we show
how the monotone character of the self-mapping T allows to relax the contractivity
condition to its validity on comparable elements. To this purpose, we follow some of
the ideas in [14] by considering some additional properties on the space X. In the
following, consider (X,v) a partially ordered set and the following hypotheses:

(HM1) For every sequence {xn} in X that is monotonic increasing with respect to
the partial ordering v and such that there exists x ∈ X with limn→∞ xn = x,
we have xn v x, for every n ∈ N.

(HM2) For every sequence {xn} in X that is monotonic decreasing with respect to
the partial ordering v and such that there exists x ∈ X with limn→∞ xn = x,
we have x v xn, for every n ∈ N.

(HU) For every x, y ∈ X, there exists z ∈ X such that z is v-comparable both with
x and y.
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Theorem 3.13. Let (X,M, ∗) be a complete complex valued fuzzy metric space such
that v is a partial ordering in X and let T : X → X be a monotone nondecreasing
mapping (i.e., x v y =⇒ Tx v Ty) satisfying that

`−M(Tx, Ty, c) � k(c) [`−M(x, y, c)] , for all x, y ∈ X with x v y and c ∈ Pθ,
(3.17)

where k is a real function k : Pθ → [0, 1). Suppose that one of the following conditions
holds:

• There exists x0 ∈ X such that x0 v Tx0 and (HM1) is satisfied.
• There exists x0 ∈ X such that Tx0 v x0 (or, equivalently x0 w Tx0) and

(HM2) is satisfied.

Then T has a fixed point in X (and different fixed points are not v-comparable).
Moreover, if (HU) is satisfied, then T has a unique fixed point in X.

Proof. The proof is similar to that of Theorem 3.1. We start with the element x0 ∈ X
given by the statement and define a sequence {xn} in X by xn = Txn−1, for n ∈ N.
If xn = xn−1 for some n ∈ N, then the existence of fixed point is derived, so that we
consider that xn 6= xn−1 for all n ∈ N. The sequence defined {xn} is v-monotone.
Indeed, it follows by induction. It is easy to check that, in the case x0 v Tx0 = x1,
we get x1 = Tx0 v Tx1 = x2 and, if xn−1 v xn, then xn = Txn−1 v Txn = xn+1, so
that {xn} is nondecreasing. In the case x0 w Tx0 = x1, we get x1 = Tx0 w Tx1 = x2

and, if xn−1 w xn, then xn = Txn−1 w Txn = xn+1, so that {xn} is nonincreasing.
We prove that {xn} is a Cauchy sequence by defining, for n ∈ N and fixed c ∈ Pθ,

the same set An as in the proof of Theorem 3.1, whose infimum αn exists.
Note that, by the symmetry of M with respect the first two variables, condition

(3.17) is satisfied for every pair of v-comparable elements. Hence, both if x0 v Tx0

or x0 w Tx0, the terms in the sequence {xn} are comparable between them and,
therefore, for c ∈ Pθ and n,m ∈ N with m > n, we get, by (3.17), that

`−M(xn+1, xm+1, c) = `−M(Txn, Txm, c)

� k(c) [`−M(xn, xm, c)] (3.18)

� `−M(xn, xm, c),

so that, similarly to the proof of Theorem 3.1, we have that {αn} is a monotonic
sequence in P and limn→∞ αn = `1 ∈ P . Then (3.18) implies that (1 − k(c))` +
k(c)αn � αn+1, for every n ∈ N, so that (1 − k(c))` � (1 − k(c))`1, getting that
limn→∞ αn = ` and {xn} is a Cauchy sequence. The complete character ofX provides,
in consequence, the existence of u ∈ X with limn→∞M(xn, u, c) = `, for all c ∈ Pθ.
By hypothesis (HM1) (resp., (HM2)), every term of the sequence xn is v-comparable
to the limit u, therefore, by (3.17), we have for any c ∈ Pθ and n ∈ N,

`−M(Txn, Tu, c) � k(c) [`−M(xn, u, c)] ,

i.e.,

`(1− k(c)) + k(c)M(xn, u, c) �M(Txn, Tu, c). (3.19)
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For every c ∈ Pθ fixed, we have

M(u, Tu, c) � M(u, xn+1, c/2) ∗M(Txn, Tu, c/2)

� M(u, xn+1, c/2) ∗
(
`
(

1− k
( c

2

))
+ k

( c
2

)
M
(
xn, u,

c

2

))
,

thus, taking the limit as n→∞, we deduce that M(u, Tu, c) = ` for each c ∈ Pθ, so
that Tu = u.

