
Fixed Point Theory, 19(2018), No. 2, 733-750

DOI: 10.24193/fpt-ro.2018.2.55

http://www.math.ubbcluj.ro/∼nodeacj/sfptcj.html

FIXED POINT THEOREMS IN QUASI-METRIC SPACES

AND THE SPECIALIZATION PARTIAL ORDER

NASEER SHAHZAD∗ AND OSCAR VALERO∗∗

∗Department of Mathematics, Faculty of Science

King Abdulaziz University, P.O. Box 80203, Jeddah 21859, Saudi Arabia

E-mail: nshahzad@kau.edu.sa

∗∗Departamento de Ciencias Matemáticas e Informática

Universidad de las Islas Baleares
Ctra. de Valldemossa km. 7.5, 07122 Palma de Mallorca, Spain

E-mail: o.valero@uib.es

Abstract. In this paper we present a new fixed point theorem in quasi-metric spaces which captures

the spirit of Kleene’s fixed point theorem. To this end, we explore the fundamental assumptions in the
aforesaid result when we consider quasi-metric spaces endowed with the specialization partial order.

Thus, we introduce an appropriate notion of order-completeness and order-continuity that ensure
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1. The statement of the problem

The mathematical modelling for the development of formal methods useful in pro-
gram verification is based mainly on the principle of fixed point induction in partially
ordered sets (see [6], [16], [17] and [24]). Concretely, the aforementioned principle is
supported by the so-called Kleene’s fixed point theorem. Let us recall a few pertinent
notions about partially ordered sets with the aim of introducing the famous result.
To this end, we will denote by N the set of positive integer numbers.

Following [6], a partially ordered set is pair (X,≤), where X is a nonempty set
X and ≤ is a partial order on X; i.e., a binary relation over X fulfilling (for all
x, y, z ∈ X)

(i) x ≤ x
(ii) x ≤ y and y ≤ x⇒ x = y
(iii) x ≤ y and y ≤ z ⇒ x ≤ z

(reflexivity);
(antisymmetry);
(transitivity).
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If (X,≤) is a partially ordered set and Y ⊆ X, then an upper bound for Y in
(X,≤) is an element x ∈ X such that y ≤ x for all y ∈ Y . The least upper bound
for Y in (X,≤), if exists, is an element z ∈ X which is an upper bound for Y and,
in addition, satisfies that z ≤ x provided that x ∈ X is an upper bound for Y . We
will denote by ↑≤ x, with x ∈ X, the set {y ∈ X : x ≤ y} and by ↓≤ x the set
{y ∈ X : y ≤ x}.

According to [4], a partially ordered set (X,≤) is said to be chain-complete provided
that every increasing sequence has a least upper bound, where a sequence (xn)n∈N
is said to be increasing whenever xn ≤ xn+1 for all n ∈ N. In addition, a mapping
from a partially ordered set (X,≤) into itself is said to be ≤-continuous if the least
upper bound of the sequence (f(xn))n∈N is f(x) for every increasing sequence (xn)n∈N
whose least upper bound exists and is x.

Taking into account the above notions, the Kleene’s fixed point theorem can be
stated as follows:

Theorem 1.1. Let (X,≤) be a chain-complete partially ordered set and let f be
a ≤-continuous mapping from (X,≤) into itself. If there exists x0 ∈ X such that
x0 ≤ f(x0), then there exists x∗ ∈ Fix(f) = {x ∈ X : f(x) = x} which satisfies that
x∗ ∈↑≤ x0.

Parallel to the order-theoretic foundation of the fixed point induction technique, an-
other mathematical foundation has been developed for program verification which is,
now, based in metric spaces and Banach’s fixed point theorem (for a fuller treatment
of the topic we refer the reader to [3]). Let us recall the aforementioned celebrated
result because it will be useful for our subsequent discussion.

Theorem 1.2. Let (X, d) be a complete metric space and let f be a mapping from X
into itself such that there exists k ∈ [0, 1[ with

d(f(x), f(y)) ≤ kd(x, y) (1.1)

for all x, y ∈ X. Then there exists a unique x∗ ∈ X such that Fix(f) = x∗.

Of course we assume that the reader is familiar with the basic notions of mathe-
matical analysis in fixed point theory. Otherwise, we refer the reader to [7].

In [11] and [20], it was argued that the fact that the topology induced by a metric
is T2 implies, in general, that metric spaces are not a suitable tool in order to support
a metric foundation to the fixed point induction principle in terms of Theorem 1.1.
Motivated by this fact, M.B. Smyth and S.G. Matthews worked in the development
of mathematical tools for program verification that allow to present both aforesaid
mathematical approaches, the order-theoretic and the metric one, under the same
framework. In the cited papers, the conclusion achieved is that of introducing gener-
alized metric concepts that are able to model at the same time the metric (topological)
and order properties that a mathematical model for program verification must satisfy.

Next we recall the basic ideas about the required generalized metrics. To this end,
denote by R+ the set of nonnegative real numbers. According to [20] (see also [9] and
[11]), a quasi-metric on a nonempty set X is a function d : X ×X → R+ such that
for all x, y, z ∈ X:
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(i) d(x, y) = d(y, x) = 0⇔ x = y;
(ii) d(x, z) ≤ d(x, y) + d(y, z).

Clearly, a metric d on X is a quasi-metric with the additional property
(iii) d(x, y) = d(y, x), for all x, y ∈ X.
Each quasi-metric d on X induces a topology τ(d) on X, which has as a base the

family of open d-balls {Bd(x, r) : x ∈ X, r > 0}, where

Bd(x, r) = {y ∈ X : d(x, y) < r}
for all x ∈ X and r > 0. Notice that unlike the metric case, the topology induced by
a quasi-metric is only T0 but not T2 in general.

A quasi-metric space is a pair (X, d) such that X is a nonempty set and d is a
quasi-metric on X.

The advantage of quasi-metric spaces with respect to metric spaces as tools in
program verification is given mainly by two facts.

