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1. Introduction

Let (X, d) be a metric space. A mapping T : X → X is said to be asymptotically
regular if

lim
n→∞

d(Tnx, Tn+1x) = 0 (1.1)

for all x ∈ X. The concept of asymptotic regularity was introduced by Browder and
Petryshyn [4]. We know that the asymptotic regularity conditon (1.1) has become
an imposed condition on some fixed point results of semigroups of Lipschtzian map-
pings (see, e.g., [31, 14, 5]) and more general semigroups of mappings which are not
necessarily Lipschitzians (see, e.g., [24, 34, 33]). Note that, the fixed point theorems
for Lipschitzian-type mappings have many applications, for instances, in best approx-
imation theory, operator equations, differential and integral equations, variational
inequalities, and variational inclusions (see, Chapter 8 of [1] and references therein).
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In 1976, Ishikawa [25] provided the well known example of asymptotically regular
mapping in Banach spaces. He proved that if C is a bounded closed convex subset of a
Banach space E, and T : C → C is nonexpansive, then the mapping Tλ = (1−λ)I+λT
is asymptotically regular for all λ ∈ (0, 1). Other examples of asymptotically regular
mappings can also be found in [39, 2]. On the other hand, Lin [27] constructed an
example of asymptotically regular and Lipschitzian mapping without fixed point in
`2-spaces. Also, Maluta et al. [30] showed an existence of continuous asymptotically
regular mappings without fixed point in normed spaces.

In 2012, Wísnicki [36] studied the existence theorems of common fixed points for
one parameter semigroups of asymptotically regular mappings equipped with the
Lipschitzian condition in Banach spaces. His results extended some relevant results
due to the work of Górnicki in [19, 20, 21] by investigating the structure of common
fixed point sets of the semigroups. For the other common fixed point theorems for
the semigroups of asymptotically regular mappings equipped with the Lipschitzian
condition in Banach spaces, we refer the reader to [18, 10, 12].

Many authors have attempted to extend the class of Lipschitzian mappings (see,
e.g., [32, 26, 24]). Recall from [24] that a mapping T : X → X defined on a metric
space (X, d) is said to be generalized Lipschitzian if for any n ≥ 1, there exists kn > 0
such that

d(Tnx, Tny)

≤ kn max

{
d(x, y),

1

2
d(x, Tnx),

1

2
d(y, Tny),

1

2
d(x, Tny),

1

2
d(y, Tnx)

}
(1.2)

for all x, y ∈ X. Note that, if kn < 1, then Tn is a quasi-contraction mapping (see
[8] for detail of the concept of this mapping). In [24], Imdad and Soliman studied the
existence theorem of common fixed points for strongly continuous one parameter semi-
groups of continuous asymptotically regular and generalized Lipschitzian mappings
in metric spaces.

In this paper, we continue the work of Wísnicki [36] and Imdad and Soliman [24].
Precisely, we study the existence of common fixed points of one parameter semigroups
of asymptotically regular mappings equipped with the generalized Lipschitzian con-
dition (1.2) in Banach spaces. In Section 3, we establish the common fixed point
theorem for the semigroups by utilizing the weakly convergent sequence coefficient
and the Opial’s modulus. In Section 4, we investigate the structure of common fixed
point sets of the semigroups having the asymptotic nonexpansiveness in uniformly
convex Banach spaces. Then, we establish the common fixed point theorems in the
framework of uniformly convex Banach spaces, and moreover, p-uniformly convex
Banach spaces. As the results, Theorem 3.2 extends partially Theorem 4.2 of [36],
Theorem 4.5 extends Theorem 1 of [18], and Theorem 4.8 extends partially Theorem
4.6 in [36] for a wider class of semigroups of self-mappings.

2. Preliminaries

We begin this section by establishing the concept of generalized Lipschitzian semi-
groups and asymptotically regular semigroups in Banach spaces.
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Let E be a Banach space and C be a nonempty subset of E. Let G be an unbounded
subset of [0,∞) such that t+ s ∈ G for all s, t ∈ G and t− s ∈ G for all t, s ∈ G with
t ≥ s (e.g., G = [0,∞) or G = N∪{0}). A family of mappings T = {Tt : t ∈ G} from C
into itself is said to be a (one parameter) semigroup on C if for any s, t ∈ G and x ∈ C
we have Ts+tx = TsTtx and T0x = x. In this paper, we do not necessarily assume that
T is a strongly continuous semigroup. (We note that, many literature in fixed point
theory treats T as a strongly continuous semigroup (see, e.g., [35, 18, 5, 24, 22, 33])).
A semigroup T is said to be generalized Lipschitzian if for any t ∈ G, there exists
kt > 0 such that

‖Ttx− Tty‖

≤ kt max

{
‖x− y‖, 1

2
‖x− Ttx‖,

1

2
‖y − Tty‖,

1

2
‖x− Tty‖,

1

2
‖y − Ttx‖

}
(2.1)

for all x, y ∈ C.
The infimum of constants kt in (2.1) is called generalized Lipschitz constant and

is denoted by %(Tt). Of course, if a semigroup T = {Tt : t ∈ G} of mappings on C is
generalized Lipschitzian, then %(Tt) < ∞ for all t ∈ G. But, if T is not generalized
Lipschitzian, then there exists a mapping Tt0 ∈ T such that there is no constant
kt0 for which the inequality (2.1) holds for all x, y ∈ C. For this case, we define
%(Tt0) =∞.

A semigroup T = {Tt : t ∈ G} of mappings on C is said to be asymptotically
regular if

lim
t→∞

‖Th+tx− Ttx‖ = 0

for all x ∈ C and h ∈ G.
We show that there exists a semigroup of generalized Lipschitzian and asymptoti-

cally regular mappings which are not lipschizians.

Example 2.1. Let E be the real line R, C = [−L,L], where 1 < L < ∞, and
G = [0,∞). Let λ ∈ (1, L) be fixed. Define a family T = {Tt : t ∈ G} of mappings on
C as follows.

Ttx =


−λ1−t if x ∈ [−L,−λ),

λ−tx if x ∈ [−λ, λ],

0 if x ∈ (λ, L],

for all t > 0, and

T0x = x for all x ∈ C.

Firstly, it is easy to see that T is a semigroup. Moreover, since Tt is not continuous
at λ for all t > 0, then T is not Lipschitzian semigroup. Here, the exact Lipschitz
constant for Tt is ∞ for all t > 0.
Let t ≥ 0 and x, y ∈ [−L,L] be fixed. If x, y ∈ [−L,−λ) ∪ (λ, L], then

|Ttx− Tty| = 0.

For the case of x, y ∈ [−λ, λ] we have

|Ttx− Tty| = λ−t|x− y|.
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If x ∈ [−λ, λ] and y ∈ [−L,−λ), then

|Ttx− Tty| = λ−t(x− (−λ)) < λ−t|x− y|.

On the other hand, we note that, if x ∈ [−λ, λ] and y ∈ (λ, L] then

|Ttx− Tty| = λ−t|x| = 2λ−t
(

1

2
|x− Tty|

)
.

From the above observation, we obtain

|Ttx− Tty| ≤ 2λ−t max

{
|x− y|, 1

2
|x− Tty|,

1

2
|y − Ttx|

}
.