To prove the uniqueness of the fixed point, consider v ∈ X another fixed point of
T . If u and v are v-comparable, then, for every c ∈ Pθ,

`−M(u, v, c) = `−M(Tu, Tv, c) � k(c) [`−M(u, v, c)] ,

so that (1−k(c))` � (1−k(c))M(u, v, c). By the properties of k, we haveM(u, v, c) = `
for all c ∈ Pθ, that is, u = v.

On the other hand, if u, v ∈ X are not v-comparable, then, by (HU), there exists
z ∈ X such that z is v-comparable both to u and v. This implies that Tnz is v-
comparable both to u = Tnu and v = Tnv. Hence, for every c ∈ Pθ and every
n ∈ N,

M(u, v, c) �M
(
u, Tnz,

c

2

)
∗M

(
Tnz, v,

c

2

)
= M

(
Tnu, Tnz,

c

2

)
∗M

(
Tnz, Tnv,

c

2

)
.

Besides, by (3.17), since u and z are v-comparable,

M (Tu, Tz, c̃) � (1− k(c̃))`+ k(c̃)M (u, z, c̃) ,∀c̃ ∈ Pθ,

hence, for n ∈ N,

M (Tnu, Tnz, c̃) � (1− k(c̃))`+ k(c̃)M
(
Tn−1u, Tn−1z, c̃

)
� (1− k(c̃))`+ k(c̃)

(
(1− k(c̃))`+ k(c̃)M

(
Tn−2u, Tn−2z, c̃

))
= (1− k(c̃))`+ k(c̃)(1− k(c̃))`+ (k(c̃))2M

(
Tn−2u, Tn−2z, c̃

)
� (1− k(c̃))`+ k(c̃)(1− k(c̃))`+ (k(c̃))2(1− k(c̃))`

+ (k(c̃))3M
(
Tn−3u, Tn−3z, c̃

)
� · · · � (1− k(c̃))

n−1∑
j=0

(k(c̃))j `+ (k(c̃))nM (u, z, c̃) , ∀c̃ ∈ Pθ

and, similarly, for M(Tnz, Tnv, c̃). In consequence, for every c ∈ Pθ and every n ∈ N,

M(u, v, c) �M
(
Tnu, Tnz,

c

2

)
∗M

(
Tnz, Tnv,

c

2

)
�

(1− k
( c

2

)) n−1∑
j=0

(
k
( c

2

))j
`+

(
k
( c

2

))n
M
(
u, z,

c

2

)
∗

(1− k
( c

2

)) n−1∑
j=0

(
k
( c

2

))j
`+

(
k
( c

2

))n
M
(
z, v,

c

2

) .
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Using that, for each c ∈ Pθ, k( c2 ) ∈ [0, 1), we have that
(
k
(
c
2

))n → 0 as n→∞ and

lim
n→∞

n−1∑
j=0

(
k
( c

2

))j
=

∞∑
j=0

(
k
( c

2

))j
=

1

1− k
(
c
2

)
for each c ∈ Pθ and we conclude that

lim
n→∞

(1− k
( c

2

)) n−1∑
j=0

(
k
( c

2

))j
`+

(
k
( c

2

))n
M
(
u, z,

c

2

) = `, for each c ∈ Pθ

and similarly for the other term, so that M(u, v, c) = ` for all c ∈ Pθ, that is, u = v.
The uniqueness of fixed point is, hence, proved under condition (HU). �

Theorem 3.14. Let (X,M, ∗) be a complete complex valued fuzzy metric space such
that v is a partial ordering in X and let T : X → X be a monotone nondecreasing
mapping (i.e., x v y =⇒ Tx v Ty) satisfying that:

• M(Tx, Ty, λ(c) · c) �M(x, y, c) for all x, y ∈ X with x v y and c ∈ Pθ, where
λ : Pθ → (0, 1).