On the one hand, the mathematical models for program verification based on metric
spaces, i.e. based on Theorem 1.2, can be retrieved from quasi-metric spaces. Indeed,
every quasi-metric d on a nonempty set X induces in a natural way a metic ds given
by ds(x, y) = max{d(x, y), d−1(x, y)} for all x, y ∈ X, where d−1 is a quasi-metric,
called the conjugate quasi-metric of d, defined by d−1(x, y) = d(y, x) for all x, y ∈ X.
Moreover, a quasi-metic space (X, d) is said to be bicomplete provided that the metric
space (X, ds) is complete. Thanks to the above relationship between metrics and
quasi-metrics, the Banach fixed point theorem can be easily adapted to the quasi-
metric approach in the following way.

Theorem 1.3. Let (X, d) be a bicomplete quasi-metric space and let f be a mapping
from X into itself such that there exists k ∈ [0, 1[ with

d(f(x), f(y)) ≤ kd(x, y) (1.2)

for all x, y ∈ X. Then there exists a unique x∗ ∈ X such that Fix(f) = x∗.

Obviously Theorem 1.3 allows to retrieve as a particular case the mathematical
models for program verification based on Theorem 1.2. However, in [11], Matthews
pointed out that Theorem 1.3 is not able to model certain situations that arise in
program verification and, for this reason, another notion of generalized metric space
was introduced and exploited by means of a Banach type fixed point theorem. We
will not recall Matthews’ theorem here because we will focus on quasi-metrics in our
discussion later.

On the other hand, every quasi-metric d induces on a nonempty set X the so-called
specialization partial order ≤d by x ≤d y ⇔ d(x, y) = 0. Observe that this presents an
advantage with respect to metric spaces because in the latter the specialization partial
order is reduced to the flat order, i.e., every element of the space is order related only
with itself. The specialization partial order makes that this kind of generalized metrics
can establish suitable connections between partial orders and topologies (which are not
T2 in general) for modeling processes in program verification (for a fuller treatment
of that topic we refer the reader to [11]). Concretely one of that connections is a
fixed point theorem appropriate to permit the unfolding of mathematical models for
program verification in the spirit of Kleene’s fixed point theorem (Theorem 1.1). The
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aforesaid result was stated by J.J.M.M. Rutten in [15] (see also [8]) and says the
following:

Theorem 1.4. Let (X, d) be a complete quasi-metric space and let f be a mapping
from X into itself. Assume that the following assertions hold:

(1) There exists x0 ∈ X such that x0 ≤d f(x0).
(2) For all x, y ∈ X,

d(f(x), f(y)) ≤ d(x, y). (1.3)

(3) f is continuous.

Then there exists x∗ ∈ X such that x∗ ∈ Fix(f) with x∗ ∈↑≤d
x0 and x∗ is the least

upper bound of Fix(f)∩ ↑≤d
x0 in (X,≤). Moreover, Fix(f) = x∗ whenever there

exits k ∈ [0, 1[ such that
d(f(x), f(y)) ≤ kd(x, y) (1.4)

for all x, y ∈ X.

In the preceding result the required completeness of the quasi-metric space and
the continuity of the mapping are in the sense of Smyth ([21]) and Rutten ([15]),
respectively. We will avoid to recall them, since they are not useful for our purpose.
Nevertheless, we want to observe that this notion of continuity is not in general
topological.

It is worthy to mention that J.J. Nieto and R. Rodŕıguez-López have made progress
in reconciling order-theoretic and metric fixed point techniques in the classical case
with the aim of discussing the existence of solutions to differential equations in [12]
(see also [13]). Since we will refer to them later in Section 2.3 we will remember these
results:

Theorem 1.5. Let (X,≤) be a partially ordered set and let f be a mapping from X
into itself. Assume that the following assertions hold:

(1) There exists x0 ∈ X such that x0 ≤ f(x0).
(2) There exist a metric d on X and k ∈ [0, 1[ such that (X, d) is a complete

metric space and
d(f(x), f(y)) ≤ kd(x, y) (1.5)

for all x, y ∈ X with y ≤ x.
(3) f is monotone and continuous.

Then there exists x∗ ∈ X such that x∗ ∈ Fix(f).

The result below replaces the continuity of the mapping assumed in Theorem 1.5
by an order-theoretic property of the space.

Theorem 1.6. Let (X,≤) be a partially ordered set and let f be a mapping from X
into itself. Assume that the following assertions hold:

(1) There exists x0 ∈ X such that x0 ≤ f(x0).
(2) There exist a metric d on X and k ∈ [0, 1[ such that (X, d) is a complete

metric space and
d(f(x), f(y)) ≤ kd(x, y) (1.6)

for all x, y ∈ X with y ≤ x.
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(3) f is monotone.
(4) If (xn)n∈N is an increasing sequence in (X,≤) which converges to x ∈ X with

respect to τ(d), then x is an upper bound of (xn)n∈N.

Then there exists x∗ ∈ X such that x∗ ∈ Fix(f).

It is worth noting that results somewhat similar to Theorems 5 and 6 were essen-
tially obtained two decades ago in [22, 23].

Various applications of fixed point theory in generalized metric spaces have been
given in [1, 2, 18, 19]. Although in [8] it is pointed out that Theorem 1.4 reconciles the
order-theoretic and the metric approach for program verification, the aforementioned
result uses an special and unusual notion of continuity, i.e., continuity in the sense
of [15]. Since the aforementioned notion of continuity is not in general topological
the main objective of this paper is to obtain a fixed point theorem in the context of
quasi-metric spaces, using more standard notions of continuity, in such a way that,
on the one hand, the essence of Kleene’s fixed point theorem is captured and goes in
the same direction as Theorem 1.4 and that, on the other hand, quasi-metric versions
of Theorems 1.5 and 1.6 can be retrieved as a particular case. In order to achieve
the target we focus our study on quasi-metric spaces ordered by the specialization
partial order and, in addition, we introduce a notion of order-completeness for such
spaces and orbitally-order-continuity for self mappings defined on such spaces. Thus
we show that the assumptions in Theorems 1.4, 1.5 and 1.6 about completeness and
continuity can be reduced to order-completeness and orbitally-order-continuity in the
quasi-metric context in order to guarantee the existence of fixed point. Of course, the
new notions are illustrated through examples. Moreover, we explore the “monotonic-
convergence” property assumed in statement of Theorem 1.6, assumption (4) in the
above-mentioned theorem, in the case of quasi-metric spaces. Concretely, we show
that the latter spaces enjoy intrinsically a type of monotonic-convergence property
when the partial order is exactly the specialization one. Furthermore, we provide
examples which illustrate that the assumptions in our new results cannot be weakened.
Finally, a few fixed point results in the spirit of Theorems 1.5 and 1.6 are derived from
our main fixed point theorem when several quasi-metric completeness are considered.