Hence, T is a generalized Lipschitzian semigroup with

lim inf
t→∞

%(Tt) = 0.

Next, take an arbitrary h ≥ 0. Since

lim
t→∞

|Th+tx− Ttx| = lim
t→∞

∣∣λ−h−tx− λ−tx∣∣
= lim
t→∞

λ−t
∣∣λ−hx− x∣∣ = 0 for all x ∈ [−λ, λ],

lim
t→∞

|Th+tx− Ttx| = lim
t→∞

λ1−t
∣∣λ−h − 1

∣∣ = 0 for all x ∈ [−L,−λ),

and

lim
t→∞

|Th+tx− Ttx| = lim
t→∞

|0− 0| = 0 for all x ∈ (λ, L],

then T is an asymptotically regular semigroup.

We shall recall some basic properties and important results concerning normal
structure in Banach spaces which have essential role in metric fixed point theory.

The normal structure coefficient N(E) of a Banach space E is the real number
defined by (see [7])

N(E) = inf

{
diam(C)

r(C)

}
,

where the infimum is taken over all bounded closed convex subsets of E with
diam(C) > 0. Here, diam(C) = sup{‖x − y‖ : x, y ∈ C} is the diameter of C
and r(C) = infx∈C supy∈C ‖x− y‖ is the Chebyshev radius of C relative to itself. It
is known that, if N(E) > 1 then E is reflexive.

Starting this point, we assume a Banach space E always does not have the Schur
property, that is, there is a weakly convergent sequence which is not norm convergent.
The weakly convergent sequence coefficient (or Bynum’s coefficient) is defined by (see
[7])

WCS(E) = inf

{
diama(xn)

ra(xn)

}
,

where the infimum is taken over all weakly (not strongly) convergent sequences {xn}
in E. Here,

ra(xn) = inf

{
lim sup
n→∞

‖xn − y‖ : y ∈ conv({xn : n ≥ 1})
}
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(conv is the closed convex hull) and

diama(xn) = inf
n≥1

sup{‖xl − xm‖ : l,m ≥ n}.

By using the equivalent definition of the weakly convergent sequence coefficient (see,
page 162 of [1]), it is easy to see that 1 ≤ WCS(E) ≤ 2. Particularly, if E is a
reflexive Banach space then (see, Theorem 1 of [7])

1 ≤ N(E) ≤WCS(E) ≤ 2.

To prove our main results, we shall use the other equivalence definition for the
weakly convergent sequence coefficient.

Lemma 2.2. [13] Let E be a Banach space which does not have the Schur property.
Then,

WCS(E) = inf {D[{xn}] : xn ⇀ 0 and ‖xn‖ → 1} ,
where

D[{xn}] = lim sup
m→∞

lim sup
n→∞

‖xn − xm‖.

A general formula for WCS(E) in an arbitrary Banach space E is unknown. But,
we see from Proposition 8.2 of [3] and Theorem 3.3.(ii) of [28] that for a Hilbert

space H, WCS(H) =
√

2. Also, it has been calculated in [7] that for an `p-space,

1 < p <∞, WCS(`p) = 2
1
p . Therefore, for an `p-space, 1 < p < 2, we have

N(`p) = 2
p−1
p < 2

1
p = WCS(`p).

For other values of the weakly convergent sequence coefficient in some Banach spaces,
we refer the reader to [29] and references therein.

A Banach space E is said to satisfy the Opial condition, if whenever a sequence
{xn} in E converges weakly to x ∈ E, then

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖

for all y ∈ E\{x} (see [31]). It is well known that any Hilbert space, also an `p-
space, 1 < p < ∞, satisfy the Opial condition. But, the Lebesgue space Lp[0, 2π],
1 < p <∞, p 6= 2 fails to satisfy the Opial condition (see [31]).

Recall from [28] that the Opial’s modulus of a Banach space E is the function
rE : [0,∞)→ R given by

rE(c) = inf
{

lim inf
n→∞

‖xn + x‖ − 1
}
,

where the infimum is taken over all x ∈ E with ‖x‖ ≥ c and all sequences {xn} in E
such that xn ⇀ 0 and lim inf

n→∞
‖xn‖ ≥ 1. Note that, the function rE is continuous and

increasing. Related to the weakly convergent sequence coefficient, we know that (see,
Corollary 3.2.(i) of [28])

1 + rE(1) ≤WCS(E) (2.2)

for any Banach space E. Also, (see, Theorem 2.1 of [38])

c− 1 ≤ rE(c) ≤ c (2.3)

for all c ≥ 0.
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Recall the notion of asymptotic center due to Edelstein (see [15]). Let C be a
nonempty subset of E and {xn} be a bounded sequence in E. The asymptotic center
of {xn} with respect to C is defined as the set

A(C, {xn}) =

{
x ∈ C : lim sup

n→∞
‖xn − x‖ = inf

y∈C
lim sup
n→∞

‖xn − y‖
}
.

We know that, if C is weakly compact then A(C, {xn}) is nonempty. Moreover, if C
is also convex then A(C, {xn}) is nonempty, closed, and convex.

3. The common fixed point theorem

The following lemma is crucial in proving our main results.

Lemma 3.1. Let C be a nonempty subset of a Banach space E. Suppose that

T = {Tt : t ∈ G}
is an asymptotically regular and generalized Lipschitzian semigroup on C such that

lim
n→∞

%(Tsn) < 2,

where Tsnu → v as n → ∞ for some u, v ∈ C and {sn} is an increasing sequence in
G such that lim

n→∞
sn =∞. Then, Ttv = v for all t ∈ G.

Proof. By the assumption, we can choose a subsequence {tn} of {sn} such that
sup
r≥1

%(Ttr ) = µ < 2. Let r ≥ 1 and ε > 0 be fixed. Then, there exists n0 = n0(r, ε) ≥ 1

such that

‖Ttnu− v‖ < ε and ‖Ttr+tnu− Ttnu‖ < ε

for all n ≥ n0. Therefore, for any n ≥ n0 we have

‖Ttrv − v‖ ≤ ‖Ttrv − Ttr+tnu‖+ ‖Ttr+tnu− Ttnu‖+ ‖Ttnu− v‖

≤ %(Ttr ) max

{
‖v − Ttnu‖,

1

2
‖v − Ttrv‖,

1

2
‖Ttnu− Ttr+tnu‖,

1

2
‖v − Ttr+tnu‖,

1

2
‖Ttnu− Ttrv‖

}
+ 2ε

≤ µmax

{
ε,

1

2
‖v − Ttrv‖,

ε

2
,

1

2
(‖v − Ttnu‖+ ‖Ttnu− Ttr+tnu‖),

1

2
(‖Ttnu− v‖+ ‖v − Ttrv‖)

}
+ 2ε

≤ µmax

{
ε,

1

2
(ε+ ε),

1

2
(ε+ ‖v − Ttrv‖)

}
+ 2ε

≤ µ
(
ε+

ε

2
+

1

2
‖v − Ttrv‖

)
+ 2ε.