• lim
n→∞

M

(
x, y,

c

(λ(c))n

)
= ` for all x, y ∈ X with x v y and c ∈ Pθ.

Suppose also that one of the following conditions holds:

(i) There exists x0 ∈ X such that x0 v Tx0 and

lim
n→∞

inf
y∈Cx0

M

(
x0, y,

c

(λ(c))n

)
= ` ∀c ∈ Pθ,

where Cx0
represents the set of T -iterates of x0, that is,

Cx0
= {T k(x0) : k ∈ N},

and (HM1) holds.
(ii) There exists x0 ∈ X such that x0 w Tx0 and

lim
n→∞

inf
y∈Cx0

M

(
x0, y,

c

(λ(c))n

)
= ` ∀c ∈ Pθ,

and (HM2) holds.

Then T has a fixed point in X (and different fixed points are not v-comparable).
Moreover, if (HU) is satisfied, then T has a unique fixed point in X.

Proof. We start the sequence at x0 given by hypotheses (i) or (ii) and define xn =
Txn−1, for all n ∈ N. We consider the general case xn 6= xn−1 for all n ∈ N. It is
clear that {xn} is nondecreasing in case (i) and nonincreasing in case (ii) (that is,
any two terms in the sequence are v-comparable). Similarly to the proof of Theorem
3.7, we consider, for n ∈ N and c ∈ Pθ fixed, the set An with infimum αn. By the
contractivity condition over comparable elements, we have, for c ∈ Pθ and n,m ∈ N
with m > n,

M(xn+1, xm+1, c) = M(Txn, Txm, c) �M(xn, xm, c/λ(c)) �M(xn, xm, c), (3.20)

so that {αn} is nondecreasing and convergent to `1 ∈ P (with `1 � `).
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Besides, for c ∈ Pθ and n,m ∈ N with m > n, since the terms in the sequence are
comparable, we get

M(xn+1, xm+1, c) �M(x0, xm−n, c/(λ(c))n+1),

so that, for all c ∈ Pθ and n ∈ N,

αn+1 � inf
m>n

M(x0, xm−n, c/(λ(c))n+1) = inf
y∈Cx0

M(x0, y, c/(λ(c))n+1).

Therefore, limn→∞ αn = ` and {xn} is a Cauchy sequence in X. By completeness of
X, there exists u ∈ X such that limn→∞M(xn, u, c) = ` for all c ∈ Pθ.

In case that (i) holds, due to (HM1), we have that xn v u, for every n ∈ N and,
if (ii) holds, due to (HM2), we have that xn w u, for every n ∈ N. Since xn is
comparable to u for every n ∈ N, we have, for any c ∈ Pθ and n ∈ N, that

M(u, Tu, c) � M(u, xn+1, c/2) ∗M(Txn, Tu, c/2)

� M(u, xn+1, c/2) ∗M(xn, u, c/(2λ(c))).

From this inequality, we deduce that Tu = u.
Finally, if v ∈ X is another fixed point of T , we distinguish two cases. If u and v

are v-comparable, then

M(u, v, c)=M(Tu, Tv, c) �M(u, v, c/λ(c)) � · · · �M(u, v, c/(λ(c))n), for all n ∈ N.
By hypothesis, M(u, v, c) = ` for all c ∈ Pθ, that is, u = v.

On the other hand, if u and v are not v-comparable, by (HU), there exists z ∈ X
that is v-comparable to u and v and, hence, Tnz is also v-comparable to u and v.
Therefore,

M(u, v, c) = M(Tnu, Tnv, c) �M(Tnu, Tnz, c/2) ∗M(Tnz, Tnv, c/2)

� M(Tn−1u, Tn−1z, c/(2λ(c))) ∗M(Tn−1z, Tn−1v, c/(2λ(c)))

� · · · �M(u, z, c/(2(λ(c))n)) ∗M(z, v, c/(2(λ(c))n)),

for all c ∈ Pθ, n ∈ N.
Passing to the limit as n → ∞, we have M(u, v, c) = ` for all c ∈ Pθ, thus,

u = v. �

4. Some final considerations

As final considerations, we give some hints about the relevance of complex valued
fuzzy metric spaces and fixed point results on spaces with such an structure.