2. The new fixed point result

In this section we provide the promised fixed point theorem in quasi-metric spaces
ordered by the specialization partial order.

2.1. The fundamental components: order-completeness and order-conti-
nuity. In order to introduce the announced fixed point result in such a way that the
spirit of Kleene’s fixed point theorem is preserved we need to introduce the appropriate
notions of order-completeness and order-continuity in quasi-metric spaces. With this
aim we present an auxiliary result that provides conditions that ensure when the
limit of an increasing sequence is, on the one hand, an upper bound and, on the other
hand, the least upper bound of it. Observe that in the aforesaid result we analyze
the role played by the “monotonic-convergence” property used in Theorem 1.6 in the
quasi-metric approach.



738 NASEER SHAHZAD AND OSCAR VALERO

Proposition 2.1. Let (X, d) be a quasi-metric space. If x ∈ X and (xn)n∈N is an
increasing sequence in (X,≤d), then the following assertions hold:

(1) If (xn)n∈N converges to x with respect to τ(d−1), then x is un upper bound of
(xn)n∈N.

(2) If x is an upper bound of (xn)n∈N and (xn)n∈N converges to x with respect to
τ(d), then x is the least upper bound of (xn)n∈N.

Proof. (1) Since the sequence (xn)n∈N is increasing in (X,≤d) we have that xn ≤d xm
for all m,n ∈ N such that m ≥ n. Thus d(xn, xm) = 0 for all m,n ∈ N such that
m ≥ n. Next we show that d(xn, x) = 0 for all n ∈ N. Assume, for the purpose of
contradiction, that there exists n0 ∈ N such that 0 < d(xn0

, x). Then, given ε > 0,
there exists n1 ∈ N such that d(xn, x) < ε for all n ≥ n1, since the sequence (xn)n∈N
converges to x with respect to τ(d−1). Hence 0 < d(xn0 , x) ≤ d(xn0 , xn) + d(xn, x) =
d(xn, x) < ε for all n ≥ max{n0, n1}. It follows that 0 < d(xn0

, x) ≤ 0, which is
impossible. Therefore d(xn, x) = 0 for all n ∈ N and, thus, xn ≤d x for all n ∈ N. It
follows that x is an upper bound of (xn)n∈N.

(2) Assume that there exists y ∈ X such that xn ≤d y for all n ∈ N. Then
d(xn, y) = 0 for all n ∈ N. Whence we deduce that d(x, y) ≤ d(x, xn) + d(xn, y) =
d(x, xn) for all n ∈ N. Since (xn)n∈N converges to x in (X, τ(d)) we have that there
exists n2 ∈ N such that d(x, xn) < ε for all n ≥ n2. Thus we deduce that d(x, y) = 0,
which implies that x ≤d y. Whence we conclude that x is the least upper bound of
(xn)n∈N. �

In the light of the preceding result and taking into account the fact that Kleene’s
fixed point theorem requires any kind of order-completeness we introduce the τ(≤d)-
completeness. Thus, from now on, we will say that a quasi-metric space (X, d) is
τ(≤d)-complete provided that every increasing sequence is convergent with respect to
τ(d−1). Of course, the τ(≤d)-completeness will play a central role in achieving our
purpose.

The next example gives an instance of a quasi-metric space (X, d) which is not
τ(≤d)-complete.

Example 2.2. Let (R, du) be the quasi-metric space where du is the quasi-metric
defined by

du(x, y) = max{y − x, 0}

for all x, y ∈ R. It is clear that du(x, y) = 0 ⇔ y ≤ x, where ≤ stands for the
usual order in R. Thus x ≤du

y ⇔ y ≤ x. Consider the sequence (xn)n∈N given by
xn = −n. It is obvious such a sequence is increasing with respect to ≤du

but it is not
convergent with respect to τ(d−1u ).

Examples 2.5, 2.6, 2.7, 2.8 and 2.11 provide instances of quasi-metric spaces that
are τ(≤d)-complete.

Finally, according to Kleene’s fixed point theorem, we need to introduce a suitable
notion of order-continuity in the context under consideration. Hence, from now on,
we will say that a mapping from a quasi-metric space (X, d) into itself is orbitally-≤d-
continuous if, given z ∈ X, then the sequence (fn+1(z))n∈N converges to f(x) with
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respect to τ(d) whenever the sequence (fn(z))n∈N is increasing and x is an upper
bound of it.

Examples 2.4, 2.5, 2.6 and 2.8 give instances of self-mappings in quasi-metric spaces
that are orbitally-≤d-continuous mappings.

2.2. The fixed point result. Once we have found counterparts of the two main
notions in Kleene’s fixed point theorem, chain-completeness and ≤-continuity, in the
quasi-metric context when the specialization partial order is considered, we are able
to provide the promised result.

Theorem 2.3. Let (X, d) be a τ(≤d)-complete quasi-metric space and let f be a
mapping from X into itself. Assume that the following assertions hold:

(1) There exists x0 ∈ X such that x0 ≤d f(x0).
(2) f is monotone and orbitally-≤d-continuous.

Then there exists x∗ ∈ X such that x∗ ∈ Fix(f) and x∗ ∈↑≤d
x0. Moreover,

Fix(f)∩ ↑≤d
x0 =↑≤d

x∗ = x∗.