It follows that

0 ≤ ‖v − Ttrv‖ ≤
(

2

2− µ

)(
3

2
µ+ 2

)
ε→ 0 as ε ↓ 0.
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Hence, Ttrv = v for all r ≥ 1. Then, the asymptotic regularity of T yields

‖Ttv − v‖ = lim
r→∞

‖TtTtrv − Ttrv‖ = 0

for all t ∈ G. �

We now establish the common fixed point theorem for asymptotically regular semi-
groups equipped with the generalized Lipschitzian condition in Banach spaces which,
in turn, as a partial extension of Theorem 4.2 of [36] for a wider class of semigroups
of self-mappings, by replacing the exact Lipschitz constant with generalized Lipschitz
constant.

Theorem 3.2. Let C be a nonempty weakly compact subset of a Banach space E and
T = {Tt : t ∈ G} be an asymptotically regular and generalized Lipschitzian semigroup
on C. Assume that:

(a) lim inf
t→∞

%(Tt) <
√
WCS(E) or,

(b) lim inf
t→∞

%(Tt) < 1 + rE(1).

Then, there exists z ∈ C such that Ttz = z for all t ∈ G.

Proof. Choose an increasing sequence {sn} in G such that lim
n→∞

sn =∞ and

lim
n→∞

%(Tsn) = lim inf
t→∞

%(Tt) = %(T ).

We consider two possible cases.
Case 1. %(T ) < 1. Take an arbitrary x ∈ C. Then, the weak compactness of C allow
us to ensure

A(C, {Tsnx}) =

{
z ∈ C : lim sup

n→∞
‖Tsnx− z‖ = inf

y∈C
lim sup
n→∞

‖Tsnx− y‖
}
6= ∅.

Fix z ∈ A(C, {Tsnx}). We shall show that z is the common fixed point of T .
Firstly, for each r ≥ 1, using the asymptotic regularity of T we have

lim sup
n→∞

‖Tsnx− Tsrz‖ ≤ lim sup
n→∞

(‖Tsnx− Tsr+snx‖+ ‖Tsr+snx− Tsrz‖)

≤ lim sup
n→∞

%(Tsr ) max

{
‖Tsnx− z‖,

1

2
‖Tsnx− Tsr+snx‖,

1

2
‖z − Tsrz‖,

1

2
‖Tsnx− Tsrz‖,

1

2
‖z − Tsr+snx‖

}
≤ %(Tsr ) lim sup

n→∞
max

{
‖Tsnx− z‖,

1

2
(‖z − Tsnx‖+ ‖Tsnx− Tsrz‖),

1

2
(‖z − Tsnx‖+ ‖Tsnx− Tsr+snx‖)

}
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= %(Tsr ) max

{
lim sup
n→∞

‖Tsnx− z‖,
1

2
lim sup
n→∞

(‖z − Tsnx‖+ ‖Tsnx− Tsrz‖),

1

2
lim sup
n→∞

(‖z − Tsnx‖+ ‖Tsnx− Tsr+sn‖)
}

≤ %(Tsr ) max

{
lim sup
n→∞

‖Tsnx− z‖,

1

2
lim sup
n→∞

‖Tsnx− z‖+
1

2
lim sup
n→∞

‖Tsnx− Tsrz‖
}
. (3.1)

Moreover, by taking the limit superior as r →∞ into (3.1) we have

lim sup
r→∞

lim sup
n→∞

‖Tsnx− Tsrz‖ ≤ %(T ) max

{
lim sup
n→∞

‖Tsnx− z‖,

1

2
lim sup
n→∞

‖Tsnx− z‖+
1

2
lim sup
r→∞

lim sup
n→∞

‖Tsnx− Tsrz‖
}
. (3.2)

If

max

{
lim sup
n→∞

‖Tsnx− z‖,
1

2
lim sup
n→∞

‖Tsnx− z‖+
1

2
lim sup
r→∞

lim sup
n→∞

‖Tsnx− Tsrz‖
}

=
1

2
lim sup
n→∞

‖Tsnx− z‖+
1

2
lim sup
r→∞

lim sup
n→∞

‖Tsnx− Tsrz‖,

then from (3.2) we have

lim sup
r→∞

lim sup
n→∞

‖Tsnx− Tsrz‖ ≤
%(T )

2− %(T )
lim sup
n→∞

‖Tsnx− z‖

≤ %(T ) lim sup
n→∞

‖Tsnx− z‖.

Therefore, by the definition of the asymptotic center we obtain

lim sup
n→∞

‖Tsnx− z‖ ≤ %(T ) lim sup
n→∞

‖Tsnx− z‖. (3.3)

Similarly, if

max

{
lim sup
n→∞

‖Tsnx− z‖,
1

2
lim sup
n→∞

‖Tsnx− z‖+
1

2
lim sup
r→∞

lim sup
n→∞

‖Tsnx− Tsrz‖
}

= lim sup
n→∞

‖Tsnx− z‖,

we also obtain the inequality (3.3). Since %(T ) < 1, then from (3.3) we have

lim sup
n→∞

‖Tsnx− z‖ = 0.

Hence, by Lemma 3.1 we obtain z as the common fixed point of T .
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Moreover, it is easy to see that the set of all common fixed points of T is a singleton.
Indeed, if w is also the common fixed point of T , then for any t ∈ G we have

‖z − w‖ = ‖Ttz − Ttw‖

≤ %(Tt) max

{
‖z − w‖, 1

2
‖z − Ttz‖,

1

2
‖w − Ttw‖,

1

2
‖z − Ttw‖,

1

2
‖w − Ttz‖

}
= %(Tt)‖z − w‖. (3.4)

Taking the limit inferior as t→∞ into (3.4) we get

‖z − w‖ ≤ lim inf
t→∞

%(Tt)‖z − w‖ = %(T )‖z − w‖.

Since %(T ) < 1, we immediately have z = w.

Case 2. %(T ) ≥ 1. Firstly, since WCS(E) ≤ 2 then from the inequality (2.2) we
have

%(T ) < 2.

For any x ∈ C, by using Eberlein-Šmulian Theorem (see, page 18 of [9]), make
it possible to select a subsequence {sn(x)} of {sn} such that {Tsn(x)x} is weakly
convergent, say to l(x) and

lim
n→∞

‖Tsn(x)x− l(x)‖

exists. We construct a sequence {xm}m∈N in C and a sequence {sn(xm)}n∈N in G
inductively, in the following ways.

x = x0 ∈ C arbitrary,

xm = l(xm−1) = w − lim
n→∞

Tsn(xm−1)xm−1,

{sn(xm)}n∈N is a subsequence of {sn(xm−1)}n∈N for allm ∈ N.

Then, by using a diagonal argument we consider a subsequence {tn} of {sn} defined
by

tn = sn(xn) for n ≥ 1.

From the above observation, we have the sequence {Ttnxm} is weakly convergent to
xm+1 and

lim
n→∞

‖Ttnxm − xm+1‖

exists for all m ≥ 0.
For any m ≥ 0 we write

dm = lim sup
n→∞

‖Ttnxm − xm+1‖ and Dm = lim sup
n→∞

‖Ttnxm − xm‖.