From the point of view of applications, many processes find a suitable formulation
in mathematical terms through the establishment of a base space that might have
particularities which do not fit with the restrictions of classical Banach spaces. In
particular, fuzzy metric spaces are an appropriate basis for dealing with the uncer-
tainty present in many real phenomena, being very useful to establish the distance
between two elements in terms of their degree of proximity. Their applicability is
widely extended to approximate reasoning, decision-making problems, or tasks of
classification and data analysis [2].

Some relevant applications of fuzzy metric spaces are shown in [2] in relation to
the complexity of algorithms and information systems based on access locality (see
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also [3]). The use of fuzzy metrics allows the authors to give the classification tasks
a dynamic behavior, evolving with time.

The applications of fuzzy metrics to image filtering are also well-known. In [13], it
is highlighted the relevance of having at disposal different examples of fuzzy metrics to
use them in engineering applications. Besides, the authors of [13] illustrate the use of
fuzzy metrics to analyze the proximity of two pixels in a color image, which is highly
useful in image processing. In this sense, fuzzy metrics give additional capabilities in
constrast with the classical approach, such as the possibility to quantify the distance
between two elements of arbitrary type in terms of a number between 0 and 1 in a
uniform scale basis, as well as allowing to deal with the uncertainty present in many
practical applications, giving the possibility to work with different degrees of certainty
in concordance with what happens in many fuzzy processes. In [13], the authors
propose an image filter based on fuzzy metrics and compare the results obtained with
other methods.

Moreover, the author of [2] presents an interesting application of fixed point results
for a general type of fuzzy metrics on uncertain domains, and thus proves the exis-
tence and uniqueness of solution for the recurrence equations associated to recursive
algorithms. See also [4, 16] to find some particular examples of contexts where these
algorithms arise, such as object-oriented design (objects relying one on the other) or
language theory (in relation with dependent rules of grammar).

On the other hand, complex spaces are proved to be of great relevance, for instance,
in physics, where the question of complexification of space and time is an important
issue for the unification theory. Among the different contributions to the topic, we
mention the pioneering work by El Naschie [5] with the introduction of the idea
of complex time and its formal definition. Based on this idea, the authors of [12]
show that complex structure of time is in concordance with the consideration of the
additional coordinate of the time employed by a light signal travelling between two
inertial observers whose aim is to compare their own measurements of time. They
also show that El Naschie’s complex time can be understood as a limit when the
speed of the observers attains the speed of light and they derive the inverse Lorentz
transformations of special relativity directly from this structure. In [17], it is showed
that the idea of time complexification gives an appropriate context to interpret the
connections between quantum and classical mechanics. Another recent contribution
on the topic is [15].

The use of complex fuzzy metrics can have applications to problems under dif-
ferent interpretations. On one hand, it may permit the consideration of a complex
t variable, in relation with some physical features or just attending to two different
magnitudes considered as differenced elements. This would allow computing the prox-
imity between elements of the space as two separated values in terms of two criteria,
and proceed, for instance, with some filtering process which takes into account that
the corresponding pair of values remains on a certain region (instead of being close
to a certain value). This approach might also be helpful in the situation where the
process of study is evolving in relation with two different variables. On the other
hand, this structure might allow dealing with information depending on two different
types of data or registers, for instance, the criteria to compare pixels and units of
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sound could be different, so that the comparison can be made simultaneously at both
levels through a metric that considers the two types of elements separately. Of course,
the possibility of combining both criteria in only one remains, so that filters based
on this type of fuzzy metrics can be an alternative in filtering processes with higher
dimension entities of information.

In this context, the usefulness of fixed point results in complex fuzzy metric spaces
is clear due to the relevance of this type of results to the solvability of functional
problems, or even differential equations, in many fields of applications, as long as
the structure of complex fuzzy metric is suitable for the particularities of the space
considered.
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