Proof. Let x0 ∈ X such that x0 ≤d f(x0). Of course we can assume that x0 6= f(x0),
since otherwise x0 is a fixed point of f which holds that x0 ∈↑≤d

x0. Since x0 ≤d f(x0)
and f is monotone we immediately obtain that

fn(x0) ≤d f
m(x0)

for all m,n ∈ N with n ≤ m. Thus we have that d(fn(x0), fm(x0)) = 0 for all
m,n ∈ N with m ≥ n. It follows that (fn(x0))n∈N is an increasing sequence in
(X,≤d). Since the quasi-metric space (X, d) is τ(≤d)-complete there exists z∗ ∈ X
such that (fn(x0))n∈N is convergent to z∗ with respect to τ(d−1). By assertion (1) in
Proposition 2.1, we obtain that z∗ is an upper bound of (fn(x0))n∈N.

Since f is orbitally-≤d-continuous we immediately deduce that (fn(x0))n∈N con-
verges to f(z∗) with respect to τ(d). Hence, by assertion (2) in Proposition 2.1, we
deduce that f(z∗) is the least upper bound of (fn(x0))n∈N.

The fact that f is monotone provides that f(f(z∗)) is an upper bound of
(fn(x0))n∈N. Moreover, the orbitally-≤d-continuity of f gives that (fn(x0))n∈N con-
verges to f(f(z∗)) with respect to τ(d). Again, assertion (2) in Proposition 2.1 yields
that f(f(z∗)) is the least upper bound of (fn(x0))n∈N. So f(f(z∗)) = f(z∗).

Set x∗ = f(z∗). Then we obtain that x∗ ∈ Fix(f) and that x∗ ∈↑≤d
x0.

Now, we prove that Fix(f)∩ ↑≤d
x0 = x∗. To this end, suppose that there exists

y∗ ∈ Fix(f)∩ ↑≤d
x0. Then we have that fn(x0) ≤d y

∗ for all n ∈ N. The fact that
x∗ is the least upper bound of (fn(x0))n∈N yields that x∗ ≤d y

∗. The orbitally-≤d-
continuity of the mapping f yields that (fn+1(x0))n∈N converges to y∗ with respect
to τ(d). Whence, given ε > 0, there exists n0 ∈ N such that

d(y∗, fn+1(x0)) < ε

for all n ≥ n0. Hence we deduce that

d(y∗, x∗) ≤ d(y∗, fn0+1(x0)) + d(fn0+1(x0), x∗) = d(y∗, fn0+1(x0)) < ε.
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It follows that d(y∗, x∗) = 0 and, thus, that y∗ ≤d x
∗. Therefore we conclude that

x∗ = y∗ as claimed. Finally, we notice that similar arguments to those given for the
proof of Fix(f)∩ ↑≤d

x0 = x∗ allow to show that ↑≤d
x∗ = x∗. �

In the light of Theorem 2.3, it is worthy to point out that there are orbitally-≤d-
continuous mappings which are not monotone (see Example 2.6) and, thus, assump-
tion (2) in statement of Theorem 2.3 is not redundant.

The next example shows that the τ(≤d)-completeness of the quasi-metric space
cannot be deleted in Theorem 2.3 in order to guarantee the existence of fixed point.

Example 2.4. Consider the quasi-metric space (R, du) introduced in Example 2.2.
Of course, as we have shown in the aforementioned example, (R, du) is not τ(du)-
complete. Next define the mapping f from R into itself by f(x) = x − 1. Clearly
f is monotone and 0 ≤du f(0) = −1. Moreover, it is not hard to see that f is
orbitally-≤du

-continuous. However, f has no fixed points.

In the below example we show that the existence of an element x0 such that
x0 ≤d f(x0) cannot be omitted in the statement of Theorem 2.3 to ensure the existence
of fixed point.

Example 2.5. Set X = {0, 1}. Consider the quasi-metric space (X, dS), where the
quasi-metric dS is defined as follows:

dS(x, y) =

{
y − x if x ≤ y

1 if x > y
.

It is evident that x ≤dS
y ⇔ x = y. It is clear that (X, dS) is τ(≤dS

)-complete.
Define the mapping f from X into itself by f(0) = 1 and f(1) = 0. Observe that
the increasing sequences are exactly the constant ones. Then f is monotone and
orbitally-≤dS

-continuous. In addition, x ≤dS
f(x) does not hold for any x ∈ X. It is

obvious that f has no fixed points.

Next we show that the monotonicity of the mapping cannot be omitted in the
statement of Theorem 2.3 in order to provide the existence of a fixed point.

Example 2.6. Let X be the set introduced in Example 2.5. Consider the quasi-
metric du defined as in Example 2.2. Denote by du|X the restriction of du to the set
X. Observe that the increasing sequences are eventually constant. Thus (X, du|X) is
τ(du)-complete. Consider the mapping f from X into itself introduced in Example
2.5. Of course 1 ≤du|X f(1) = 0. It is obvious that f is orbitally-≤d-continuous.
Nevertheless f is not monotone because 1 ≤du|X 0 but 0 = f(1) 6≤du|X f(0) = 1. It is
clear that f has no fixed points.

Next we show that the orbitally-≤d-continuity of the mapping cannot be omitted
in the statement of Theorem 2.3 in order to provide the existence of a fixed point.

Example 2.7. Set R+
1 = R+ \ {1}. Define on R+

1 the quasi-metric d by

d1(x, y) =

{
0 if x ≥ y
1 if x < y

.
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It is a simple matter to see that (R+
1 , d1) is τ(≤d1)-complete, since every increasing

sequence is convergent to 0 with respect to τ(d−11 ). Define the mapping f from R+
1 into

itself defined by f(x) = x+1
2 for all x ∈ R+

1 . Clearly f is monotone and x ≤d1
f(x) for

all x ∈ R+
1 with x > 1. We see at once that f is not orbitally-≤d1

-continuous, which
is clear form the fact that the increasing sequence (fn+1(2))n∈N does not converge to
f(0) = 1

2 with respect to τ(d1) although 0 is an upper bound of it. Of course, f has
no fixed points.