We shall show that there exists η < 1 such that dm ≤ ηdm−1 for all m ≥ 1.
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Let m ≥ 1 be fixed. Note that, for each r ≥ 1, using the asymptotic regularity of
T we have

lim sup
n→∞

‖Ttnxm−1 − Ttrxm‖

≤ lim sup
n→∞

(‖Ttnxm−1 − Ttr+tnxm−1‖+ ‖Ttr+tnxm−1 − Ttrxm‖)

≤ %(Ttr ) lim sup
n→∞

max

{
‖Ttnxm−1 − xm‖,

1

2
‖Ttnxm−1 − Ttr+tnxm−1‖,

1

2
‖xm − Ttrxm‖,

1

2
‖Ttnxm−1 − Ttrxm‖,

1

2
(‖xm − Ttnxm−1‖+ ‖Ttnxm−1 − Ttr+tnxm−1‖)

}
= %(Ttr ) max

{
dm−1, 0,

1

2
‖xm − Ttrxm‖,

1

2
lim sup
n→∞

‖Ttnxm−1 − Ttrxm‖,

1

2
lim sup
n→∞

(‖xm − Ttnxm−1‖+ ‖Ttnxm−1 − Ttr+tnxm−1‖)
}

≤ %(Ttr ) max

{
dm−1,

1

2
‖xm − Ttrxm‖,

1

2
lim sup
n→∞

‖Ttnxm−1 − Ttrxm‖,
1

2
dm−1

}
= %(Ttr ) max

{
dm−1,

1

2
‖xm − Ttrxm‖,

1

2
lim sup
n→∞

‖Ttnxm−1 − Ttrxm‖
}

(3.5)

Moreover, by taking the limit superior as r →∞ into (3.5) we have

lim sup
r→∞

lim sup
n→∞

‖Ttnxm−1 − Ttrxm‖

≤ %(T ) max

{
dm−1,

1

2
Dm,

1

2
lim sup
r→∞

lim sup
n→∞

‖Ttnxm−1 − Ttrxm‖
}
. (3.6)

If

max

{
dm−1,

1

2
Dm,

1

2
lim sup
r→∞

lim sup
n→∞

‖Ttnxm−1 − Ttrxm‖
}

=
1

2
lim sup
r→∞

lim sup
n→∞

‖Ttnxm−1 − Ttrxm‖,

then by using (3.6) we get Dm = 0. Hence, by Lemma 3.1 we have xm as the common
fixed point of T . Therefore, we assume

max

{
dm−1,

1

2
Dm,

1

2
lim sup
r→∞

lim sup
n→∞

‖Ttnxm−1 − Ttrxm‖
}

= max

{
dm−1,

1

2
Dm

}
.
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Then, by the weak lower semi-continuity of ‖.‖ and (3.6) we have

Dm = lim sup
r→∞

‖Ttrxm − xm‖

≤ lim sup
r→∞

lim sup
n→∞

‖Ttnxm−1 − Ttrxm‖

≤ %(T ) max

{
dm−1,

1

2
Dm,

1

2
lim sup
r→∞

lim sup
n→∞

‖Ttnxm−1 − Ttrxm‖
}

= %(T ) max

{
dm−1,

1

2
Dm

}
. (3.7)

If max
{
dm−1,

1
2Dm

}
= 1

2Dm, then from (3.7) we see that Dm = 0, and thus Lemma
3.1 ensures xm is the common fixed point of T . Therefore, we also assume

max

{
dm−1,

1

2
Dm

}
= dm−1.

In this case, from (3.7) we obtain

Dm ≤ %(T )dm−1. (3.8)

Now, for the rest of the proof, we may assume dm > 0. Since otherwise, Lemma
3.1 ensures xm+1 is the common fixed point of T . Note that, by Lemma 2.2 we obtain

dm ≤
1

WCS(E)
· lim sup
r→∞

lim sup
n→∞

‖Ttnxm − Ttrxm‖. (3.9)

Here, the asymptotic regularity of T yields

lim sup
r→∞

lim sup
n→∞

‖Ttnxm − Ttrxm‖ ≤ lim sup
r→∞

lim sup
n→∞

‖Ttr+tnxm − Ttrxm‖

≤ lim sup
r→∞

lim sup
n→∞

%(Ttr ) max

{
‖Ttnxm − xm‖,

1

2
‖Ttnxm − Ttr+tnxm‖,

1

2
‖xm − Ttrxm‖,

1

2
‖Ttnxm − Ttrxm‖,

1

2
(‖xm − Ttnxm‖+ ‖Ttnxm − Ttr+tnxm‖)

}
≤ %(T ) max

{
Dm,

1

2
Dm,

1

2
lim sup
r→∞

lim sup
n→∞

‖Ttnxm − Ttrxm‖,
1

2
Dm

}
= %(T ) max

{
Dm,

1

2
lim sup
r→∞

lim sup
n→∞

‖Ttnxm − Ttrxm‖
}

(3.10)

If

max

{
Dm,

1

2
lim sup
r→∞

lim sup
n→∞

‖Ttnxm − Ttrxm‖
}

=
1

2
lim sup
r→∞

lim sup
n→∞

‖Ttnxm − Ttrxm‖,

then from (3.10) we see that Dm = 0. Hence, Lemma 3.1 ensures xm is the common
fixed point of T . Therefore, we assume

max

{
Dm,

1

2
lim sup
r→∞

lim sup
n→∞

‖Ttnxm − Ttrxm‖
}

= Dm.
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In this case, from (3.9) and (3.10) we obtain

dm ≤
%(T )

WCS(E)
Dm. (3.11)

Part (a). Let

θ =
[%(T )]2

WCS(E)
.

It is obvious that θ < 1 by the hypothesis. Combining (3.8) and (3.11) to obtain

dm ≤ θdm−1. (3.12)

Part (b). Firstly, from the inequality (2.3) we see that the set {c ≥ 0 : rE(c) ≤
%(T )−1} is not empty. For the rest of the proof, let ρ = sup{c ≥ 0 : rE(c) ≤ %(T )−1}.
By using the continuity of rE at c = 1 and the assumption, we obtain ρ < 1. We
shall assume dm−1 > 0. (Since otherwise, Lemma 3.1 ensures xm is the common fixed
point of T ).

Next, by following the argument in the proof of Theorem 5 of [21] (see also, The-
orem 7.2 of [12]) with suitable modifications, we obtain

1 + rE

(
‖Ttrxm − xm‖

dm−1

)
≤ 1

dm−1
lim inf
n→∞

‖Ttnxm−1 − Ttrxm‖

for all r ≥ 1. By taking the limit superior as r →∞ into the both sides, then by the
continuity and the monotonically of rE , we have from (3.6) that

1 + rE

(
Dm

dm−1

)
≤ %(T )

dm−1
lim sup
r→∞

lim sup
n→∞

‖Ttnxm−1 − Ttrxm‖

≤ %(T )

dm−1
max

{
dm−1,

1

2
Dm,

1

2
lim sup
r→∞

lim sup
n→∞

‖Ttnxm−1 − Ttrxm‖
}

=
%(T )

dm−1
max

{
dm−1,

1

2
Dm

}
=
%(T )

dm−1
dm−1 = %(T ).

By the definition of the constant ρ, it follows

Dm ≤ ρdm−1. (3.13)

Since %(T ) < 1 + rE(1) ≤WCS(E), then by combining (3.13) and (3.11) we obtain

dm ≤ ρdm−1. (3.14)

Now, let η = max{θ, ρ}. It is obvious that η < 1. Then, from (3.12) and (3.14) we
have

dm ≤ ηdm−1 ≤ · · · ≤ ηmd0 → 0 asm→∞. (3.15)
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For each m ≥ 1, one can see that

‖xm+1 − xm‖ ≤ lim sup
n→∞

(‖xm+1 − Ttnxm‖+ ‖Ttnxm − xm‖)

≤ dm +Dm

≤ (η + %(T ))dm−1.