The next examples shows that Theorem 2.3 does not yield the uniqueness of the
fixed point in general.

Example 2.8. Consider the τ(dS)-complete quasi-metric space (X, dS) introduced
in Example 2.5. Define the mapping f from X into itself by f(x) = x for all x ∈ X.
It is obvious that f is monotone and orbitally-≤dS

-continuous and that x ≤dS
f(x)

for all x ∈ X. Clearly, Fix(f) = X.

In the light of the preceding example one can wonder when Theorem 2.3 guarantees
the uniqueness of fixed point. The next result provides an answer to such a question.

Corollary 2.9. Let (X, d) be a τ(≤d)-complete quasi-metric space such that there
exists a least element x∗ of X with respect to ≤d. If f is a monotone and orbitally-≤d-
continuous mapping from X into itself, then there exists x∗ ∈ X such that Fix(f) =
x∗ and ↑≤d

x∗ = x∗.

Proof. Since x∗ is the least element of (X,≤d) we have that x∗ ≤d f(x∗). By Theorem
2.3 we deduce the existence of x∗ ∈ X such that x∗ ∈ Fix(f) and Fix(f)∩ ↑≤d

x∗ =↑≤d
x∗ = x∗. Since ↑≤d

x∗ = X we deduce from the preceding equalities that
Fix(f) = x∗. �

In the next example we show that the existence of a least element cannot be deleted
in the statement of Corollary 2.9 in order to guarantee the uniqueness of the fixed
point in the whole space.

Example 2.10. Let (X, dS) be the τ(≤dS
)-complete quasi-metric space introduced

in Example 2.5. Consider the mapping f from X into itself given by f(x) = x for all
x ∈ X. Then it is clear that x ≤dS

f(x) for all x ∈ X and that f is monotone and
orbitally-≤dS

-continuous. Moreover, it is obvious that there does not exist a least
element of X with respect to ≤dS

. Furthermore, Fix(f) = X.

We end the section with a reflection about the relationship between our new result
(Theorem 2.3) and Kleene’s fixed point theorem (Theorem 1.1).

Taking into account Kleene’s fixed point theorem the next questions can be posted:
Is (X,≤d) a chain-complete partially ordered set whenever (X, d) is a τ(≤d)-complete
quasi-metric space? Are monotone and orbitally-≤d-continuous mappings defined on
τ(≤d)-complete quasi-metric spaces always ≤d-continuous? Of course, if the answers
to the preceding questions were positive, then Theorem 2.3 could be an immediate
consequence of Kleene’s fixed point theorem. Fortunately, the answers to our ques-
tions are negative as the next examples show.
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Example 2.11. Consider the quasi-metric space (R+
1 , du), where du is the quasi-

metric defined as in Example 2.2. It is clear that (R+
1 , du) is τ(≤du)-complete. Now,

consider the sequence (xn)n∈N given by xn = 1 + 1
2n for all n ∈ N. A straightforward

computation shows that the sequence (xn)n∈N is increasing in (R+
1 ,≤du

) and, however,
it does not have least upper bound. So (R+

1 ,≤du) is not chain-complete.

Example 2.12. Let ([0, 1], d−11 |[0,1]) be the quasi-metric space where d1|[0,1] denotes
the restriction of the quasi-metric d1 introduced in Example 2.7 to [0, 1]. It is obvious
that ([0, 1], d−11 |[0,1]) is τ(d−11 )-complete. Define the mapping f from [0, 1] into itself
by

f(x) =

{
x
2 if x ∈ [0, 12 [

x if x ∈ [ 12 , 1]
.

It is not hard to check that f is monotone and orbitally-≤d−1
1

-continuous mapping.

However, f is not ≤d−1
1

-continuous. Indeed, consider the increasing sequence (xn)n∈N

in [0, 1] given by xn = 1
2−

1
2n for all n ∈ N. It is clear that 1

2 is the least upper bound of
(xn)n∈N. Moreover, the sequence (f(xn))n∈N is increasing and its least upper bound
is 1

4 . Since 1
2 = f( 1

2 ) 6= 1
4 we conclude that f is not ≤d−1

1
-continuous.

2.3. A few consequences. Next we provide several results which follow from Theo-
rem 2.3. A few of them allow to retrieve as a particular case quasi-metric versions of
Theorems 1.5 and 1.6 when different kind of quasi-metric completeness are considered.

The first two results of the batch take advantage of the relationship between a few
notions of continuity in the quasi-metric approach. Specifically between the orbitally-
≤d-continuous, the orbitally-continuity and the mixed-continuity.

Following [5], a mapping f from a metric space (X, d) into itself is orbitally-
continuous provided that, given x, y ∈ X, the sequence (fn+1(x))nN converges to
f(y) with respect to τ(d) whenever (fn(x))nN converges to y with respect to τ(d).
Of course, the preceding notion can be adapted literally to the quasi-metric context
simply replacing in the definition, the metric space by a quasi-metric one, and the
convergence with respect to the topology induced by the metric by the convergence
with respect to the topology induced by the quasi-metric.

Since every monotone and orbitally-continuous mapping from a τ(≤d)-complete
quasi-metric space into itself is orbitally-≤d-continuous, Theorem 2.3 yields as a con-
sequence the result below.

Corollary 2.13. Let (X, d) be a τ(≤d)-complete quasi-metric space and let f be a
mapping from X into itself. Assume that the following assertions hold:

(1) There exists x0 ∈ X such that x0 ≤d f(x0).
(2) f is monotone and orbitally-continuous.

Then there exists x∗ ∈ X such that x∗ ∈ Fix(f) and x∗ ∈↑≤d
x0. Moreover,

Fix(f)∩ ↑≤d
x0 =↑≤d

x∗ = x∗.

In the following, given a quasi-metric space (X, d), we will say that a mapping from
X into itself is mixed-continuous provided that f is continuous from (X, τ(d−1)) into
(X, τ(d)).
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Corollary 2.14. Let (X, d) be an τ(≤d)-complete quasi-metric space and let f be a
mapping from X into itself. Assume that the following assertions hold:

(1) There exists x0 ∈ X such that x0 ≤d f(x0).
(2) f is monotone and mixed-continuous.

Then there exists x∗ ∈ X such that x∗ ∈ Fix(f) and x∗ ∈↑≤d
x0. Moreover,

Fix(f)∩ ↑≤d
x0 =↑≤d

x∗ = x∗.

Proof. We only need to prove that every monotone and mixed-continuous mapping
is always orbitally-≤d-continuous whenever the quasi-metric space (X, d) is τ(≤d)-
complete. To this end, consider the existence of x0 ∈ X such that the sequence
(fn(x0))n∈N is increasing. Then the τ(≤d)-completeness of the quasi-metric space
guarantees the existence of x ∈ X such that (fn(x0))n∈N converges to x with respect
to τ(d−1). By assertion (1) in Proposition 2.1 we deduce that x in an upper bound
of (fn(x0))n∈N. Since f is mixed-continuous we obtain that (fn+1(x0))n∈N converges
to x with respect to τ(d). So f is orbitally-≤d-continuous. �

The following results exploits the existing relationship between τ(≤d)-completeness
and different types of “metric” completeness that arise in a natural way in the quasi-
metric framework.

Following [14], a quasi-metric space (X, d) is right K-sequentially complete pro-
vided that every right K-Cauchy sequence is convergent with respect to τ(d), where
a sequence (xn)n∈N is sad to be right K-Cauchy if, given ε > 0, there exists n0 ∈ N
such that d(xm, xn) < ε for all m ≥ n ≥ n0.

Corollary 2.15. Let (X, d) be a quasi-metric space such that (X, d−1) is right K-
sequentially complete and let f be a mapping from X into itself. Assume that the
following assertions hold:

(1) There exists x0 ∈ X such that x0 ≤d f(x0).
(2) f is monotone and orbitally-≤d-continuous.

Then there exists x∗ ∈ X such that x∗ ∈ Fix(f) and x∗ ∈↑≤d
x0. Moreover,

Fix(f)∩ ↑≤d
x0 =↑≤d

x∗ = x∗.

Proof. We only need to prove that if (X, d−1) is right K-sequentially complete, then
(X, d) is τ(≤d)-complete. Indeed, consider an increasing sequence (xn)n∈N in (X,≤d).
Then d(xn, xn+1) = 0 for all n ∈ N. Whence we deduce that

d(xn, xm) ≤ d(xn, xn+1) + . . . d(xm−1, xm) = 0

for all m,n ∈ N with m ≥ n. So the sequence (xn)n∈N is right K-Cauchy in (X, d−1).
Since (X, d−1) is right K-sequentially complete we deduce the existence of x ∈ X such
that (xn)n∈N converges to x with respect to τ(d−1). Thus (X, d) is τ(≤d)-complete.
Now, by Theorem 2.3, the result follows. �

On account of [10], a quasi-metric space (X, d) is Smyth complete provided that
every left K-Cauchy sequence is convergent with respect to τ(ds), where, according
to [14], a sequence (xn)n∈N is said to be left K-Cauchy if, given ε > 0, there exists
n0 ∈ N such that d(xn, xm) < ε for all m ≥ n ≥ n0.
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Corollary 2.16. Let (X, d) be a Smyth complete quasi-metric space and let f be a
mapping from X into itself. Assume that the following assertions hold:

(1) There exists x0 ∈ X such that x0 ≤d f(x0).
(2) f is monotone and orbitally-≤d-continuous.

Then there exists x∗ ∈ X such that x∗ ∈ Fix(f) and x∗ ∈↑≤d
x0. Moreover,

Fix(f)∩ ↑≤d
x0 =↑≤d

x∗ = x∗.

Proof. It is clear that if (X, d) is Smyth complete quasi-metric space, then (X, d−1)
is right K-sequentially complete. Thus, by Corollary 2.15, we obtain the τ(≤d)-
completeness of (X, d). Therefore the thesis of the result follows from Theorem 2.3. �

According to [11], a quasi-metric space (X, d) is said to be weightable provided
there exists a function w : X → R+ such that

d(x, y) + w(x) = d(y, x) + w(y)

for all x, y ∈ X. Since every bicomplete weightable quasi-metric space is always Smyth
complete (see, for instance, [9]) we can deduce from Corollary 2.16 the following one.

Corollary 2.17. Let (X, d) be a bicomplete weightable quasi-metric space and and
let f be a mapping from X into itself. Assume that the following assertions hold:

(1) There exists x0 ∈ X such that x0 ≤d f(x0).
(2) f is monotone and orbitally-≤d-continuous.

Then there exists x∗ ∈ X such that x∗ ∈ Fix(f) and x∗ ∈↑≤d
x0. Moreover,

Fix(f)∩ ↑≤d
x0 =↑≤d

x∗ = x∗.

In the next results we provide a little more information about the fixed point
when the mapping under consideration holds any type of Banach contractive condi-
tion. Clearly, they are related to Theorem 1.4 and they are quasi-metric versions of
Theorems 1.5 and 1.6.

Corollary 2.18. Let (X, d) be a τ(≤d)-complete quasi-metric space and let f be a
mapping from X into itself. Assume that the following assertions hold:

(1) There exists x0 ∈ X such that x0 ≤d f(x0).
(2) d(f(x), f(y)) = 0 for every x, y ∈ X such that d(x, y) = 0.
(3) f is orbitally-≤d-continuous.

Then there exists x∗ ∈ X such that x∗ ∈ Fix(f) and x∗ ∈↑≤d
x0. Moreover,

Fix(f)∩ ↑≤d
x0 =↑≤d

x∗ = x∗.

Proof. Assumption (2) in the statement of the result is equivalent to the monotonicity
of f and, thus, Theorem 2.3 gives the desired conclusion. �

It is interesting to note that the contractive condition (1.3) in Theorem 1.4 is
recovered form assumption (2) in Corollary 2.18.