So, it follows from (3.15) that {xm} is a Cauchy sequence in C. Let z = lim
m→∞

xm.

For each n ≥ 1, observe that

‖z − Ttnz‖

≤ ‖z − xm‖+ ‖xm − Ttnxm‖+ %(Ttn)

{
‖xm − z‖,

1

2
‖xm − Ttnxm‖,

1

2
‖z − Ttnz‖,

1

2
‖xm − Ttnz‖,

1

2
‖z − Ttnxm‖

}
≤ ‖z − xm‖+ ‖xm − Ttnxm‖+ %(Ttn)

{
‖xm − z‖,

1

2
(‖xm − z‖+ ‖z − Ttnz‖)

1

2
(‖xm − z‖+ ‖xm − Ttnxm‖)

}
≤ (1 + 2%(Ttn))‖z − xm‖

+

(
1 +

%(Ttn)

2

)
‖xm − Ttnxm‖+

%(Ttn)

2
‖z − Ttnz‖. (3.16)

Then, by taking the limit superior as n→∞ into (3.16) we get

lim sup
n→∞

‖z−Ttnz‖ ≤ (1+2%(T ))‖z−xm‖+
(

1 +
%(T )

2

)
Dm+

%(T )

2
lim sup
n→∞

‖z−Ttnz‖.

It follows from (3.8) and (3.15) that

0 ≤ lim sup
n→∞

‖z − Ttnz‖

≤
(

2

2− %(T )

)(
(1 + 2%(T ))‖z − xm‖+

(
1 +

%(T )

2

)
%(T )dm−1

)
≤
(

2

2− %(T )

)(
(1 + 2%(T ))‖z − xm‖+

(
1 +

%(T )

2

)
%(T )ηm−1d0

)
→ 0

as m→∞. Hence, by Lemma 3.1 we have Ttz = z for all t ∈ G. �

Let E be an `p-space, 1 < p < ∞. It is known that the Opial’s modulus of E is
given by (see, Corollary 3.2 of [28])

rE(c) = (1 + cp)
1
p − 1, c ≥ 0.

Thus, the following corollary is a partial extension of Corollary 4.4 of [36].

Corollary 3.3. Let C be a nonempty bounded closed convex subset of an `p-space,
1 < p < ∞. Suppose that T = {Tt : t ∈ G} is an asymptotically regular and
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generalized Lipschitzian semigroup on C such that

lim inf
t→∞

%(Tt) < 2
1
p .

Then, there exists z ∈ C such that Ttz = z for all t ∈ G.

Let p and q be real numbers with p > 1 and q ≥ 1. Recall from [6] that Bynum’s

space `p,q is the space `p endowed with the norm ‖x‖p,q = ((‖x+‖p)p + (‖x−‖q)q)
1
q ,

where x+ and x− denote the positive and the negative part of x, respectively, and
‖.‖p denotes the usual norm of `p. If q > 1, then (see, Theorem 2.2 of [38])

r`p,q (c) = min
{

(1 + cp)
1
p − 1, (1 + cq)

1
q − 1

}
, c ≥ 0,

and lp,q is reflexive (see [6]). Thus, the following corollary is a partial extension of
Corollary 4.5 of [36].

Corollary 3.4. Let C be a nonempty bounded closed convex subset of a Bynum’s
space `p,q, 1 < p, q <∞. Suppose that T = {Tt : t ∈ G} is an asymptotically regular
and generalized Lipschitzian semigroup on C such that

lim inf
t→∞

%(Tt) < min
{

2
1
p , 2

1
q

}
.

Then, there exists z ∈ C such that Ttz = z for all t ∈ G.

4. The uniformly convex case

In this section, we examine the existence theorems for the case of uniformly convex
Banach spaces. Recall that the modulus of convexity δE of a Banach space E is the
function δE : [0, 2]→ [0, 1] defined by

δE(ε) = inf

{
1−

∥∥∥∥x+ y

2

∥∥∥∥ : ‖x‖ ≤ 1, ‖y‖ ≤ 1 and ‖x− y‖ ≥ ε
}
.

The characteristic ε0 of convexity of E is defined by

ε0 = ε0(E) = sup{ε ∈ [0, 2] : δE(ε) = 0}.
It is well known (see [17]) that the modulus of convexity δE of E has the following
properties.

(a) δE is increasing on [0, 2], and moreover strictly increasing on [ε0, 2],
(b) δE is continuous on [0, 2) (but not necessary at ε = 2),
(c) δE(0) = 0 and lim

ε→2−
δE(ε) = 1− ε0

2 ,

(d) [‖a− x‖ ≤ r, ‖a− y‖ ≤ r, and ‖x− y‖ ≥ ε]⇒
∥∥a− x+y

2

∥∥ ≤ r (1− δE( εr )
)
.

If E is a reflexive Banach space with the modulus of convexity δE , then (see,
Theorem 3 of [7])

1 ≤ 1

1− δE(1)
≤ N(E).

A Banach space E is said to be uniformly convex if δE(ε) > 0 for all ε > 0, which
equivalently ε0 = 0. We know that any uniformly convex Banach space E has N(E) >
1. A Hilbert space H is uniformly convex. This fact is a direct consequence of
parallelogram identity. Also, an `p-space and Lp-space, 1 < p < ∞, are uniformly
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convex. It is also known that δE(2) = 1 for any uniformly convex Banach space E.
This becomes an evident that δE is strictly increasing and continuous on [0, 2].

For the first main result in this section, we examine the structure of common fixed
point sets of asymptotically regular semigroups having the asymptotic nonexpansive-
ness in uniformly convex Banach spaces.

Theorem 4.1. Let C be a nonempty weakly compact convex subset of a uniformly
convex Banach space E. Suppose that T = {Tt : t ∈ G} is an asymptotically regular
and generalized Lipschitzian semigroup on C with kt ≥ 1 for all t ∈ G and lim

t→∞
kt

= 1, where kt is the constant in (2.1). Then, F(T ), i.e., the set of all common fixed
points of T is nonempty, closed, and convex.

Proof. From the assumption, we have

lim inf
t→∞

%(Tt) ≤ lim
t→∞

kt = 1.

Since WCS(E) > 1, then by Theorem 3.2 we obtain F(T ) is nonempty.
We shall show that F(T ) is closed. Let {xt}t∈G be an arbitrary net in F(T )

such that xt → x. Then, we can find an increasing sequence {sn} in G such that
lim
n→∞

sn =∞ and xsn → x. For any n ≥ 1,

‖Tsnx− xsn‖ = ‖Tsnx− Tsnxsn‖

≤ ksn max

{
‖x− xsn‖,

1

2
‖x− Tsnx‖,

1

2
‖xsn − Tsnxsn‖

1

2
‖x− Tsnxsn‖,

1

2
‖xsn − Tsnx‖

}
= ksn max

{
‖x− xsn‖,

1

2
‖x− Tsnx‖,

1

2
‖x− xsn‖,

1

2
‖xsn − Tsnx‖

}
≤ ksn max

{
‖x− xsn‖,

1

2
(‖x− xsn‖+ ‖xsn − Tsnx‖)

}
≤
(
ksn +

1

2

)
‖x− xsn‖+

ksn
2
‖Tsnx− xsn‖. (4.1)

Taking the limit superior as n→∞ into (4.1) we get

lim sup
n→∞

‖Tsnx− xsn‖ ≤
1

2
lim sup
n→∞

‖Tsnx− xsn‖.

Hence,

lim sup
n→∞

‖Tsnx− xsn‖ = 0. (4.2)

Then by using the triangle inequality, we see from (4.2) and Lemma 3.1 that x ∈ F(T ).
It concludes that F(T ) is closed.
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Next, we show that F(T ) is convex. Let x, y ∈ F(T ) with x 6= y and z = x+y
2 ∈ C.

Then, for each t ∈ G we have

‖Ttz − x‖ = ‖Ttz − Ttx‖

≤ kt max

{
‖z − x‖, 1

2
‖z − Ttz‖,

1

2
‖x− Ttx‖,

1

2
‖z − Ttx‖,

1

2
‖x− Ttz‖

}
=
kt
2

max {‖x− y‖, ‖z − Ttz‖, ‖x− Ttz‖} . (4.3)

It follows that

‖Ttz − x‖ ≤
kt
2
Nt, (4.4)

where

Nt = max{‖x− y‖, ‖z − Ttz‖, ‖x− Ttz‖, ‖y − Ttz‖}.
Analogously, we also have

‖Ttz − y‖ ≤
kt
2
Nt. (4.5)

Now, choose an increasing sequence {tn} in G such that lim
n→∞

tn =∞ and

lim
t→∞

kt = lim
n→∞

ktn = 1,

where ktn < 2 for all n ≥ 1.
We claim ‖x− y‖ > lim sup

n→∞
‖z − Ttnz‖. Indeed, otherwise,

lim sup
n→∞

‖z − Ttnz‖ 6= 0.

Moreover, without loss of generality, we may assume that

lim sup
n→∞

‖z − Ttnz‖ = lim
n→∞

‖z − Ttnz‖.

From (4.3), we get for each n ≥ 1,

‖Ttnz − x‖ ≤
ktn
2

(max{‖x− y‖, ‖z − Ttnz‖}+ ‖x− Ttnz‖) .

Therefore,

‖Ttnz − x‖ ≤
ktn

2− ktn
Mtn ,

where

Mtn = max{‖x− y‖, ‖z − Ttnz‖}.
A similar way yields

‖Ttnz − y‖ ≤
ktn

2− ktn
Mtn .

Thus, by the property (d) we get

‖Ttnz − z‖ ≤
ktn

2− ktn
Mtn

(
1− δE

(
(2− ktn)‖x− y‖

ktnMtn

))
.
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Taking the limit as n→∞ into both sides, we have from the continuity of δE that

lim
n→∞

‖z − Ttnz‖ ≤ max
{
‖x− y‖, lim

n→∞
‖z − Ttnz‖

}
·1− δE

 ‖x− y‖

max
{
‖x− y‖, lim

n→∞
‖z − Ttnz‖

}


= lim
n→∞

‖z − Ttnz‖

(
1− δE

(
‖x− y‖

lim
n→∞

‖z − Ttnz‖

))
< lim
n→∞

‖z − Ttnz‖,

a contradiction.
Now, from (4.3) we obtain

‖Ttnz − x‖ ≤
ktn
2

(max{‖x− y‖, ‖z − Ttnz‖}+ ‖x− Ttnz‖) .

Taking the limit superior as n→∞ into both sides, we have

lim sup
n→∞

‖Ttnz − x‖ ≤
1

2

(
max

{
‖x− y‖, lim sup

n→∞
‖z − Ttnz‖

}
+ lim sup

n→∞
‖x− Ttnz‖

)
=

1

2

(
‖x− y‖+ lim sup

n→∞
‖x− Ttnz‖

)
.

It follows that

lim sup
n→∞

‖Ttnz − x‖ ≤ ‖x− y‖. (4.6)

By a similar argument, we obtain

lim sup
n→∞

‖Ttnz − y‖ ≤ ‖x− y‖. (4.7)

On the other hand, from (4.4) and (4.5), using the property (d) we get

‖Ttnz − z‖ ≤
ktn
2
Ntn

(
1− δE

(
2‖x− y‖
ktnNtn

))
.

Therefore, by taking the limit superior as n → ∞ into the both sides, from (4.6),
(4.7), and the continuity and the monotonically of δE we have

lim sup
n→∞

‖Ttnz − z‖ ≤ lim sup
n→∞

(
ktn
2
Ntn

)(
1− δE

(
lim inf
n→∞

2‖x− y‖
ktnNtn

))

≤ 1

2
‖x− y‖

1− δE

 2‖x− y‖
lim sup
n→∞

(ktnNtn)


≤ 1

2
‖x− y‖(1− δE(2)).

It follows that lim sup
n→∞

‖Ttnz − z‖ = 0. Hence, by Lemma 3.1 we have z ∈ F(T ). It

concludes F(T ) is convex. �
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Remark 4.2. We note that, if the generalized Lipschitzian semigroup T = {Tt : t ∈
G} in Theorem 4.1 is restricted to an asymptotically nonexpansive semigroup, that
is, T satisfies the condition: for any t ∈ G, there exists kt ≥ 1 such that

‖Ttx− Tty‖ ≤ kt‖x− y‖

for all x, y ∈ C and lim
t→∞

kt = 1, then the assumption of the asymptotic regularity

condition of T in Theorem 4.1 can be removed (see [16]).

Next, we shall establish the common fixed point theorem for asymptotically regular
semigroups in the framework of uniformly convex Banach spaces.

The following lemma can be found in page 141 of [1].

Lemma 4.3. Let E be a uniformly convex Banach space satisfying the Opial condition
and C be a nonempty closed convex subset of E. If {xn} is a sequence in C such that
xn ⇀ z, then {z} = A(C, {xn}).

The following lemma is useful in proving our next result.

Lemma 4.4. Let E be a uniformly convex Banach space and a ∈ (0, 2]. Then, the
equation

βa

(
1− δE

(
a

βa
2

))
= 1

has a unique solution βa ∈ (1, 2).

Proof. Let us define the real-valued function ha on [1, 2] by

ha(t) =
1

t
+ δE

( a
t2

)
.

It is easy to see that ha is strictly decreasing and continuous. Moreover, we see by
Theorem 2.3.7.(a) in [1] that

ha(1) = 1 + δE(a) > 1 and h(2) =
1

2
+ δE

(a
4

)
≤ 1

2
+
a

8
≤ 3

4
< 1.

It follows that there exists a unique ta ∈ (1, 2) such that ha(ta) = 1, that is,

ta

(
1− δE

(
a

ta
2

))
= 1. �

The result below extends Theorem 1 of [18] for a wider class of semigroups of
self-mappings, by replacing the exact Lipschitz constant with generalized Lipschitz
constant.