Corollary 2.19. Let (X, d) be a τ(≤d)-complete quasi-metric space and let f be a
mapping from X into itself. Assume that the following assertions hold:

(1) There exists x0 ∈ X such that x0 ≤d f(x0).
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(2) There exists k ∈ [0, 1] such that

d(f(x), f(y)) ≤ kd(x, y) (2.1)

for all x, y ∈ X with x ≤d y.
(3) f is orbitally-≤d-continuous.

Then there exists x∗ ∈ X such that x∗ ∈ Fix(f) and x∗ ∈↑≤d
x0. Moreover,

Fix(f)∩ ↑≤d
x0 =↑≤d

x∗ = x∗.

Proof. Assumption (2) in the statement provides the monotonicity of f . So, the
desired conclusion follows from Theorem 2.3. �

The next result gives more information about the fixed point whenever the mapping
holds a contractive condition as (1.5) in Theorems 1.5 and 1.6.

Corollary 2.20. Let (X, d) be a τ(≤d)-complete quasi-metric space and let f be a
mapping from X into itself. Assume that the following assertions hold:

(1) There exists x0 ∈ X such that x0 ≤d f(x0).
(2) There exists k ∈ [0, 1[ such that

d(f(x), f(y)) ≤ kd(x, y) (2.2)

for all x, y ∈ X with y ≤d x.
(3) f is monotone and orbitally-≤d-continuous.

Then there exists x∗ ∈ X such that x∗ ∈ Fix(f) and x∗ ∈↑≤d
x0 with ↑≤d

x∗ = x∗.
Moreover, Fix(f)∩ ↑≤d

x0 =↑≤d
x∗ = Fix(f)∩ ↓≤d

x∗ = x∗.

Proof. The existence of x∗ ∈ X such that x∗ ∈ Fix(f) and Fix(f)∩ ↑≤d
x0 =↑≤d

x∗ = x∗ is provided by Theorem 2.3. Next we prove that Fix(f)∩ ↓≤d
x∗ = x∗.

Assume that there exists y∗ ∈ Fix(f)∩ ↓≤d
x∗; i.e., y∗ ∈ Fix(f), y∗ ≤d x

∗. By the
contractive condition (2.2),

d(x∗, y∗) = d(f(x∗), f(y∗)) ≤ kd(x∗, y∗);

and this, along with k < 1, yields d(x∗, y∗) = 0; i.e., x∗ ≤d y
∗. Hence, combining

with the above, x∗ = y∗. Whence we conclude that Fix(f)∩ ↓≤d
x∗ = x∗. �

The next example shows that we cannot delete the contractive condition (2.2) in
statement of Corollary 2.20 in order to guarantee the uniqueness of the fixed point
in the set ↓≤d

x∗. Furthermore, observe that Examples 2.6 and 2.22 show that
assumption (2) in the statement of Corollary 2.20 is not redundant, i.e., there exist
mappings satisfying the contractive condition (2.2) which are not either monotone or
orbitally-≤d-continuous, respectively.

Example 2.21. Let (R+, du) be the τ(≤du)-complete quasi-metric where du is the re-
striction of the quasi-metric introduced in Example 2.2 to R+. Consider the monotone
and orbitally-≤du

-continuous mapping f from R+ defined by

f(x) =

{
x+1
2 if x 6= 0

0 if x = 0
.

Of course, x0 ≤du f(x0) for all x0 ∈ R+ with x0 /∈]0, 1[. Nonetheless, f does not
satisfy condition (2.2) in Corollary 2.20. Indeed, 1

4 ≤du 0 but there does not exist
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k ∈ [0, 1[ such that d(f(0), f( 1
4 )) ≤ kd(0, 14 ), since d(f(0), f( 1

4 )) = 5
8 and d(0, 14 ) = 1

4 .
Observe that Fix(f) = {0, 1} and ↓≤du

0 = {0, 1}.

Example 2.22. Let ([0, 1], d−1u ) be the quasi-metric space, where du is the restriction
of the quasi-metric introduced in Example 2.2 to [0, 1]. A straightforward computation
shows that ([0, 1], d−1u ) is τ(≤d−1

u
)-complete. Define the mapping f from R+ into itself

by f(x) = x
2 for all x ∈ [0, 1]. Then it is obvious that f is monotone. Moreover, f is

not orbitally-≤d−1
u

-continuous because the sequence (fn(0))n∈N is increasing and 1 is

an upper bound of it but (fn+1(0))n∈N does not converge to f(1) = 1
2 . It is easy to

cheek that

d−1u (f(x), f(y)) ≤ 1

2
d−1u (x, y)

for all x, y ∈ [0, 1] such that y ≤d−1
u
x.

The next result are quasi-metric versions of Theorem 1.5 and 1.6.
Taking into account that every quasi-metric space (X, d) whose conjugate quasi-

metric space (X, d−1) is right K-sequentially complete enjoys the τ(≤d)-completeness
we can deduce from Corollary 2.20 the next ones.

Corollary 2.23. Let (X, d) be a quasi-metric space such that (X, d−1) is right K-
sequentially complete and let f be a mapping from X into itself. Assume that the
following assertions hold:

(1) There exists x0 ∈ X such that x0 ≤d f(x0).
(2) There exists k ∈ [0, 1[ such that

d(f(x), f(y)) ≤ kd(x, y) (2.3)

for all x, y ∈ X with y ≤d x.
(3) f is monotone and orbitally-≤d-continuous.

Then there exists x∗ ∈ X such that x∗ ∈ Fix(f) and x∗ ∈↑≤d
x0 with ↑≤d

x∗ = x∗.
Moreover, Fix(f)∩ ↑≤d

x0 =↑≤d
x∗ = Fix(f)∩ ↓≤d

x∗ = x∗.

Since Smyth complete and weightable bicomplete quasi-metric spaces are such that
their conjugate quasi-metric spaces are right K-sequentially complete we obtain from
Corollary 2.23 the results below.

Corollary 2.24. Let (X, d) be a Smyth complete quasi-metric space and let f be a
mapping from X into itself. Assume that the following assertions hold:

(1) There exists x0 ∈ X such that x0 ≤d f(x0).
(2) There exists k ∈ [0, 1[ such that

d(f(x), f(y)) ≤ kd(x, y) (2.4)

for all x, y ∈ X with y ≤d x.
(3) f is monotone and orbitally-≤d-continuous.

Then there exists x∗ ∈ X such that x∗ ∈ Fix(f) and x∗ ∈↑≤d
x0 with ↑≤d

x∗ = x∗.
Moreover, Fix(f)∩ ↑≤d

x0 =↑≤d
x∗ = Fix(f)∩ ↓≤d

x∗ = x∗.

Corollary 2.25. Let (X, d) be a weightable bicomplete quasi-metric space and let f
be a mapping from X into itself. Assume that the following assertions hold:
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(1) There exists x0 ∈ X such that x0 ≤d f(x0).
(2) There exists k ∈ [0, 1[ such that

d(f(x), f(y)) ≤ kd(x, y) (2.5)

for all x, y ∈ X with y ≤d x.
(3) f is monotone and orbitally-≤d-continuous.

Then there exists x∗ ∈ X such that x∗ ∈ Fix(f) and x∗ ∈↑≤d
x0 with ↑≤d

x∗ = x∗.
Moreover, Fix(f)∩ ↑≤d

x0 =↑≤d
x∗ = Fix(f)∩ ↓≤d

x∗ = x∗.

The next result gives the uniqueness of the fixed point in the whole space whenever
the mapping holds the contractive condition (1.4) in Theorem 1.4.

Corollary 2.26. Let (X, d) be an τ(≤d)-complete quasi-metric space and let f be a
mapping from X into itself. Assume that the following assertions hold:

(1) There exists x0 ∈ X such that x0 ≤d f(x0).
(2) There exists k ∈ [0, 1[ such that

d(f(x), f(y)) ≤ kd(x, y) (2.6)

for all x, y ∈ X.
(3) f is orbitally-≤d-continuous.

Then there exists x∗ ∈ X such that Fix(f) = x∗, ↑≤d
x∗ = x∗ and x∗ ∈↑≤d

x0.

Proof. The contractive condition (2.6) yields the monotonicity of the mapping f .
Hence the existence of x∗ ∈ X such that x∗ ∈ Fix(f), x∗ ∈↑≤d

x0 and ↑≤d
x∗ = x∗

is provided by Theorem 2.3. It remains to prove that Fix(f) = x∗. With this aim,
assume that there exists y∗ ∈ Fix(f). By the contractive condition (2.6),

d(x∗, y∗) = d(f(x∗), f(y∗)) ≤ kd(x∗, y∗);

and this, along with k < 1, yields d(x∗, y∗) = 0; i.e., x∗ ≤d y∗. Combining with
↑≤d

x∗ = x∗, we get x∗ = y∗. �
Example 2.21 shows that the uniqueness of the fixed point in the whole space is not

guaranteed whenever the contractive condition (2.6) in statement of Corollary 2.26 is
weakened. In addition, Example 2.22 shows that assumption (3) in the statement of
Corollary 2.26 is not redundant in the sense that there exist mappings satisfying the
contractive condition (2.6) which are not orbitally-≤d-continuous.

In the light of Corollary 2.26 a natural question can be posted. What is the
relationship between the aforementioned result and the Banach fixed point theorem
for bicomplete quasi-metric spaces (Theorem 1.3)?

Notice that if every τ(≤d)-complete quasi-metric space was always bicomplete,
then the contractive condition (2.6) in statement of Corollary 2.26 would provide
the existence and uniqueness of the fixed point in the whole space. Fortunately, the
next examples show that there exist τ(≤d)-complete quasi-metric spaces that are not
bicomplete.

Example 2.27. Let ([0, 1[, du|[0,1[) be the quasi-metric space where du|[0,1[ denotes
the restriction of the quasi-metric du introduced in Example 2.2 to [0, 1[. It is a
simple matter to check that ([0, 1[, du|[0,1[) is τ(≤du

)-complete. Consider the sequence
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(xn)n∈N in [0, 1[ given by xn = 1 − 1
2n for all n ∈ N. It is easily seen that such a

sequence is Cauchy and it is not convergent with respect to τ(du|s[0,1[).

Similar to the case of Corollary 2.19 we can obtain, from Corollary 2.26, the fol-
lowing fixed point results that are related to Theorem 1.4.

Corollary 2.28. Let (X, d) be a quasi-metric space such that (X, d−1) is right K-
sequentially complete and let f be a mapping from X into itself. Assume that the
following assertions hold:

(1) There exists x0 ∈ X such that x0 ≤d f(x0).
(2) There exists k ∈ [0, 1[ such that

d(f(x), f(y)) ≤ kd(x, y) (2.7)

for all x, y ∈ X.
(3) f is orbitally-≤d-continuous.

Then there exists x∗ ∈ X such that Fix(f) = x∗, ↑≤d
x∗ = x∗ and x∗ ∈↑≤d

x0.

Corollary 2.29. Let (X, d) be a Smyth complete quasi-metric space and let f be a
mapping from X into itself. Assume that the following assertions hold:

(1) There exists x0 ∈ X such that x0 ≤d f(x0).
(2) There exists k ∈ [0, 1] such that

d(f(x), f(y)) ≤ kd(x, y) (2.8)

for all x, y ∈ X.
(3) f is orbitally-≤d-continuous.

Then there exists x∗ ∈ X such that Fix(f) = x∗, ↑≤d
x∗ = x∗ and x∗ ∈↑≤d

x0.

Corollary 2.30. Let (X, d) be a weigtable bicomplete quasi-metric space and let f be
a mapping from X into itself. Assume that the following assertions hold:

(1) There exists x0 ∈ X such that x0 ≤d f(x0).
(2) There exists k ∈ [0, 1[ such that

d(f(x), f(y)) ≤ kd(x, y) (2.9)

for all x, y ∈ X.
(3) f is orbitally-≤d-continuous.

Then there exists x∗ ∈ X such that Fix(f) = x∗, ↑≤d
x∗ = x∗ and x∗ ∈↑≤d

x0.
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