Theorem 4.5. Let E be a uniformly convex Banach space satisfying the Opial
condition and C be a nonempty weakly compact convex subset of E. Suppose that
T = {Tt : t ∈ G} is an asymptotically regular and generalized Lipschitzian semigroup
on C such that lim inf

t→∞
%(Tt) < β, where β is the unique solution of the equation

β

(
1− δE

(
WCS(E)

β2

))
= 1. (4.8)
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(Note that, in a Hilbert space, β = (3
1
2 − 1)−

1
2 and in an `p-space, 2 ≤ p < ∞,

β = βp = 1
2

(
2p−1 + (1 + 23−p)

1
2

) 1
p

(see, Remark 1 of [18])). Then, there exists

z ∈ C such that Ttz = z for all t ∈ G.

Proof. Choose an increasing sequence {sn} in G such that lim
n→∞

sn =∞ and

lim
n→∞

%(Tsn) = lim inf
t→∞

%(Tt) = %(T ) < β.

Note that, by Lemma 4.4 we have the constant β ∈ (1, 2) as the unique solution of the
equation (4.8). If %(T ) < 1, then by Theorem 3.2 we obtain the existence of common
fixed points of T . For the case 1 ≤ %(T ) < β, without loss of generality, we may
assume that 1 ≤ %(Tsn) < ∞ for all n ≥ 1. By using a similiar argument as in the
proof of Theorem 3.2, the weak sequential compactness of C allows us to construct a
sequence {xm}m∈N in C in the following ways:

x = x0 ∈ C arbitrary, xm+1 = w − lim
n→∞

Ttnxm for allm ≥ 0,

for some subsequence {tn} of {sn} such that

lim
n→∞

‖Ttnxm − xm+1‖ exists for allm ≥ 0.

For any m ≥ 0, we write

dm = lim sup
n→∞

‖Ttnxm − xm+1‖ and Dm = lim sup
n→∞

‖Ttnxm − xm‖.

Unlike the proof of Theorem 3.2, in this proof, we shall show that there exists η < 1
such that Dm ≤ ηDm−1 for all m ≥ 1.

Let m ≥ 1 be fixed. Note that, by using a similar argument as in the proof of
Theorem 3.2, for any r ≥ 1 we obtain

lim sup
n→∞

‖Ttnxm−1 − Ttrxm‖ ≤ %(Ttr )Mtr (xm−1), (4.9)

where

Mtr (xm−1) = max

{
dm−1,

1

2
‖xm − Ttrxm‖,

1

2
lim sup
n→∞

‖Ttnxm−1 − Ttrxm‖
}
.

Then, by taking the limit superior as r →∞ into (4.9) we have

lim sup
r→∞

lim sup
n→∞

‖Ttrxm−1 − Ttnxm‖

≤ %(T ) max

{
dm−1,

1

2
Dm,

1

2
lim sup
r→∞

lim sup
n→∞

‖Ttrxm−1 − Ttnxm‖
}
.

Therefore, as in the proof of Theorem 3.2, we may assume

max

{
dm−1,

1

2
Dm,

1

2
lim sup
r→∞

lim sup
n→∞

‖Ttrxm−1 − Ttnxm‖
}

= max

{
dm−1,

1

2
Dm

}
. (4.10)
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Moreover, by using the weak semi-continuity of ‖.‖, we may also assume

max

{
dm−1,

1

2
Dm

}
= dm−1. (4.11)

Next, for the rest of the proof, we may assume dm−1 > 0. Since otherwise, Lemma
3.1 ensures xm is the common fixed point of T . Then, by using a similar argument
as in the proof of Theorem 3.2 with a suitable modification, we obtain

dm−1 ≤
%(T )

WCS(E)
Dm−1. (4.12)

By using the convexity of C and Lemma 4.3, for each r ≥ 1 we also have

dm−1 ≤ lim sup
n→∞

∥∥∥∥Ttnxm−1 − xm + Ttrxm
2

∥∥∥∥ . (4.13)

On the other hand, by the definition of Mtr (xm−1) and (4.9),

lim sup
n→∞

‖Ttnxm−1 − xm‖ = dm−1 ≤Mtr (xm−1) ≤ %(Ttr )Mtr (xm−1)

and

lim sup
n→∞

‖Ttnxm−1 − Ttrxm‖ ≤ %(Ttr )Mtr (xm−1).

Therefore, for each ε > 0 we can choose n0 ≥ 1 such that

‖Ttnxm−1 − xm‖ ≤ %(Ttr )Mtr (xm−1) + ε

and

‖Ttnxm−1 − Ttrxm‖ ≤ %(Ttr )Mtr (xm−1) + ε

for all n ≥ n0. Thus, from the property (d) we obtain∥∥∥∥Ttnxm−1 − xm + Ttrxm
2

∥∥∥∥ ≤ (%(Ttr )Mtr (xm−1) + ε) ·(
1− δE

(
‖Ttrxm − xm‖

%(Ttr )Mtr (xm−1) + ε

))
for all n ≥ n0. By using the continuity of δE , letting ε → 0 into the both sides, we
get

lim sup
n→∞

∥∥∥∥Ttnxm−1 − xm + Ttrxm
2

∥∥∥∥
≤ %(Ttr )Mtr (xm−1)

(
1− δE

(
‖Ttrxm − xm‖
%(Ttr )Mtr (xm−1)

))
. (4.14)
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Therefore, by the monotonically and the continuity of δE , from (4.13) and (4.14) we
have

dm−1

≤ lim inf
r→∞

(
%(Ttr )Mtr (xm−1)

(
1− δE

(
‖Ttrxm − xm‖
%(Ttr )Mtr (xm−1)

)))
≤ lim sup

r→∞
(%(Ttr )Mtr (xm−1)) · lim inf

r→∞

(
1− δE

(
‖Ttrxm − xm‖
%(Ttr )Mtr (xm−1)

))
= lim sup

r→∞
(%(Ttr )Mtr (xm−1)) ·

(
1− δE

(
lim sup
r→∞

‖Ttrxm − xm‖
%(Ttr )Mtr (xm−1)

))
(4.15)

Here, one can see from the definition of Mtr (xm−1), (4.10), and (4.11) that

lim sup
r→∞

‖Ttrxm − xm‖

≤ lim sup
r→∞

‖Ttrxm − xm‖
%(Ttr )Mtr (xm−1)

· lim sup
r→∞

(%(Ttr )Mtr (xm−1))

≤ lim sup
r→∞

‖Ttrxm − xm‖
%(Ttr )Mtr (xm−1)

· %(T ) max

{
dm−1,

1

2
Dm,

1

2
lim sup
r→∞

lim sup
n→∞

‖Ttnxm−1 − Ttrxm‖
}

= lim sup
r→∞

‖Ttrxm − xm‖
%(Ttr )Mtr (xm−1)

· %(T ) max

{
dm−1,

1

2
Dm

}
= lim sup

r→∞

‖Ttrxm − xm‖
%(Ttr )Mtr (xm−1)

· %(T )dm−1.

It follows that
Dm

%(T )dm−1
≤ lim sup

r→∞

‖Ttrxm − xm‖
%(Ttr )Mtr (xm−1)

. (4.16)

Thus by the monotonically of δE , we see from (4.15) and (4.16) that

dm−1 ≤ %(T )dm−1 ·
(

1− δE
(

Dm

%(T )dm−1

))
.

Hence,

δE

(
Dm

%(T )dm−1

)
≤ 1− 1

%(T )
.

Therefore, using the monotonically and the continuity of δE , and (4.12) we have

Dm ≤ %(T )dm−1δE
−1
(

1− 1

%(T )

)
≤ [%(T )]2

WCS(E)
δE
−1
(

1− 1

%(T )

)
Dm−1.

Let

η =
[%(T )]2

WCS(E)
δE
−1
(

1− 1

%(T )

)
.

It is easy to see from the assumption that η < 1. Consequently,

Dm ≤ ηDm−1 ≤ · · · ≤ ηmD0 → 0 asm→∞. (4.17)
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For each m ≥ 1, one can see that

‖xm+1 − xm‖ ≤ lim sup
n→∞

(‖xm+1 − Ttnxm‖+ ‖Ttnxm − xm‖)

≤ dm +Dm ≤ 2Dm.

So, it follows from (4.17) that {xm} is a Cauchy sequence in C. Let z = lim
m→∞

xm.

Then, by using a similar argument as in the proof of Theorem 3.2 we obtain

lim sup
n→∞

‖z−Ttnz‖ ≤ (1+2%(T ))‖z−xm‖+
(

1 +
%(T )

2

)
Dm+

%(T )

2
lim sup
n→∞

‖z−Ttnz‖.

Thus, from (4.17) we get

0 ≤ lim sup
n→∞

‖z − Ttnz‖

≤
(

2

2− %(T )

)(
(1 + 2%(T ))‖z − xm‖+

(
1 +

%(T )

2

)
ηmD0

)
→ 0 asm→∞.

Hence, by Lemma 3.1 we have Ttz = z for all t ∈ G. �

Remark 4.6. In [35], Tan and Xu proved that γ < N(E) for any uniformly convex
Banach space E, where γ > 1 is the unique solution of the equation

γ

(
1− δE

(
1

γ

))
= 1.

Based on this fact, we see that γ < β, where β is the unique solution of the equation
(4.8). Indeed, otherwise, that is γ ≥ β, since γ < N(E) ≤ WCS(E) we get β <
WCS(E). It follows that

1

γ
≤ 1

β
<
WCS(E)

β2
.

Therefore,

1 = β

(
1− δE

(
WCS(E)

β2

))
< β

(
1− δE

(
1

γ

))
< γ

(
1− δE

(
1

γ

))
= 1,

a contradiction. Thus, we can conclude that Theorem 4.5 extends and improves
partially Theorem 5 of [20] in spaces satisfying the Opial condition, by replacing
the assumptions of asymptotically regular mapping and the exact Lipschitz constant
with asymptotically regular semigroup and generalized Lipschitz constant, and the
assumption of the constant γ with β, respectively.

Let us investigate the existence theorem for asymptotically regular semigroups in
p-uniformly convex Banach spaces. Let p > 1 be a real number. Recall that a Banach
space E is said to be p-uniformly convex if inf {δE(ε) : 0 < ε ≤ 2} > 0. We note that

a Hilbert space H is 2-uniformly convex (indeed, δH(ε) = 1 − (1 − ( ε2 )2)
1
2 ≥ 1

8ε
2).

Also, an Lp-space and `p-space, 1 < p <∞, are max{2, p}-uniformly convex, because
(see [23])

δLp
(ε) = δ`p(ε) >

{
p−1
8 ε2 if 1 < p < 2,
1
p2p if p ≥ 2.
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In [37], Xu proved that if a Banach space E is p-uniformly convex, then there exists
cp > 0 such that

‖λx+ (1− λ)y‖p ≤ λ‖x‖p + (1− λ)‖y‖p − cpWp(λ)‖x− y‖p (4.18)

for all x, y ∈ E, 0 ≤ λ ≤ 1, where Wp(λ) = λ(1− λ)p + λp(1− λ).
Motivated by the proof of Theorem 1 of [37], we improve the fact above to be as

follows.

Lemma 4.7. Let E be a p-uniformly convex Banach space for some p > 1. Then, cp
as the best possible constant appeared in the inequality (4.18) is an element of (0, 1].

Proof. It is enough to prove there is no c > 1 such that the inequality (4.18) holds.
On the contrary, by the definition of δE and the inequality (4.18), it is easy to see

δE(ε) ≥ 1−
(

1−
(ε

2

)p
c
) 1

p

for any ε ∈ (0, 2]. Therefore,

1−
(ε

2

)p
c ≥ (1− δE(ε))

p ≥ 0.

It follows that

0 > 1− c = inf
{

1−
(ε

2

)p
c : 0 < ε ≤ 2

}
≥ 0,

a contradiction. �

In the framework of p-uniformly convex Banach spaces, the following result extends
partially Theorem 4.6 of [36] for a wider class of semigroups of self-mappings, by
replacing the exact Lipschitz constant with generalized Lipschitz constant.

Theorem 4.8. Let E be a p-uniformly convex Banach space satisfying the Opial
condition for some p > 1, and let C be a nonempty weakly compact convex subset
of E. Suppose that T = {Tt : t ∈ G} is an asymptotically regular and generalized
Lipschitzian semigroup on C such that

lim inf
t→∞

%(Tt) < max

{
(1 + cp)

1
p ,

(
1

2

(
1 + (1 + 4cp[WCS(E)]p)

1
2

)) 1
p

}
.

Then, there exists z ∈ C such that Ttz = z for all t ∈ G.

Proof. By Lemma 4.7 we have lim inf
t→∞

%(Tt) < 2. Then by combining the method of

the proof of Theorem 3.2 above and Theorem 4.6 of [36], the result follows. �

For an `p-space, 1 < p < ∞, by Corollary 3.3 and Theorem 4.8 we have the
following corollary which, in turn, as a partial extension of Corollary 9 of [21].

Corollary 4.9. Let C be a nonempty bounded closed convex subset of an `p-space,
1 < p < ∞. Suppose that T = {Tt : t ∈ G} is an asymptotically regular and
generalized Lipschitzian semigroup on C such that

lim inf
t→∞

%(Tt) < max

{
2

1
p , (1 + cp)

1
p ,

(
1

2

(
1 + (1 + 8cp)

1
2

)) 1
p

}
.
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Then, there exists z ∈ C such that Ttz = z for all t ∈ G.

Since a Hilbert space H is 2-uniformly convex and the identity

‖λx+ (1− λ)y‖2 = λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)‖x− y‖2

holds for all x, y ∈ H and 0 ≤ λ ≤ 1, then we have the following corollary which, in
turn, as a partial extension of Corollary 4.3 of [36].

Corollary 4.10. Let C be a nonempty bounded closed convex subset of a Hilbert
space H. Suppose that T = {Tt : t ∈ G} is an asymptotically regular and generalized

Lipschitzian semigroup on C such that lim inf
t→∞

%(Tt) <
√

2. Then, there exists z ∈ C
such that Ttz = z for all t ∈ G.

Remark 4.11. Example 2.1 shows that Theorem 3.2, Theorem 4.5, and Theorem
4.8 are more general than Theorem 4.2 of [36], Theorem 1 of [18], and Theorem 4.6
of [36], respectively.

Remark 4.12. Most of our results above can only extend partially some common
fixed points theorems for the semigroups in the corresponding papers. We still cannot
see clearly whether the set of common fixed points of the semigroup studied in this
paper can enjoy the retract condition as well as in the papers of Górnicki [20, 21, 22]
and Wísnicki [36], or not.

Acknowledgement. We would like to thank the referees for his/her comments on
the manuscript.
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